Formation of massive stellar binaries in the early universe

Takashi Hosokawa
(Kyoto Univ.)

17.Oct.2019 Multi-messenger workshop in GW era @ YITP
Advent of GW Era

What are the origins of such massive BH-BH binaries?

massive stellar binaries \Rightarrow binary evolution (e.g., common envelope) \Rightarrow BH-BH binary (w/ ~ 0.1AU separation)

Consider the first stage of the formation of massive stellar binaries
Pop III Origin?
(Kinugawa+14,16; Nakamura+16; Inayoshi+17 etc)

Assume millions of stellar binaries, and then derive the chirp-mass distribution of merger events that occur within the cosmic age...

(Monte-Carlo simulations)

It was predicted in 2014, before the GW detection

And then GW150914 came just on the peak...

Peak around 30M☉ only for Pop III case
Key Questions
Stars in the earliest universe: What is their typical mass? / mass distribution? / binarity and multiplicity?

To answer these, we understand the key processes: (I) stellar radiative feedback + (II) fragmentation.

HII region

TH+16

Chon, TH+18

10000 AU
Pop III UV feedback

(TH+16, 11; Stacy+16, 12; Susa+14, 13 etc)

caused by the stellar ionizing radiation, which heats up the accreting gas

The mass accretion onto the star is shut off by the UV feedback
→ it determines how massive star is finally formed.

※Gas pressure effect (UV radiation enhances the gas pressure)
The grav. fragmentation yield multiple star-disk systems \Rightarrow binary formation?

Desperately complex evolution?

The fragmentation is often followed by *merger* events.

But not for all. Some fragments evolve into *binary* systems, and survive.
Binary v.s. Merger

What determines such different fates? Chon & TH (2019)

numerical experiments
Artificially put a clump in a rapidly accreting disk,
and then follow the orbital evolution
(initial positions and clump masses are free parameters)

Evolution is diverse: it sensitively depends on the parameter choice
Extract Key Physics

Planet formation theories help us (though the situation is so different!)

Ansatz

1. orbital ang. momentum is lost by (I) type-I migration, (II) tidal disruption
2. the binary formation occurs when gap/cavity is cleared in the disk

Analytic evaluations

We can explain the divergent evolution with the above ansatz.

The binaries generally **expand** while accreting the gas.
UV feedback + Fragmentation

Time: -151617.0

Sugimura et al (incl. TH) in prep.
UV feedback + Fragmentation

The disk fragmentation \Rightarrow binary w/ single star + triple system \Rightarrow stellar mass growth under the UV feedback w/ bipolar HII regions

Sugimura et al (incl. TH) in prep.
Mass Growth Histories

Accretion onto the triple system is shut off by the UV feedback
But the single star is still accreting

Massive (\(\sim\) several x 10M\(_\bigodot\))
Pop III binary is forming!
Triple-single separation increases...
Massive wide binary
NO tight massive binaries?

※ BH-BH binary separation must be $< \sim 0.1$AU for the merger to occur within the Hubble time

Why?

"Inside-Out Accretion” onto stars

The gas near the star accretes first

As time goes by, the gas with the larger specific angular momentum starts to accrete

The binary mass increases, but the binary separation also increases

Magnetic fields may change the story...
“Bridge the Gap”
between Pop III and I SF

What is the interplay btw these feedback in Pop I high-mass SF?

Typical Pop III case
Photoionization feedback
(gas pressure effect)

Rare Pop I case
Radiation force feedback
(rad. pressure effect w/ dust)

Sugimura+

Rosen+17
First Hydrodynamics Simulations of Radiation Forces and Photoionization Feedback in Massive Star Formation

Kuiper + TH 18, A&A

at \(Z=Z_\odot \), 2D Radiation-Hydro Simulations

- Ionization front
- Outflow
- Circumstellar disk

\(\approx \) pc

\(\approx 0.05 \) pc
Accretion Histories

Photoionization feedback rather **increases** the final mass (opposite to Pop III case)
What’s happening?

The expansion of an HII regions pushes the gas in the envelope toward the shade of the disk, where the irradiation from the central star is blocked ⇒ it weakens “rad.-force” feedback

Unlike in the Pop III case, UV feedback does not halt the mass accretion, but rather promotes the mass accretion

→ Metallicity dependence of radiative feedback!

(see also, TH & Omukai 09, Fukushima (TH) et al. 18, Tanaka (TH) et al. 18)
Summary

+ PopIII binaries: possible origin of BH-BH merger?

A large number of Pop III stars may be in binaries. BUT no one answers how massive and tight binaries could form (actually it is also the same for Pop I and II cases)

+ We shall bridge the gap btw Pop I and III massive star formation