Formation of massive stellar binaries in the early universe

Takashi Hosokawa (Kyoto Univ.)

17.Oct.2019 Multi-messenger workshop in GW era @ YITP

Advent of GW Era

O2 catalog 2018:

What are the origins of such massive BH-BH binaries?

massive stellar binaries \Rightarrow binary evolution (e.g., common envelope) \Rightarrow BH-BH binary (w/ ~0.1AU separation)

Consider the first stage of the formation of massive stellar binaries

Pop III Origin?

(Kinugawa+14,16; Nakamura+16; Inayoshi+17 etc)

Assume millions of stellar binaries, and then derive the chirp-mass distribution of merger events that occur within the cosmic age...

(Monte-Carlo simulations)

Peak around $30M_{\odot}$ only for Pop III case

It was predicted in 2014, *before* the GW detection

And then GW150914 came just on the peak...

Key Questions

Stars in the earliest universe: What is their

typical mass? / mass distribution? / binarity and multiplicity?

To answer these, we understand the key processes: (I) stellar radiative feedback + (II) fragmentation

Pop III UV feedback

(TH+16, 11; Stacy+16, 12; Susa+14, 13 etc)

caused by the stellar ionizing radiation, which heats up the accreting gas

The mass accretion onto the star is shut off by the UV feedback

 \rightarrow it determines how massive star is finally formed.

Gas pressure effect (UV radiation enhances the gas pressure)

Fragmentation

The grav. fragmentation yield multiple star-disk systems \Rightarrow binary formation?

Desperately complex evolution?

The fragmentation is often followed by *merger* events.

But not for all. Some fragments evolve into binary systems, and survive.

Binary v.s. Merger

What determines such different fates? Chon & TH (2019)

numerical experiments

Artificially put a clump in a rapidly accreting disk, and then follow the orbital evolution

(initial positions and clump masses are free parameters)

Evolution is diverse: it sensitively depends on the parameter choice

Extract Key Physics

Planet formation theories help us (though the situation is so different!)

Ansatz

- 1. orbital ang. momentum is lost by (I) type-I migration, (II) tidal disruption
 - 2. the binary formation occurs when gap/cavity is cleared in the disk

UV feedback + Fragmentation

Time: -151617.0

Sugimura et al (incl. TH) in prep.

log(nH) 6.000e+00 5.625 5.25 4.875 4.500e+00

UV feedback + Fragmentation

The disk fragmentation \Rightarrow binary w/ single star + triple system \Rightarrow stellar mass growth under the UV feedback w/ bipolar HII regions

Mass Growth Histories

NO tight massive binaries?

3 BH-BH binary separation must be < \sim 0.1AU for the merger to occur within the Hubble time

Magnetic fields may change the story...

r(cm)

"Bridge the Gap" between Pop III and I SF

Photoionization feedback (gas pressure effect)

Radiation force feedback (rad. pressure effect w/ dust)

What is the interplay btw these feedback in Pop I high-mass SF?

First Hydrodynamics Simulations of Radiation Forces and Photoionization Feedback in Massive Star Formation

Accretion Histories

Photoionization feedback rather increases the final mass (opposite to Pop III case)

What's happening?

The expansion of an HII regions pushes the gas in the envelope toward the shade of the disk, where the irradiation from the central star is blocked \Rightarrow it weakens "rad.-force" feedback

Unlike in the Pop III case, UV feedback does not halt the mass accretion, but rather promotes the mass accretion

→ Metallicity dependence of radiative feedback! (see also, TH & Omukai 09, Fukushima (TH) et al. 18, Tanaka (TH) et al. 18)

Summary

+ PopIII binaries: possible origin of BH-BH merger?

A large number of Pop III stars may be in binaries. BUT no one answers how massive and tight binaries could form (actually it is also the same for Pop I and II cases)

+ We shall bridge the gap btw Pop I and III massive star formation