The Origin of LVC's BBHs

Tsvi Piran The Hebrew University Zoe Piran 19, Kenta Hotokezaka 17, 18

MMGW2019 YITP, Kyoto

The Origin of LVC's BBHs

"What to expect when you are expecting"

Tsvi Piran The Hebrew University

Zoe Piran 19, Kenta Hotokezaka 17, 18

MMGW2019 YITP, Kyoto

II. The Origin of BNSs Nir Shaviv, Paz Beniamini III. The Origin of BHNSs Ehud Nakar IV. Why Gravitational Waves? Bernard Schulz

GW 150914

Who ordered that?

Capture VS. Field Binaries? Effective Spin the clue

 Capture => Isotropic model
 Field binaries => some high aligned spin events

The Effective Spin

$$\chi_{1,2} = \frac{c}{Gm_{1,2}^2} S_{1,2} \cdot \hat{L}, \qquad \chi_{\text{eff}} = \frac{m_1\chi_1 + m_2\chi_2}{M},$$

Expectations

Isotropic

Field Evolution

Field Evolution?

t_{c.min}=10Myr, t_w=0.3Myr 0.8 Cumulative fraction 0.6 O1 and O2 0.4 x_i=0, double x_i=1, double x_i=0, single 0.2 x_i=1, single Low Iso 0 -0.4 -0.20.2 0.6 0.8 0 04 Hotokezaka & TP 2018 χ_{eff}

Isotropic model with low spins fit the data
Field evolution predicts some high spin events

The early data

The early data

Alternative Pipeline

- Discovers additional significant merger events.
- Joint detections have consistent parameters (in spite of different priors).
- 1. Venumadhav et al., PRD 19
- 2. Zackay et al., PRD 19

3. Venumadhav et al., arXiv 1904.07214

4. Zackay talk given at the 13th Amaldi Conference 19

The Effective Spin Distributions

The Effective Spin Distributions

The Effective Spin Distributions

A Simple Field Evolution Model Tidal synchronization + winds Ignore complications of the common envelope phase.

No Kicks during the collapse

1. Kushnir et al., MNRAS 2016

2. Hotokezaka & TP ApJ 2017

3. TP & Hotokezaka 2019 in "Jacob Bekenstein - the conservative revolutionary" (Brinks, Mukhanov, Rabinovici, Phua Eds.).

Field Binaries?

 Need a short separation for merging in sufficiently short time.

Wolf Rayet Stars

WR124 loosing its envelope - credit HST

Wolf Rayet Stars

credit Kushnir + 16

Population III stars

CR7 a distant Galaxy harboring (possibly) pop III stars – credit ESO VLT

Mass [M_{sun}]

Gravitational Waves Time Scale

$$t_c = \frac{5}{256} \frac{c^5}{G^3} \frac{a^4}{M^2 \mu}$$

$$\approx 10q^2 \cdot \left(\frac{2}{1+q}\right) \cdot \left(\frac{a}{44R_{\odot}}\right)^4 \cdot \left(\frac{m_2}{30M_{\odot}}\right)^{-3} \text{Gyr},$$

 $q \equiv m_2/m_1$ a = Orbital separation

Synchronization

Synchronization

$$t_{syn} \approx 10 \text{ Myr } q^{-1/8} \left(\frac{1+q}{2q}\right)^{31/24} \left(\frac{t_c}{1 \text{ Gyr}}\right)^{17/8}$$

$$\begin{aligned} \chi_{syn} &\approx 0.5 \ q^{1/4} \left(\frac{1+q}{2}\right)^{1/8} \left(\frac{\epsilon}{0.075}\right) \left(\frac{R_2}{2R_{\odot}}\right)^2 \\ &\left(\frac{m_2}{30M_{\odot}}\right)^{-13/8} \left(\frac{t_c}{1\text{Gyr}}\right)^{-3/8}, \end{aligned}$$

 $t_c = GW$ time scale

 $t_c = GW$ time scale

$$\chi_{syn} \approx 0.5 \ q^{1/4} \left(\frac{1+q}{2}\right)^{1/8} \left(\frac{\epsilon}{0.075}\right) \left(\frac{R_2}{2R_{\odot}}\right)^2$$
$$\left(\frac{m_2}{30M_{\odot}}\right)^{-13/8} \left(\frac{t_c}{1\text{Gyr}}\right)^{-3/8},$$

Winds

Angular momentum loss due to winds ~10⁻⁴ to 10⁻⁶ Msun/year

$$t_w \equiv \chi_*/\dot{\chi}_*$$

Winds

Angular momentum loss due to winds ~10⁻⁴ to 10⁻⁶ Msun/year

$$t_w \equiv \chi_*/\dot{\chi}_*$$

Tidal locking & Winds

$$\frac{\mathrm{d}\tilde{\chi_*}}{\mathrm{d}\tilde{t}} = \frac{t_w}{t_{syn}(t_c)} (1 - \tilde{\chi_*})^{8/3} - \tilde{\chi_*} \qquad \tilde{\chi_*} \equiv \chi_*/\chi_{syn}(t_c) \qquad \tilde{t} \equiv t/t_w$$

Tide Wind

 $\tilde{\chi} \to 1$ for large t_w/t_{syn} $\tilde{\chi} \to 0$ for small t_w/t_{syn}

Small t/t_w : $\tilde{\chi} \to \tilde{\chi}_0$

All spins are positive

Source evolution

 Sources follow the SFR, the LGRB rate (massive star formation) or constant.

Gravitational time delay distribution

 t_c has a t⁻¹
 distribution with a minimal value
 t_{c,min}

Further details

- Initial conditions:
 - synchronized ($\chi_0 = \chi_{syn}$)
 - not synchronized ($\chi_0=0$).
- Single Aligned (SA) or Double Aligned (DA).
- For single aligned the other spin is random.

 $\chi_{\rm eff} = (\chi_{\rm eff,1} + q \chi_{\rm eff,2})/(1+q)$

Measurement errors

'Measurement" errors are added to the theoretical model:

$$p_{err}(\chi_{\text{eff}}) = p(\chi_{\text{eff}}; \overline{m}_1, \overline{m}_2) * \varphi(\chi_{\text{eff}}; 0, \overline{\sigma}_{\chi_{\text{eff}}}^2)$$

Model Prediction Convolution Gaussian

Errors + isotropic component

Model Parameters

- Four free parameters:
 - t* Stellar life time = 0.3 Myr (fixed)
 - t_{c,min} Minimal GW time scale: 5 to 1000 Myr
 - t_w Wind time: 0.03 to 5 Myr
 - χ_0 Initial spin (0 or χ_{syn})

Statistical test

Models are compared to the data using the Anderson-Darling test

	99%	90%	80%	70%	60%	50%	40%	30%	20%	10%	5%	4%	3%	2%	1%
SA_0, SA_{syn}	0.38	0.39	0.42	0.48	0.56	0.67	0.82	1.04	1.39	2.02	2.69	2.91	3.2	3.62	4.34
$\mathrm{DA}_0,\mathrm{DA}_\mathrm{syn}$	0.38	0.39	0.42	0.48	0.56	0.67	0.83	1.06	1.42	2.07	2.77	3.02	3.33	3.79	4.72
$(SA_{0,syn} + DA_{0,syn})/2$	0.38	0.39	0.42	0.48	0.55	0.67	0.82	1.05	1.4	2.05	2.74	2.98	3.28	3.71	4.49
$\mathrm{ISO}_{\mathrm{low}}, \mathrm{ISO}_{\mathrm{flat}}, \mathrm{ISO}_{\mathrm{high}}$	0.38	0.39	0.42	0.48	0.56	0.67	0.83	1.05	1.4	2.02	2.66	2.87	3.12	3.5	4.13

TABLE I. Rejection values of Anderson-Darling test statistic A^2 for the different models.

Results - Isotropic models

	99%	90%	80%	70%	60%	50%	40%	30%	20%	10%	5%	4%	3%	2%	1%
$\mathrm{ISO}_{\mathrm{low}}, \mathrm{ISO}_{\mathrm{flat}}, \mathrm{ISO}_{\mathrm{high}}$	0.38	0.39	0.42	0.48	0.56	0.67	0.83	1.05	1.4	2.02	2.66	2.87	3.12	3.5	4.13
Results - Field Binaries

The Best Model

 $t_{c,\min}$

Single Aligned

Other Field Binary Models

Different masses:

Different Source Rates

Conclusions I

- Single aligned χ₀=0 and
 Double aligned scenarios fit the data with reasonable physical parameters.
- A possible mixture of these scenarios.
- Removal of uncertain events improves the fit.
- Isotropic distributions are not ruled out but are less favored.

The new results turned the odds in favors of Field Binaries => Expect ~10-20% high spins in O3

(see also Romero-Shaw et al. on eccentricity arXiv 1909.05466)

The end, but not really the end...

The end, but not really the end...

We all wait eagerly to the O3 results

II. The Origin of (galactic) Binary Neutron Stars

The rise and fall of kicks

If your theory explains all the observations it muse de wrong, decause some of the observations are wrong

B. Paczynski

Because of tidal interaction between A and the progenitor of B the orbit was circular.

As mass is lost from B in the orbit becomes elliptical And the system attains a cm velocity V_{Ai} V_{cm}

 V_{cm} of the envelope = v_{Bi}

V_{Bi}

And the system attains a cm velocity

And the system attains a cm velocity

And the system attains a cm velocity

A kick velocity fixed the eccentricity but introduces even larger cm motion

*The orbit of the double pulsar (J0737-3039B) is almost circular and it is in the galactic plane

*The orbit of the double pulsar (J0737-3039B) is almost circular and it is in the galactic plane

➡Very low mass ejection (<0.1 M_{sun}) and <u>very low</u> peculiar motion

*The orbit of the double pulsar (J0737-3039B) is almost circular and it is in the galactic plane

➡Very low mass ejection (<0.1 M_{sun}) and <u>very low</u> peculiar motion

NOT formed in a regular SNe

*Pulsar observations confirmed a peculiar motion of 10 km/s!

 ★Pulsar observations confirmed a peculiar motion of 10 km/s!
 →Very low mass ejection (<0.1 M_{sun})
 →NOT formed in a regular SNe

★Pulsar observations confirmed a peculiar motion of 10 km/s!
→Very low mass ejection (<0.1 M_{sun})
→NOT formed in a regular SNe
→J0737 would not have been ejected from Ret II !

*Most (2/3-3/4) observed Galactic binary neutron stars have almost circular orbits and a low peculiar motion.

*Most (2/3-3/4) observed Galactic binary neutron stars have almost circular orbits and a low

peculiar motion. *2/3-3/4 of binary pulsars detected since 2015 satisfy these conditions (almost circular orbit, low peculiar motion)

 ★Most (2/3-3/4) observed Galactic binary neutron stars have almost circular orbits and a low proper motion
 ➡Very low mass ejection

(<0.1 M_{sun})

- *Most (2/3-3/4) observed Galactic binary neutron stars have almost circular orbits and a low proper motion
- Very low mass ejection (<0.1 M_{sun})
- NOT formed in a regular SNe
 Very low kick velocity
 Won't be ejected from a Dwarf Galaxy

The GW merger time distribution of Galactic BNS Biniamini & TP 2019

The GW merger time distribution of Galactic BNS Biniamini & TP 2019

 *The Galactic BNS have an excess of "short" merger times.
 *Expectation due to pulsar's life time is a paucity of short mergers.

The GW merger time distribution of Galactic BNS

The GW merger time distribution of Galactic BNS

 *The Galactic BNS have an excess of "short" merger times.
 *Expectation due to pulsar's life time is a

paucity of short mergers.

The GW merger time distribution of Galactic BNS

*The Galactic BNS have an excess of "short" merger times.

*Expectation due to pulsar's life time is a paucity of short mergers.

Excess of birth of BNS with short merger times.

Conclusions II

- Most Galactic BNS form in a unique rare (1:100).
- This channel involves very little mass ejections and no kick (might be related to lair's fast rising low mass - transients).
- It is likely that both NS are formed in this way.
- A typical binary involving regular SNe is typically disrupted in the second collapse.
- About half of the binaries form with a "short" GW merger time (not t⁻¹)

III. The Origin of BH-NS Binary

 From O1-O3 the rate of BHNS mergers is less than 10% of the rate of NSNS. (see also Kumar + 19).

BHNS are more the major sources of r-process or progenitors of sGRBs.

*A pop-synthesis prediction in Kyoto 2013 was the BHNS mergers is > 10 times the NSNS mergers

A wild speculation?*

- Rarity of BHNS mergers
- Most BHNS binaries are torn apart?

➡Do BNS require a unique evolutionary channel (leading to NS with no mass ejecton) that is rare in the mass range leading to a BHNS?

> * I am the only one responsible for this

Conclusions

- Majority of BBHs progenitors are most likely field binaries (LVC already know if this is correct).
- Majority of BNS are formed in unique evolutionary channel with no kick and little mass ejection.
- BHNS are rare and not major contributors to r-process of sGRBs.

IV. Why Gravitational Waves?

 Is there is a "life motivated reason" for the need of very heavy elements - like Gold, Uranium, Plutonium etc...

Yes - for life as we know it on Earth

- Radioactive U and Th melt the Earth core .
- Enabaling the magnetic dynamo!
- The magnetosphere protects the Earth atmosphere from the Solar wind

Our local merger

About 1000 Earth masses of Gold + Platimun + Uranium and other heavey metals. Less than 80 Million years before solar system formation!

Is there is a "life motivated reason" for the "local merger" ?

Is the solar system special?

An Open ERC postdoc position

An Open ERC postdoc position

