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OVERVIEW

MOTIVATION FOR THIS TALK

▸ Massive stars are the ultimate sources of many of the multi-
messenger signals of interest to most at this meeting 

▸ The demographics of massive stars are therefore a crucial input 
to efforts to model source populations; conversely, these 
demographics can be constrained by observations 

▸ Many demographic features matter: IMF, binary statistics, spin; 
we care about how these depend on environment 

▸ My goal: tell you what is known theoretically (and a little 
observationally) about these demographics



OVERVIEW

OUTLINE

▸ Observational background on massive star formation 

▸ Key physical processes for massive star formation 
▸ Fragmentation 
▸ Feedback and the upper mass limit 
▸ Disks: fragmentation and braking 

▸ Variations: what changes with environment, and why? 
▸ The initial mass function 
▸ Binarity / multiplicity 
▸ Rotation 

▸ Implications and questions



OBSERVATIONAL BACKGROUND For no reason whatsoever, here is 
a baby wombat



OBSERVATIONAL BACKGROUND

SITES OF MASSIVE STAR FORMATION

▸ Massive stars form in cold, dense, 
dusty interstellar clouds 

▸ Detect massive protostars in clouds 
by mid-IR emission 

▸ Detect clouds by near- or mid-IR 
absorption, FIR or mm emission 

▸ Typical surface density Σ ~ 0.1 − 1 g 
cm−2, temperature T ~ 10 K 

▸ Contain MIR-dark cores with M ~ 100 
M⊙, Σ ~ 1 g cm−2, σ ~ 1 km s−1 Rathborne+ 2005 

Left: Spitzer NIR + IRAM mm 
Right: Spitzer MIR + IRAM mm



MASSIVE CORES Left: Beuther+ 2005, Spitzer MIR + IRAM mm 
Right: Tan+ 2014, Herschel MIR + ALMA mm

al., 2009). The spectra of molecular tracers of IRDCs, such
as 13CO, C18O, N2H+, NH3, HCN, HCO+, CCS, show
line widths ⇠ 0.5� 2 km s�1, i.e., consistent with varying
degrees of supersonic turbulence (e.g., Wang et al., 2008;
Sakai et al., 2008; Fontani et al., 2011). In studying the
kinematics of IRDC G035.3900.33, Henshaw et al. (2013)
have shown it breaks up into a few distinct filamentary com-
ponents separated by up to a few kms�1, and it is speculated
these may be in the process of merging. Such a scenario
may be consistent with the detection of widespread (> pc-
scale) SiO emission, a shock tracer, by Jiménez-Serra et al.
(2010) along this IRDC. However, in general it is difficult
to be certain about flow geometries from only line of sight
velocity information. While infall/converging flow signa-
tures have been claimed via inverse P-Cygni profiles in star-
forming cores and clumps (§4), there are few such claims in
starless objects (Beuther et al., 2013a). The L1544 PSC has
⇠ 8 M� and an infall speed of ' 0.1 km s�1 on scales of
103 AU—subsonic and ⌧ v↵ (Keto and Caselli, 2010).

Given a measurement of cloud velocity dispersion, �, the
extent to which it is virialized can be assessed, but with the
caveat that the amount of B-field support is typically un-
known. Comparing 13CO-derived �s with MIR+NIR ex-
tinction masses, Kainulainen and Tan (2013) found ↵̄vir =
1.9. Hernandez et al. (2012) compared MIR+NIR extinc-
tion masses with C18O-derived �s and surface pressures in
strips across IRDC G035.3900.33, finding results consistent
with virial equilibrium (Fiege and Pudritz, 2000).

For starless cores, Pillai et al. (2011) studied the dy-
namics of cold cores near UC H II regions using NH2D-
derived � and 3.5 mm emission to measure mass, finding
↵̄vir ⇠ 0.3. Tan et al. (2013b) measured mass and ⌃
from both MIR+NIR extinction and mm dust emission to
compare predictions of the Turbulent Core Accretion model
(including surface pressure confinement and Alfvén Mach
number MA = 1 magnetic support) with observed �, de-
rived from N2D+. In six cores they found a mean ratio of
observed to predicted velocity dispersions of 0.81 ± 0.13.
However, for the massive monolithic core C1-S they found
a ratio of 0.48±0.17, which at face value implies sub-virial
conditions. However, virial equilibrium could apply if the
magnetic fields were stronger so that MA ' 0.3 rather than
1, requiring B ' 1.0 mG. Sánchez-Monge et al. (2013c)
used NH3-derived mass and � to find ↵vir ⇠ 10 for several
tens of mostly low-mass starless cores, which would sug-
gest they are unbound. However, they also found a linear
correlation of M with virial mass Mvir ⌘ ↵virM , only ex-
pected if cores are self-gravitating, so further investigation
of the accuracy of the absolute values of ↵vir is needed.

3.2. Chemical Properties of Starless Cores & Clumps
IRDC chemical properties resemble those of low-mass

dense cores (e.g., Vasyunina et al., 2012; Miettinen et al.,
2011; Sanhueza et al., 2013), with widespread emission of
NH3 and N2H+ (e.g., Zhang et al., 2009; Henshaw et al.,
2013). In the Nobeyama survey of Sakai et al. (2008),

Fig. 5.— Candidate massive starless cores, C1-S & C1-N, traced
by N2D

+(3-2) (contours), observed by ALMA (Tan et al., 2013b).
Background shows MIR ⌃ map (g cm�2). C1-S has ⇠ 60 M�.
The high value of [N2D

+]/[N2H
+] ⇠ 0.1 (Kong et al., in prep.)

is a chemical indicator that C1-S is starless.

no CCS was detected, suggesting the gas is chemically
evolved, i.e., atomic carbon is mostly locked into CO.

3.2.1. CO Freeze-Out

CO is expected to freeze-out from the gas phase onto
dust grains when Td . 20 K (e.g., Caselli et al., 1999). The
CO depletion factor, fD(CO), is defined as the ratio of the
expected CO column density given a measured ⌃ (assuming
standard gas phase abundances, e.g., nCO/nH2 = 2⇥10�4,
Lacy et al., 1994) to the observed CO column density. Miet-
tinen et al. (2011) compared CO(1-0) & (2-1) observations
with ⌃ derived from FIR/mm emission finding no evidence
for depletion. Hernandez et al. (2012) compared NIR &
MIR-extinction-derived ⌃ with C18O(2-1) & (1-0) to map
fD in IRDC G035.39-00.33, finding widespread depletion
with fD ⇠ 3. Fontani et al. (2012) compared C18O(3-2)
with FIR/mm-derived ⌃ in 21 IRDCs and found f̄D ⇠ 30,
perhaps due to CO(3-2) tracing higher density (shorter de-
pletion timescale) regions. On the other hand, Zhang et al.
(2009) found fD ⇠ 102 � 103 in IRDC G28.34+0.06 P1 &
P2 by comparing C18O(2-1) to ⌃ from FIR/mm emission.

3.2.2. Deuteration

Freeze-out of CO and other neutrals boosts the abun-
dance of (ortho-)H2D+ and thus the deuterium fractiona-
tion of other species left in the gas phase (Dalgarno and
Lepp, 1984). Low-mass starless cores on the verge of star
formation, i.e., PSCs, show an increase in Dfrac(N2H+)
⌘ N (N2D+)/N (N2H+) to & 0.1 (Crapsi et al., 2005).
High (ortho-)H2D+ abundances are also seen (Caselli et
al., 2008). In the protostellar phase, Dfrac(N2H+) &
N(H2D+) decrease as the core envelope is heated (Em-
prechtinger et al., 2009; Ceccarelli et al., this volume).
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IMF VARIATIONS Left: IMF in 30 Doradus, Schneider+ 2018 
Right: IMF in MW center clusters,  Hosek+ 2019

consistent with the local IMF (Kim et al. 2006; Espinoza et al.
2009; Habibi et al. 2013; Shin & Kim 2015). However, a key
advantage of this study is the use of proper motions to calculate
cluster membership probabilities, which produces a signifi-
cantly more accurate sample of cluster members than is
possible through photometry alone. For example, Figure 16
shows a comparison between cluster samples obtained using
proper motions versus a photometric color cut similar to Habibi
et al. (2013). Even when limited to r<1.5 pc and M>10Me
(the range of PDMF was measured by Habibi et al. 2013), the
photometric sample is systematically larger than the proper-
motion selection due to field contamination. On the other hand,
adopting stricter color cuts on photometric samples can be
problematic as well, as Espinoza et al. (2009) noted that the
color cuts they adopted forced them to eliminate stars that
could be high-mass (M>16Me) cluster members.

An alternative approach is to statistically subtract the field
from the cluster using the field population observed in nearby
control fields (e.g., Kim et al. 2006; Shin & Kim 2015).
However, differential extinction can alter both the average
extinction and the distribution of extinction values between two
fields (e.g., note the detailed extinction structures in Figure 5).
As a result, it is challenging to obtain a sufficiently accurate
model of the field stars in the cluster observations. In addition,
care must be taken that the control fields are beyond the extent
of the cluster, which H15 showed extends to a radius of at least
75″ (∼3 pc).

It is interesting to note that several previous studies have
reported evidence of an enhancement in the PDMF at ∼6Me,
whether it be evidence of a turnover (Stolte et al. 2005) or a

localized “bump” in the mass function (Kim et al. 2006). The
presence of such a feature may be driving the two-segment IMF
model solution. Future studies are needed to extend the proper-
motion-selected sample to lower masses in order to definitively
distinguish between the one- and two-segment IMF models and
determine whether an enhancement at 5–6Me truly exists.

6.2. A Top-heavy IMF Near the GC?

The top-heavy IMF we obtain for the Arches cluster
(α=1.80± 0.05± 0.06) is in good agreement with the
YNC (α=1.7± 0.2 for M>10Me; Lu et al. 2013). This
suggests that this unusual IMF extends beyond the central
parsec of the Galaxy and into the CMZ, which spans a
galactocentric radius of ∼200 pc (Morris & Serabyn 1996).
Unfortunately, the exact birth location of the Arches is not well
constrained due to the range of possible orbits allowed by the
three-dimensional motion of the cluster (Stolte et al. 2008;
Kruijssen et al. 2015). Further, the proper motion of the cluster
in the galactocentric reference frame is not yet well determined,
as current estimates are based on the relative proper motion
between the cluster and a single-Gaussian kinematic model for
the field (e.g., Clarkson et al. 2012). In reality, the field exhibits
a more complex kinematic structure (see H15 and
Appendix A), so the cluster motion may need to be revised.
This is left to a future paper.
However, this result raises the question of whether the top-

heavy IMF is truly due to the GC environment or if it is a
general property of YMCs (see review by Portegies Zwart et al.
2010). In Figure 17, we compare IMF measurements of YMCs
in the Milky Way disk to the YNC and Arches cluster at the

Figure 16. Comparison between Arches cluster members selected via proper
motion vs. a photometric color cut. The proper-motion sample, shown as the
red solid and dashed lines, contains all stars with Ppm>0.3, where each star is
weighted by its membership probability for radius ranges of 0.25 pc<r<3.0
pc and 0.25 pc<r<1.5 pc, respectively. The photometric sample is selected
as all stars with differentially dereddened F127M–F153M colors within ±0.3
mag of the average color on the main sequence, similar to Habibi et al. (2013).
The photometric sample is larger than the proper motion due to field
contamination, even at high masses (the blue dashed line represents
M=10 Me).

Figure 17. Plot of IMF slope α vs. mass for YMCs in the Galactic disk (blue
points: Wd2, Trumpler 14 and 16, h and χ Persei; purple squares: Wd1;
turquoise triangles: NGC 3603) and the GC (red circle: YNC; red star: Arches
cluster, with statistical and systematic errors added in quadrature). The dotted
error bars in the X direction show the mass range over which the measurement
was made, while the solid error bars in the Y direction show the measurement
uncertainty. The references are provided in the text; Wd1 and NGC 3603 have
their own symbols in order to represent the multiple values reported in the
literature. Also shown is the local IMF (black dashed line) and the IMF
measured for the young cluster in M31 from Weisz et al. (2015; cyan box).
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Figure 1: Age (A) and initial-mass, Mini, (B) distribution of the VFTS sample stars more
massive than 15M� (black line). Uncertainties are calculated by bootstrapping (19) and the
1� region is shaded blue. The best-fitting star-formation history (A) and present-day distri-
bution of initial masses (B) are plotted in red. For comparison, also the expected present-day
distribution of initial masses assuming a Salpeter IMF is provided (B; note that these modelled
mass distributions are not single power-law functions anymore). About 140 stars above 15M�
are inferred to have ended their nuclear burning during the last ⇡ 10Myr and their contribution
to the SFH is shown by the red shaded region in panel (A). The peak star-formation rate (SFR)
extrapolated to the whole 30 Dor region is about 0.02M� yr�1 (of order ⇡ 1M� yr�1 kpc�2

depending on the exact size of 30 Dor). C) Ratio of modelled to observed present-day mass-
functions illustrating that the Salpeter IMF model underpredicts the number of massive stars in
our sample, in particular above 30M�.
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OBSERVATIONAL BACKGROUND

MASSIVE STAR MULTIPLICITY

▸ Essentially all massive stars form in 
multiple systems, many with 
multiple companions 

▸ Compared to lower mass stars at 
Solar metallicity, significant excess 
of close companions 

▸ Mass ratios mostly moderate at 
most separations, q ~ 0.3 - 0.5, 
with 10% excess of “twin” binaries 
(q > 0.95) at small separation

GK IV/V stars (Section 4), and Kepler EBs with F3V–K3V
primaries (Section 5). Based on the Raghavan et al. (2010)
volume-limited sample of solar-type stars, we also showed in
Section 2 that the binary fraction below logP(days)<6
(a200 au) is 50%±8% across −0.9<[Fe/H]<−0.4 and
25%±2% across −0.3<[Fe/H]<0.4. According to our
adopted lognormal period distribution, 55% of binaries below
logP(days)<6 are close binaries with logP(days)<4.
This provides close binary fractions of Fclose=28%±5%
and 14%±2% across −0.9<[Fe/H]<−0.4 and −0.3<
[Fe/H]< 0.4, respectively, which we also show in Figure 18.

All five samples/methods presented in Figure 18 exhibit a
quantitatively consistent anticorrelation between Fclose and
[Fe/H]. Because of the different methods used to identify
binaries in the various samples, it is difficult for them to
conspire to produce consistent results erroneously. The error
bars for each of the data points in Figure 18 incorporate not
only the measurement uncertainties according to their respec-
tive sample sizes but also the systematic uncertainties in
transforming the observed (incomplete) close binary fractions
into intrinsic bias-corrected close binary fractions. Attempting
to fit a constant Fclose to the 23 independent measurements in
Figure 18 results in a reduced χ2/ν=6.2 with ν=22 degrees
of freedom. Even after considering systematic uncertainties, we
can reject the null hypothesis that the close binary fraction of
solar-type stars is invariant with respect to metallicity at the
8.7σ significance level (p=2.2×10−18).

We instead adopt a weighted moving average for Fclose([Fe/H])
that can be accurately fitted by two line segments. The corrected
close binary fraction of solar-type stars decreases from Fclose=
53%±12% at [Fe/H]=−3.0 to Fclose=40%±6% at

[Fe/H]=−1.0 and then to Fclose=10%±3% at [Fe/H]=
+0.5. We display our two-segment fit to the various observations in
Figure 18. Across the full metallicity interval −3.0<[Fe/H]<
0.5, the close binary fraction of solar-type stars decreases by a
factor of ≈5. Metal-poor halo stars clearly have a higher close
binary fraction than metal-rich disk stars. Most of the variation in
Fclose occurs across the narrower interval −1.0<[Fe/H]<0.5,
whereby the close binary fraction decreases by a factor of≈4. Even
within the galactic disk, the close binary fraction of solar-type stars
decreases dramatically with metallicity. By interpolating our fit at
the mean metallicity of the field, i.e., [Fe/H]≈−0.2, we measure a
close binary fraction of Fclose=24%±4%. This matches the
close binary fraction inferred from volume-limited samples of solar-
type stars in the solar neighborhood (Duquennoy & Mayor 1991;
Raghavan et al. 2010; Tokovinin 2014; Moe & Di Stefano 2017).

6.2. Binary Period Distributions

Solar-type binaries in the field follow a lognormal
companion period distribution that peaks at log P(days)=4.9
(apeak≈40 au) with a dispersion of σlog P=2.3 (Duquennoy
& Mayor 1991; Raghavan et al. 2010; Tokovinin 2014). After
making small corrections for incompleteness (Chini et al. 2014;
Moe & Di Stefano 2017), the single-, binary-, triple-, and
quadruple-star fractions are Fsingle≈51%, Fbinary≈34%,
Ftriple≈12%, and Fquadruple≈3%, respectively. These frac-
tions provide the average multiplicity frequency of companions
per primary of fmult=Fbinary + 2Ftriple + 3Fquadruple=
0.67±0.05. We define the frequency flog P of stellar
companions per decade of orbital period such that

¨� ( )f f d Plog . 3Pmult
0

9

log

In Figure 19, we plot the lognormal period distribution flog P of
solar-type multiples in the solar neighborhood scaled to
fmult=0.67 across log P(days)=0–9 (black line).

Figure 18. Intrinsic close binary fraction (P<104 days; a<10 au) of
M1≈1 :M primaries as a function of metallicity after correcting for
incompleteness and other selection biases. We compare the measurements
from (1) SBs in samples of metal-poor giants (orange), (2) Kepler EBs with
solar-type dwarf primaries (blue), (3) a volume-limited sample of solar-type
primaries (magenta), (4) RV variables in the APOGEE survey of GK IV/V
stars (red), and (5) SBs in the Carney–Latham survey of high proper motion
stars (green). All five samples/methods show a consistent metallicity trend that
can be fitted by two line segments (black) in which the close binary fraction
decreases from Fclose=53%±12% at [Fe/H]=−3.0 to Fclose=
40%±6% at [Fe/H]=−1.0 and then to Fclose=10%±3% at [Fe/H]=
+0.5. Even after accounting for systematic uncertainties, the close binary
fraction of solar-type stars is anticorrelated with metallicity at the ≈9σ
significance level.

Figure 19. Frequency flog P of stellar companions per decade of orbital period.
We compare the canonical lognormal period distribution of solar-type multiples
in the solar neighborhood (black line) to the companion distribution of early-B
stars (dashed magenta line). We also show the metallicity-dependent period
distributions for solar-type primaries with [Fe/H]=−3.0 (blue), −1.0 (green),
−0.2 (orange), and +0.5 (red). The close binary fraction (log P<4;
a<10 au) of solar-type stars is significantly anticorrelated with metallicity,
while the frequency of wide companions (log P>6; a>200 au) is metallicity
invariant. As solar-type stars decrease in metallicity, both their binary fraction
and binary period distribution approach that of early-B stars.
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example, by setting the single-star and triple-star fractions to
zero, then the binary-star fraction is � �� � 45%n q1; 0.1 and the
quadruple-star fraction is � � �n q3; 0.1=55%. All other distribu-
tions of the multiplicity fractions lead to larger values of
� . �n q2; 0.1 = � � �n q2; 0.1 + � � �n q3; 0.1>55%. The majority of
O-type MS primaries are therefore found in triples and
quadruples.

10. Binary-star Formation

Despite their ubiquity, a close stellar companion with
a1au cannot easily form in situ (Tohline 2002). Instead,
the companion most likely forms via fragmentation on large,
core scales of ∼1000 au or within the circumstellar disk at
separations ∼10–100au (Kratter & Matzner 2006). Some
mechanism for orbital evolution is required to bring the binary
to shorter periods. While the dominant migration mechanism
remains unknown, likely candidates include migration through
a circumbinary disk due to hydrodynamical forces, dynamical
interactions in an initially unstable hierarchical multiple
system, or secular evolution in triple stars, such as Kozai
cycles, coupled with tidal interactions (Bate et al. 1995;
Kiseleva et al. 1998; Kratter 2011).

As mentioned in Section 1, the measured mass-ratio
distribution of binaries offers insight into their formation
processes. For example, if the companion migrates inward
through the primordial disk, it most likely accretes additional
mass. Competitive accretion in the circumbinary disk tends to
drive the binary mass ratio toward unity (Kroupa 1995a,
1995b; Bate & Bonnell 1997; Bate 2000; Tokovinin 2000;
White & Ghez 2001; Marks & Kroupa 2011). While RLOF
during the early, fully convective, pre-MS phase may cause the
binary component masses to diverge (Tokovinin 2000), MT
during the late pre-MS phase may instead increase the mass
ratio, possibly contributing to an excess twin population at very
short orbital periods P10days. In both the accretion and

MT scenarios, the binary components coevolve during the pre-
MS phase, which most likely leads to correlated component
masses.
Early-type binaries with P<20days exhibit a small but

statistically significant excess twin fraction � � 0.1twin (see
Figure 35). While excess twins are absent among early-type
binaries with P>20days, their mass ratio distribution is
measurably discrepant with random pairings of the IMF out to
logP (days)≈5.5 (a≈200 au). For solar-type binaries, the
excess twin fraction �twin=0.3 is measurably larger at short
periods P<100days. Moreover, the excess twin population
of solar-type binaries extends to significantly wider separations
a≈200au (logP≈6; Figure 35). This separation of
a≈200au is comparable to the radii of primordial disks
observed around young, accreting pre-MS solar-type systems
(Andrews et al. 2009). White & Ghez (2001) find that the
presence of circumprimary and circumsecondary disks is
significantly correlated only if the binary separations are
a<200au. The lack of disk correlation for wider binaries
with a>200au indicates that the components separately
accrete from their own gas reservoirs.
Based on these various lines of observational evidence, we

surmise that wide components with separations a200au
initially fragmented from molecular cores/filaments and have
since evolved relatively independently. For both solar-type and
early-type systems, the mass-ratio distribution of wide
companions is weighted toward more extreme mass ratios
compared to their counterparts with smaller separations. For
wide early-type systems, we measure H qsmall =−1.5±0.4 and
H qlarge =−2.0±0.3, which is close to but slightly flatter than
that expected from random pairings from a Salpeter IMF
(H qsmall = H qlarge =−2.35). Similarly, the widest solar-type
binaries investigated in this study are still measurably
discrepant from random pairings from the IMF (Figure 30).
This demonstrates that wide binaries are not perfectly randomly
paired based solely on the IMF, possibly suggesting that
fragmentation of molecular cores/filaments leads to slightly
correlated component masses. As another possibility, wide
companions may be dynamically disrupted and/or captured
(Heggie 1975). Wide systems may therefore still be randomly
paired, but where the pairings are modified to include the
effects of dynamical processing (Kouwenhoven et al. 2010;
Marks & Kroupa 2011; Perets & Kouwenhoven 2012; Thies
et al. 2015). For instance, wide binaries may initially form with
mass ratios consistent with random pairings drawn from the
IMF, but subsequent dynamical interactions preferentially eject
the lower-mass companions with smaller binding energies (see
more below).
Meanwhile, we conclude that closer binaries with

a200au initially fragmented from the disk and subse-
quently coevolved via accretion. Utilizing analytic models,
Kratter & Matzner (2006) predict that primordial disks around
more massive stars are more prone to fragmentation. This may
explain why the observed frequency �f P qlog ; 0.1≈0.3 of
companions to early-type stars at intermediate separations
a≈20au (logP≈4.0) is ≈3–4 times larger than the
companion frequency �f P qlog ; 0.1≈0.08 to solar-type stars
(Figure 37).
In addition, Kratter & Matzner (2006) find that, although the

typical fragment mass Mfrag increases with final primary mass
M1, the relation between the two is flatter than linear (see their
Figure 6). For example, they estimate qfrag = Mfrag/M1≈0.08

Figure 39. Multiplicity fractions as a function of primary mass (dotted lines),
including the single-star fraction � � �n q0; 0.1 (red), binary-star fraction
� � �n q1; 0.1 (green), triple-star fraction � � �n q2; 0.1 (blue), and quadruple-star
fraction � � �n q3; 0.1 (magenta). Given a primary mass M1, our model assumes
that the multiplicity fractions follow a Poisson distribution across the interval
n=[0, 3] in a manner that reproduces the measured multiplicity frequency

�f qmult; 0.1 = � �n 1
3 n � �n q; 0.1. For solar-type stars, this model matches the

measured values (solid) within their uncertainties. Regardless of the
uncertainties in the multiplicity fractions, 10% of O-type stars are single
while 55% are born in triples and/or quadruples.
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OBSERVATIONAL BACKGROUND

MASSIVE STAR ROTATION

▸ Observed massive stars mostly 
rotating at ~10-20% of breakup, 
but with tail to up ~50% of 
breakup 

▸ Rotation speed at birth very likely 
higher, close to ~50% — stars spin 
down due to magnetised winds 

▸ Evidence for wind spin-down: B 
stars with weak winds typically at 
~50% of breakup

A&A 560, A29 (2013)

Fig. 15. Comparison of the cumulative distributions of projected rota-
tional velocities of our work (VFTS-O sample – purple), Penny & Gies
(blue), Huang & Gies (green), and the VFTS-B sample of Dufton et al.
(2013) (red).

The KP tests indicate that the Penny & Gies and VFTS B-star
distributions are statistically di↵erent, with a confidence level
better than 1%, while the Huang & Gies distribution marginally
agrees with our O-star distribution (p ⇠ 11%). That Penny &
Gies do not correct for macro-turbulence is a straightforward
explanation for the absence of slow rotators in their sample. The
other three distributions agree well with respect to the fraction
of extremely slow rotators. The fraction of VFTS O- and B-stars
below our 3e sin i resolution limit (see Sect. 3.6), for instance, is
roughly similar.

The distribution of 3e sin i of the Penny & Gies sample peaks
at the same projected rotational velocity as in our distribution.
The lack of stars spinning faster than 300 km s�1 in their sample
is intriguing, but may result from a selection e↵ect. Indeed the
FUSE archives may not be representative of the population of
fast rotators in the LMC, as individual observing programs may
have focused on stars most suitable for their respective science
aims, possibly excluding fast rotators as these are notoriously
di�cult to analyze.

The similarities between the O-star distribution in 30 Dor
and the distribution of late-O and early-B Galactic stars of
Huang & Gies suggests a limited influence of metallicity. This is
consistent with our expectation that stellar winds do not play a
significant role in shaping the rotational velocity distributions in
both samples, because they are dominated by stars less massive
than 40 M�.

The di↵erences with the VFTS B-star sample are striking
and lack a straightforward explanation. The B-type stars show a
bimodal population of very slow rotators and fast rotators, with
few stars rotating at rates that are typical of the low-velocity peak
seen in the VFTS O-type stars. We return to this issue in Sect. 5.

4.5. Analytical representation of the 3e distribution

The size of our sample is large enough to investigate the dis-
tribution of intrinsic rotational velocities. By assuming that the
rotation axes are randomly distributed, we infer the probability
density function of the rotational velocity distribution P(3e) from

Fig. 16. Observed 3e sin i and Lucy-deconvolved 3e distributions. The
dot-dashed line shows the estimates, after 4 iterations in the Lucy-
deconvolution, of the probability density function for the projected rota-
tional velocity distribution. The solid line shows the probability density
function of the actual rotational velocities.

that of 3e sin i. We adopt the iterative procedure of Lucy (1974),
as applied in Paper X for the B-type stars in the VFTS, to esti-
mate the pdf of the projected rotational velocity P(3e sin i) and of
the corresponding deprojected pdf velocity P(3e). As expected,
P(3e) moves to higher velocities compared to P(3e sin i) due to
the e↵ect of inclination. At 3e � 300 km s�1, P(3e) presents small
scale fluctuations that probably result from small numbers in the
observed distribution. The two extremely fast rotators at 3e sin i ⇠>
600 km s�1 are excluded from the deconvolution for numerical
stability reasons.

We can approximate the deconvolved rotational velocity dis-
tribution well by an analytical function with two components.
We use a gamma distribution for the low-velocity peak and a
normal distribution to model the high-velocity contribution:

P(ve) ⇡ I� g(ve;↵, �) + IN N(ve; µ,�2) (1)

where

g(x;↵, �) =
�↵

�(↵)
x↵�1e��x, (2)

N
⇣
x; µ,�2

⌘
=

1p
2⇡�

e�(x�µ)2/2�2
, (3)

and I� and IN are the relative contributions of both distributions
to P(ve). The best representation, shown in Fig. 17, is obtained
for

P(ve) ⇡ 0.43 g (↵ = 4.82, � = 1/25)

+ 0.67 N
✓
µ = 205 km s�1,�2 =

⇣
190 km s�1

⌘2◆
. (4)

The function is normalized to 0.99 to allow for including of an
additional 1% component to represent the two extremely fast ro-
tators in our sample. One should note that the reliability of the fit
function is limited by the sample size at extreme rotational ve-
locities. This analytical representation of the intrinsic rotational
velocity distribution may be valuable in stellar population syn-
thesis models that account for rotational velocity distributions.
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Figure 7. Rotational velocity distributions (in the same format as Figure 6) for
three subgroups of very young B stars with log gpolar > 4.15: 2 < M/M! <
4 (top panel), 4 < M/M! < 8 (middle panel), and M/M! > 8 (bottom panel).

in the different mass subgroups were born with a similar spin
rate distribution. However, as shown in Figure 7, the statistics
clearly reveal a different story: as stellar mass increases, more
and more stars are born as slow rotators (with lower Veq/Vcrit
values). The fraction of slow rotators (say, Veq/Vcrit < 0.5) in
each subgroup are 37%, 53%, and 84% for the low-, middle-,
and high-mass subgroups, respectively.

The statistical results on the stellar rotation rates of the YMS
B stars present some very interesting findings. (1) Even if we
generally accept that most massive stars are born as rapid
rotators, there does exist a significant fraction of newborn
B stars that are very slow rotators (e.g., Veq/Vcrit < 0.1).
There must exist some processes that efficiently brake these
slow rotators early on. (2) Compared to the less massive
stars, the more massive stars tend to be born as slow rotators.
Qualitatively, two factors may contribute to this. First, we know
that stronger stellar winds occur in more massive stars, and these
can effectively remove angular momentum (Meynet & Maeder
2000). Secondly, we know that the binary frequency is high
among the massive O stars (Mason et al. 2009). It may be that
star formation processes may tend to deposit angular momentum

more in orbital motion and less in stellar spin among the more
massive stars (Larson 2007, 2010). Abt (2009), for example,
found that stars in dense environments (usually where more
massive stars are found) tend to have more binary systems and
lower mean V sin i values.

6. ROTATIONAL UPPER LIMITS AND BE STARS

As discussed by Porter & Rivinius (2003), the “Be” phe-
nomenon is associated with a wide range of B stars whose spec-
tra have exhibited emission features in the Balmer line regions
at some point in time. We focus here on the so-called classical
Be stars, non-supergiant B stars whose spectra generally show
broad, photospheric, absorption lines that are indicative of fast
rotation. To form a gaseous disk around a star and generate the
emission features, it is generally thought that the star has to
rotate very fast so that the centrifugal force significantly cancels
the gravitational force and makes it relatively easy to launch gas
into orbit. How fast can a B star spin before it becomes a Be star?
This is a controversial topic in the recent literature on Be stars,
and the fact that there is still no widely accepted answer is par-
tially due to the difficulty of obtaining reliable Veq estimates for
Be stars. Because we can only derive V sin i from observational
data, we require measurements of a large sample of Be stars
to deal with the sin i factor in a statistical way. Yudin (2001)
carried out a large rotation survey of Be stars and, by assigning
Vcrit to each spectral subtype, he obtained values of 〈Veq〉/〈Vcrit〉
ranging from 0.5 to 0.8. Porter (1996) investigated some Be-
shell stars which are presumably edge-on Be stars (sin i ∼ 1),
and his result suggests that the Be stars, if not different from
his Be-shell star sample, should rotate at 70% ∼ 80% of Vcrit.
This range was confirmed by the study of Be stars in the open
cluster NGC 3766 by McSwain et al. (2008), who compared the
observational V sin i cumulative distribution function with the
theoretical one. However, Townsend et al. (2004) point out that
very rapidly rotating stars may experience strong gravitational
darkening toward their equatorial zones that leads to an underes-
timate of the actual V sin i value. They applied a correction for
this effect to the data available from Chauville et al. (2001), and
their results imply that Be stars are spinning close to the critical
rotation rate. On the other hand, some later studies that took the
gravitational darkening effect into account (Frémat et al. 2005;
Cranmer 2005) still favored relatively low Veq/Vcrit values for
Be stars. Howarth (2007) points out that the high Veq/Vcrit ratio
(0.95 or higher) case only requires “weak” processes to lift the
surface material into orbit, while the low ratio case needs much
more energy to send gas into orbit (the velocity gap between sur-
face and orbit can reach as much as 100 km s−1 in this case). He
suggests that, if Be stars can form in the low ratio situation, the
signatures of “strong” processes in stellar photosphere (such as
“large-amplitude pulsations”) should be easily detected. More
recently, Cranmer (2009) developed a detailed theoretical pul-
sational model that suggests that a Keplerian disk could form
around Be stars with Veq/Vcrit as low as 0.6.

Although our survey was primarily focused on the rotational
properties of normal B stars, we can use our sample to investigate
this issue by considering the upper limit of Veq/Vcrit for those
stars that probably are rotating at rates slightly below that
required to form a Be disk. To achieve this goal, we first
removed all the Be stars from our single (Vr constant) star
sample by excluding already known Be stars and those with
Balmer emission or deep, narrow, absorption lines (a signature
of Be-shell stars) in our spectra. This process led to a culling of
61 Be stars, leaving a total of 894 stars in the remaining sample

4 - 8 M⊙

> 8 M⊙

H
uang+ 2010



MASSIVE STAR FORMATION PHYSICS For no reason whatsoever, here is 
a baby quokka



MASSIVE STAR FORMATION PHYSICS: FRAGMENTATION

ISOTHERMAL FRAGMENTATION

▸ Jeans mass MJ ~ ρ−1/2, so as 
collapse occurs, mass that is able 
to fragment goes to zero 

▸ Numerical experiments show that 
this produces fragmentation to 
infinitely small scales 

▸ To form a massive star, the 
fragmentation cascade must be 
halted 

▸ Likely agent: radiative feedback

4 Guszejnov, Hopkins, Grudić, Krumholz & Federrath
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Figure 1. Typical density maps for isothermal fragmentation (left) and homologous collapse (right). On each figure the colormap is
stretched over a 2 dex interval. In the fragmenting case (left) shocks from supersonic infall create dense, filamentary structures with high
density “beads” embedded in them. Many of these structures are self-gravitating and undergo gravitational collapse, either forming sink
particles or further fragmenting into even smaller objects. In case of homologous collapse there is only a single high density region at the
centre of the cloud, which accretes most of the gas.

As Fig. 3 shows, there is no clear boundary in either
the virial parameter ↵ or the Mach number M between the
two regimes. Instead it is the infall Mach number Minfall
that determines the mode of collapse7. The transition be-
tween homologous collapse and fragmentation occurs around
Minfall ⇡ 3 (see Fig. 4). This boundary roughly corresponds
to the point where the characteristic velocity of the infalling
material becomes supersonic (this value is >1 because only
a fraction of the potential energy is transferred to infall mo-
tion, contrary to Eq. 5). This leads to shocks which in turn
lead to the formation of high density subregions that are
self-gravitating and collapse on their own, causing the frag-
mentation of the cloud.

E↵ect of Resolution on the Mass Distribution

In the numerical study of isothermal turbulence the dynamic
range (resolution) of the simulation plays an important role.
If the dynamic range is too small, a multitude of phenomena
might not manifest and the results are obscured by artificial
edge e↵ects. Since we are primarily interested in the spec-
trum of self-gravitating objects, let us consider the mass
of the smallest resolvable self-gravitating object (�m) in a
generic simulation of isothermal fragmentation with N par-
ticles/grid points. We find that

7 Note that the number of initial Jeans and sonic masses as well as
the thermal virial parameter are equally good predictors, because
they are all simple functions of Minfall, see Sec. 2.1 for how they
relate.

• for schemes that follow approximately uniform mass
resolution (Lagrangian schemes like MFM, SPH, moving
mesh methods, and AMR set to ensure equal mass per cell):
�m/Mcloud ⇠ N�1, trivially.

• for schemes that follow approximately uniform spa-
tial resolution (e.g. uniform Eulerian grids or Lagrangian
schemes where the minimum force softening is too large):
since there is a spatial resolution �x the smallest resolvable

structure has a mass of �m ⇠ MJeans(�x) ⇠ c3
s

G⇢max
. Using

�m ⇠ ⇢max�x3 we get �m/Mcloud ⇠ c2
s

GMcloud
�x / N�1/3.

This shows that schemes with uniform mass elements (like
the Meshless-Finite-Mass scheme we are using) are (as ex-
pected by design) inherently superior at resolving mass dis-
tributions in Jeans-like collapse for a given number of res-
olution elements because their low-mass cut-o↵ scales as
N�1 compared to the N�1/3 for uniform spatial resolution
schemes (see Table 1 for specifics), provided they use no
minimum softening but allow structures to get as dense as
needed to reach the Truelove criterion.

Fig. 5 shows that the mass distribution in the fragment-
ing case is close to a power-law with a low-mass cut-o↵ set
by the mass resolution of the simulation8. In the homologous

8 Note that the highest resolution run (�m/Mcloud = 7 ⇥ 10�9)
was not run until completion due to the CPU cost that arises
from modelling tightly bound binaries. At this point the system
has turned only about 20% of its mass into sink particles, so
we expect the IMF to evolve (e.g. accretion should make it less
bottom heavy), but the low-mass cut-o↵ is already established.
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Figure 5. The mass distribution of sink particles (IMF) in a fragmenting cloud (Left: ↵ = 0.12, M = 1, Right: ↵ = 1.2, M = 1) for
di↵erent mass resolutions. The dashed lines mark mass scales from initial conditions (sonic mass Msonic and Jeans mass MJeans). For
clarity the delta-function-like peaks around unit relative mass were removed from the right figure (see Fig. 2 for an example). Lower
resolution runs are not included in the right figure as they only produced a single sink particle at unit relative mass. It is clear that the
peak of the distribution is set by the resolution parameter �m/Mcloud, initial conditions imprint no scales into the final result. This means
that for the infinitely well-resolved case we would get an infinite fragmentation cascade.

final objects develops a power-law behaviour at low-masses,
close to dN/dM / M�2, in agreement with theoretical expec-
tations (e.g. Elmegreen 1997; Padoan et al. 1997; Hennebelle
& Chabrier 2008; Bonnell et al. 2007). Note that in the case
of homologous collapse most of the mass is actually in sev-
eral massive fragments that lie outside this power-law regime
but the remaining mass which does not end up in the “pri-
mary” scale sinks forms a power-law distribution, with no
lower limit down to the resolution scale.

We conducted a resolution study to examine whether
the low-mass cut-o↵ of the power-law in the mass distri-
bution is determined by the initial conditions of the cloud
(e.g. its virial parameter or initial turbulent properties) or
by mass resolution. We found that there is no convergence in
the low-mass spectrum that appears in either mode of col-
lapse. In other words: the fragmentation goes well below the
initial Jeans mass, down to the mass resolution. This agrees
well with several studies (e.g. Martel et al. 2006; Kratter
et al. 2010; Lee & Hennebelle 2017; Federrath et al. 2017b).
However, these results along with ours do appear to contra-
dict some studies in the literature. We believe the discrep-
ancy is explained by di↵erent simulation methods and the
much wider dynamic range probed in this study.

It is a common argument that subsonic structures do
not fragment, so the population of such structures (e.g. cores
in star formation), whose characteristic mass is set by the
large-scale turbulent properties (e.g. sonic mass, see Hen-
nebelle & Chabrier 2008; Hopkins 2012b), influence the final
mass distribution. This is not the case as these structures
form in a larger, supersonic cloud that forms supersonic sub-
structures as well. These substructures have di↵erent turbu-
lent properties so they spawn a population of subsonic frag-
ments di↵erent from their parent. In the end this cascade
washes out any e↵ects the initial conditions might have over
the low-mass end of the mass spectrum.

We find that once the fragmentation cascade starts, it

proceeds to infinitely small scales. Initial properties (e.g.
virial parameter, turbulent Mach number, Jeans mass, tur-
bulent driving) have no e↵ect on this result, but they may
influence the details of the resulting mass distribution (e.g.
how close the peak is to the mass resolution). Note that our
results only apply to collapsing isothermal gas, additional
physics would imprint additional scales, allowing these pa-
rameters to exert greater influence on structure formation.

Our results show that an isothermal fragmentation cas-
cade has to be terminated by additional physics (e.g. break-
down of scale-free assumption at high densities); the ini-
tial conditions (e.g. sonic mass) imprint no mass scale in
the final mass distribution. This means that star formation
models that tie the IMF peak to initial turbulent properties
(e.g. Hennebelle & Chabrier 2008; Hopkins 2012a) need to
be modified.

More broadly, these results provide insight into the
physical character of isothermal gravito-turbulent fragmen-
tation: it is a self-sustaining process, able to continuously
generate enough power in the density field on the smallest
scales to drive further fragmentation. The requisite energy to
drive these small-scale density perturbations must be pro-
duced by local gravitational collapse, in a manner that is
decoupled from energy injection at larger scales. This is a
very di↵erent picture from the classical Kolmogorov energy
cascade, in which all kinetic energy originates at large scales
and cascades to small scales, with none generated at interme-
diate scales. Hence self-gravity alters isothermal turbulence
in a fundamental way. It follows that any model of the ISM
based upon the properties of non-self-gravitating isothermal
turbulence will fail to describe the internal dynamics of the
self-gravitating objects that form.
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MASSIVE STARS FORMATION PHYSICS: FRAGMENTATION

OBSERVATIONAL EVIDENCE

▸ Observations of temperature 
structure around massive 
protostars shows warm gas 

▸ Observed heating sufficient to 
suppress fragmentation on >1000 
AU scales 

▸ Supports the idea that radiative 
feedback is key to allowing 
massive star formation

12 Ginsburg et al

(a) (b)

Figure 6. Methanol temperature and column density maps around e2. The maps are 500 ⇥ 500 (2.7⇥ 104 ⇥ 2.7⇥ 104 AU). The
central regions around the cores appear to have lower column densities because the lines become optically thick and self-absorbed.
The contour in the temperature map is at 350 K, where red meat is typically considered “well-done”.

means we have ignored the line profile entirely and in
some cases underestimated the intensity of the optically
thick lower-J lines: in the regions of highest column, the
column is underestimated and the temperature is over-
estimated, as can be seen in Figure 8.
A few features illustrate the e↵ects of thermal radia-

tive feedback on the gas. The temperature jump starting
inward of r ⇠ 1.500 (8100 AU; Figure 11b) is substantial,
though the 100-200 K floor at greater radii is likely artifi-
cial5. There is an abundance enhancement at the inner
radii, but in the plot it appears to be a radial bump
rather than a pure increase. The abundance enhance-
ment is probably real, and is a factor of ⇠ 5�10⇥. The
inner abundance dip is caused by two coincident e↵ects:
first, the CH3OH column becomes underestimated be-
cause the low-J CH3OH is self -absorbed, and second,
the dust becomes optically thick, blocking additional
CH3OH emission, though this latter e↵ect is somewhat
self-regulating since it also decreases the inferred dust
column (the denominator in the abundance expression).

3.5. Radial mass profiles around the most massive
cores

5The low-J transitions have significant optical depth across the
whole region, but in the inner part of the core, the temperature
measurement is dominated by the high-J transitions, which give
a long energy baseline for the fit. In the core exterior, the high-
J lines are not detected, so the (possibly optically thick) low-J
lines determine the temperature fit, which results in much lower
accuracy and greater potential bias.

In Figure 12, we show the radial mass profiles ex-
tracted from the three high-mass protostellar cores in
W51: W51 North, W51 e2e, and W51 e8. The plot
shows the enclosed mass out to ⇠ 100 (5400 AU). On
larger spatial scales, the enclosed mass rises more shal-
lowly, indicating the end of the core.
All three sources show similar radial profiles. Figure

12b shows M(< R) using Tdust = TCH3OH, which is a
reasonable approximation of the mass profile (though it
is likely a lower limit on the mass; see §3.4). Assuming
Tdust = 40 K, approximately the hottest measured dust
temperature in the region from Herschel SED fits, gives
a mass upper limit in each core that is up to 3000 M�
within a compact radius of 5400 AU (0.03 pc). If the
observed dust were all at 600 K instead of 40 K, the
mass would be 17⇥ lower, ⇠ 100 � 200 M�, which we
treat as a strict lower bound as it is unlikely that the
dust at more than r & 1000 AU from the central heating
source is so warm.

3.6. Gas kinematics around the most massive cores

The gas motion around the massive cores is traced
consistently by many species. CH3OH has some of the
brightest and most isolated (i.e., not confused with other
species) lines, so we show the kinematic structure of two
moderately excited CH3OH lines for the e2e MYSO core
in Figure 13 (similar plots for e8 and North are showin
in the Appendix, figures 29 and 30).
There are two notable common features in these maps.

First, there is no clear sign of systematic motion, par-
ticularly rotation, in any of them. Second, they have

24 Ginsburg et al
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Figure 17. The azimuthally averaged Jeans mass surrounding the three most massive cores. We used the CH3OH temperature
from 3.4, Figure 12b in both the Jeans mass calculation and the dust-based mass determination. The density used for the mass
calculation is assumed to be distributed over spherical shells. The dashed lines show the measured mean mass per ⇠ 1000 AU
beam at each radius. Since these masses are lower than the local Jeans mass, the gas is stable against fragmentation. The high
variation seen at small radii (below 0.200, shaded area) is due to sub-resolution noise. In (b), the horizontal dotted line shows
the beam scale. Above this line, gas within a single beam is stable against Jeans fragmentation.

their own surrounding cores as suggested in the ‘en-
forced isolation’ scenario above, they may have com-
pletely changed the conditions of the parent cloud. If
we assume they reached the main sequence before con-
suming all of the material they heated, and we assume
that they decoupled from the gas and stopped accreting
soon after reaching the main sequence, they must have
left a substantial amount of much warmer gas behind.
Assuming that the thermal fragmentation scale is rele-
vant for determining the mass of new stars, the second
generation would form from warmer material and would
therefore be higher mass than the first.
This toy model is analogous to the “cooperative ac-

cretion” mode suggested by Zinnecker & Yorke (2007),
but at a much earlier stage in the cluster development
when the gas is still molecular and dusty and therefore
capable of e�cient cooling. In the ionized cooperative
accretion scenario, the most massive star in a forming
cluster will accrete the most material because its poten-
tial well is deepest, and that star will continue to grow
until it reaches a pseudo-Eddington limit in which its
own radiation produces a pressure that reduces its ef-
fective potential, halting or reducing accretion. At that
point, the second most massive star will dominate the
accretion, and so on until the gas is all gone. Since
we observe no direct evidence for ionized accretion in
W51 (Section 4.2), the ionized version of the coopera-

tive model is not likely to be significant in this particular
region.
The molecular cooperative accretion model is also sim-

ilar to the results of Krumholz et al. (2011), in which
radiative heating drove up the peak of the IMF. In
this case, though, we suggest that the a↵ected region
is smaller (not the whole cloud). Over the small heated
region, the IMF is driven to be more top-heavy than
in the initial cooler cloud, permitting the formation of
more massive stars.
In this scenario, the highest mass stars (probably

“very massive stars”, M & 50 M�) would preferentially
form within dense, clustered environments, since sup-
pressed fragmentation would allow the buildup of more
mass. The first generation of stars forming from ‘pri-
mordial’ gas would come from a slightly di↵erent mass
function than subsequent stars. The process would con-
tinue pushing the IMF higher until the gas is either ex-
hausted (Kruijssen et al. 2012; Ginsburg et al. 2016a) or
expelled.
Our observations are consistent with this model given

that the stars are able to dynamically decouple from
the gas. If the previous generation were responsible for
substantial gas heating, we might expect to see warm
gas surrounding the HCH ii regions. Instead, we see
these stars barely interacting with the dense gas. It
is possible, though, that these stars are only e↵ective
at dense gas heating before they ignite Lyman contin-

1” ≈ 5000 AU
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MASSIVE STAR FORMATION PHYSICS: FEEDBACK

LIMITING STELLAR MASSES: WINDS AND PHOTOIONIZATION

▸ Photoionization feedback mostly ineffective because    
dM/dt ~ 10−4 sufficient to keep ionized region trapped 
near star (Walmsley 1995, Keto+ 2002, 2003, 2007) 

▸ Main sequence winds can only become important at 
masses above ~40 M⨀ — otherwise star is bloated and has 
Teff too low to drive wind 

▸ Winds conceivably important after that, but only if they 
become trapped; otherwise too little momentum



MASSIVE STAR FORMATION PHYSICS: FEEDBACK

DIRECT RADIATION PRESSURE
▸ Radiation force > gravitational 

force on any gas column with Σ < 
Σcrit = (L/M) / 4𝛑Gc ~ 300 M⨀ pc−2 
(Fall, Krumholz, & Matzner 2010) 

▸ In a turbulent medium with a PDF 
of Σ’s, low Σ regions unstable to 
ejection even if mean Σ > Σcrit 
(Thompson & Krumholz 2016) 

▸ However, most massive stars have 
L/M ≈ 104 L⨀/M⨀ → Σcrit ≈ 0.8 g 

cm−2; direct radiation pressure 
cannot set a mass limit in cores of 
higher Σ
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MASSIVE STARS FORMATION PHYSICS: FEEDBACK

INDIRECT RADIATION PRESSURE

▸ In IR-dominated region, Eddington ratio is for isotropic 
radiation flux is fEdd = κIRL / 4𝛑GMc ≈ 8 (κIR/10 cm2 g−1) 

▸ Thus accretion is possible only if some mechanism makes 
the radiation flux anisotropic

Simulation of Radiative Feedback 3

UV IR

Dust-free region 
r ~ 50 - 500 AU

IR-dominated region 
r ~ 0.1 - 1 pc

Absorption zone 
~0.1 AU thick

Figure 1. Schematic diagram of the temperature and opacity structure of a
dusty accretion flow. A central source (yellow circle) creates a dust-free re-
gion for tens to hundreds of AU around itself, depending on its luminosity.
Ultraviolet stellar photons free-stream through this region, before eventu-
ally being absorbed in a very thin shell of dust. In this shell the photons
are down-converted to IR, and then they diffuse outward through the dust
envelope, before finally diffusing far enough in either radius or frequency
to escape.

by these sources are relatively small, F . 1 cm2 g�1, and thus
the region where they dominate is generally optically thin.

As one moves away from the radiation source, the radiation
field becomes less intense due to geometric dilution, and at some
critical radius dust grains are able to survive. Because the stellar
spectrum carries most of its power at wavelengths smaller than
the typical grain size, the interaction between the starlight and the
grains is close to the limit of geometric optics, and the resulting
opacity is large; typical values are F ⇠ 103 cm2 g�1, depend-
ing on the stellar spectrum and the grain size distribution (Wolfire
& Cassinelli 1986). The corresponding distance rs at which grains
of radius a and sublimation temperature Ts can survive around a
source of luminosity L is given implicitly by the condition of en-
ergy balance between absorption and emission at temperature Ts:

L
4⇡r2s

⇡a2 = 4⇡a2�SBT
4
s hQi , (1)

where hQi is the grain absorption efficiency averaged over a Planck
function at temperature Ts. Thus the dust sublimation radius is

rs =

s
L

16⇡ hQi�SBT 4
s

= 780L1/2
6 Q�1/2

�2 T�2
s,3 AU, (2)

where L6 = L/106 L�, Q�2 = hQi /0.01, and Ts,3 = Ts/1000
K; typical values for interstellar grains are Q�2 ⇡ 1, Ts,3 ⇡ 1.5.
The high opacity of grains to starlight photons guarantees that al-
most all of the stellar photons are absorbed within a shell of width
` ⇠ (F ⇢)

�1 ⇠ 3 ⇥ 10�3�1
F,3n

�1
10 AU, where F,3 = F /10

3

cm2 g�1 and n10 is the gas number density in units of 1010 cm�3.
This thin absorption region, which has ` ⌧ rs, is the second zone.

After the photons are absorbed, they are re-emitted in the in-
frared. Because the grains are much smaller than the characteris-
tic wavelength for blackbody emission at temperature Ts, the flux-
mean opacity for the re-emitted photons is much smaller, F . 10
cm2 g�1. Thus while the region within which the stellar photons
is absorbed is of optical depth ⌧⇤ ⇠ 1 to those photons, it is com-
pletely transparent, ⌧IR ⇠ 0.01, to the re-emitted IR photons. How-
ever, because there is generally a large column of material outside
the absorption region, the IR photons generally do not immediately
escape to infinity. Instead, they escape the absorption region but
then must diffuse outward through the remainder of the dusty ac-
cretion flow, experiencing repeated absorptions and re-emissions

that shift them to ever-lower frequencies and result in lower flux-
mean opacities, until they finally escape. The flux-mean opacity
in this diffusion region is a complex function of temperature, gov-
erned by temperature-dependent sublimation and condensation of
different grain species, but it can be roughly approximated as (Se-
menov et al. 2003)

IR ⇡ IR,0

8
<

:

(T/T0)
2, T < T0

1, T0 6 T < Ts

0, Ts 6 T
(3)

where T is the radiation temperature, IR,0 ⇡ 7 cm2 g�1, T0 ⇡
150 K. The radiation temperature is similarly a complex function
of opacity, which for full accuracy must be obtained numerically.
However, it can reasonably be approximated as a powerlaw in ra-
dius (e.g., Wolfire & Cassinelli 1986; Chakrabarti & McKee 2005,
2008),

T ⇡ �Ts

✓
r
rs

◆�kT

(4)

where kT ⇡ 0.5 and � ⇡ 0.3.

2.2 Kinematic structure

Next let us consider the kinematic structure of the flow, which is de-
termined by the balance between gravitational and radiative forces;
since dusty accretion flows near point sources are generally highly
supersonic, we can neglect pressure forces. The gravitational force
per unit mass is simply G(M⇤ + Mr)/r

2, where M⇤ is the mass
of the central source and Mr is the gas mass interior to radius r.
For the purpose of calculating the radiation force, I assume that
the dust temperature obeys equation 4. The luminosity L passing
through any given radius is constant, and can be divided up into a
direct starlight component of luminosity L⇤ and a dust-processed
infrared component of luminosity LIR = L� L⇤; the opacities of
the material to these two components are

⇤ =

⇢
⇤,0, T < Ts

0, T > Ts
. (5)

and IR (equation 3), respectively. Combining these considera-
tions, we can write the full equation of motion for a fluid element
at radius r as
dv
dt

= �G(M⇤ +Mr)
r2

+
L

4⇡r2c

⇥
⇤e

�⌧⇤ + IR

�
1� e�⌧⇤

�⇤

(6)
where dv/dt is the Lagrangian derivative of the velocity,

Mr =

Z r

0

4⇡r02⇢ dr0 (7)

⌧⇤ =

Z r

rs

⇤⇢ dr
0 (8)

are the mass interior to radius r and the optical depth to starlight
photons at radius r respectively, and ⇢ is the gas density. Note that
IR and ⇤ are both functions of temperature and thus of position.
In equation 6, the first term inside the square brackets represents
the force exerted by the direct starlight field, carrying a luminosity
L⇤ = Le�⌧⇤ , while the second represents the force exerted by the
reprocessed infrared radiation field, carrying a luminosity LIR =
L(1� e�⌧⇤).

It is convenient to non-dimensionalise this equation via the
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▸ Near massive star, 
radiation creates a dust-
free zone with low opacity 

▸ Radiation free-streams to 
dust destruction front, is 
reprocessed into IR



BEATING RP: THE RRT INSTABILITY Rosen+ 2016, 2017



BEATING RP: OUTFLOWS Cunningham+ 2011



MASSIVE STAR FORMATION PHYSICS: DISKS

MASSIVE STAR DISKS

▸ Accretion rate onto disk Ṁ ~ σ3 / G 
~ few × 10−4 M⊙ yr−1 

▸ Disk accretion rate Ṁ = 3αcs3 /GQ 
= 1.5 × 10−4 T23/2 (α/Q) M⊙ yr−1 

▸ Implication: disk can only deposit 
material on star as quickly as it 
accretes if α ≈ 1 AND Q ≈ 1 

▸ Disk likely to be gravitationally 
unstable (Kratter & Matzner 2006; 
Kratter+ 2008, 2010)

Krumholz+ 2007



DISK FRAGMENTATION Kratter+ 2010



MASSIVE STAR FORMATION PHYSICS: DISKS

MAGNETIC BRAKING BY DISKS

▸ Bipolar stellar B field:  
    Bz = B* (r/R*)−3 

▸ Magnetic truncation of disk: 
    B2 / 8𝜋 = ρv2 

▸ Combining the above: RA/R* ~ (B*4R*5 / Ṁ2M*)1/7 

▸ Accretion torque τA = Ṁ (GM*RA)1/2 

▸ Magnetic torque τM = (1/3) B*2R*6 [RA−3 −2(RCORA)−3/2]



MAGNETIC BRAKING FAILS Rosen+ 2012



GRAVITATIONAL BRAKING Lin+ 2011



MAGNETIC + GRAVITATIONAL BRAKING Rosen+ 2012



VARIATION WITH ENVIRONMENT For no reason whatsoever, here 
are baby platypuses



ENVIRONMENTAL VARIATION: THE IMF

POSSIBLE SOURCES OF IMF VARIATION

▸ IMF affected by two main factors: 
▸ Upper mass limit shaped by radiation pressure 
▸ Slope of upper IMF affected by fragmentation 

▸ Radiation pressure problem appears to be overcome by 
RRT instability and outflows — seems unlikely that this 
depends on environment 

▸ Fragmentation more likely to vary, since this depends on 
how effectively radiation is able to heat the gas



ENVIRONMENTAL VARIATION: THE IMF

DEPENDENCE ON Σ AND Z
▸ Radiation coupled to gas by dust, 

so metallicity might matter 

▸ Turns out it doesn’t, because at Σ ~ 
1 g cm−2, even opacity 1% of Milky 
Way is sufficient to render gas 
optically thick to stellar photons 

▸ However, Σ needs to be high 
enough to trap the radiation 
▸ For no B fields, “high enough” is 

Σ ~ 1 g cm−2 (Krumholz & McKee 2008) 

▸ Value with B fields unknown Myers+ 2011



ENVIRONMENTAL VARIATION: THE IMF

NUMERICAL EXPERIMENTS: VARIATION WITH Σ

▸ Three simulations with identical mass, virial ratio, 
resolution, velocity field shape, but different column 
density (Krumholz+ 2010)
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Figure 1. Column density in simulations L, M, and H (left to right column) at times running from t = 0 to t = 0.6tff (top to bottom row). The color scale is normalized
to the initial mean column density Σ0 = 0.1, 1, and 10 g cm−2 for runs L, M, and H, respectively.



NUMERICAL EXPERIMENTS WITH Σ Krumholz+ 2010
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Figure 2. Column density in simulations L, M, and H (left to right column) at times running from t = 0 to t = 0.6tff (top to bottom row). Symbols indicate stars, with
the type of symbol indicating the stellar mass. Low-mass stars (M∗ = 0.05–1 M") are indicated by “+” signs, intermediate-mass stars (M∗ = 1–8 M") by “×” signs,
and massive stars (M∗ > 8 M") by filled circles. Left: the region shown is a 0.1R × 0.1R box centered on the most massive star, or the origin if no stars are present,
and the color scale is normalized to the initial mean column density Σ, where R and Σ have the values given in Table 1 for runs L, M, and H. Right: the region shown
is a 3000 AU × 3000 AU box centered on the same point as in the left panel, and the color scale is in the same physical units for every run.

elevated temperatures over much of their mass as a result of
trapped accretion luminosity.

It is important to point out that the temperature does not
need to rise to the point where the Jeans mass is above
100 M" in order to inhibit fragmentation. Indeed, such a rise
in temperature would be sufficient to halt collapse of the core
entirely. Instead, the heating prevents fragmentation by creating
an environment where the effective equation of state with
γ = 1 + d log T/d log ρ > 1 throughout the bulk of the cloud

mass. Examining Figure 6, we see that the region containing
90% of the cloud mass (the third contour from the outermost
one) is almost perfectly horizontal in run L at all times, so
γ ≈ 1. In runs M and H, on the other hand, this region has a
slope ∼0.2–0.3 in the log ρ–log T plane at all times of 0.2tff
or more, similar to the result obtained by KKM07, indicating
that the effective equation of state is closer to γ = 1.2–1.3. As
Larson (2005) points out, and the simulations of Jappsen et al.
(2005) confirm, fragmentation is likely as long as the effective
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the type of symbol indicating the stellar mass. Low-mass stars (M∗ = 0.05–1 M") are indicated by “+” signs, intermediate-mass stars (M∗ = 1–8 M") by “×” signs,
and massive stars (M∗ > 8 M") by filled circles. Left: the region shown is a 0.1R × 0.1R box centered on the most massive star, or the origin if no stars are present,
and the color scale is normalized to the initial mean column density Σ, where R and Σ have the values given in Table 1 for runs L, M, and H. Right: the region shown
is a 3000 AU × 3000 AU box centered on the same point as in the left panel, and the color scale is in the same physical units for every run.

elevated temperatures over much of their mass as a result of
trapped accretion luminosity.

It is important to point out that the temperature does not
need to rise to the point where the Jeans mass is above
100 M" in order to inhibit fragmentation. Indeed, such a rise
in temperature would be sufficient to halt collapse of the core
entirely. Instead, the heating prevents fragmentation by creating
an environment where the effective equation of state with
γ = 1 + d log T/d log ρ > 1 throughout the bulk of the cloud

mass. Examining Figure 6, we see that the region containing
90% of the cloud mass (the third contour from the outermost
one) is almost perfectly horizontal in run L at all times, so
γ ≈ 1. In runs M and H, on the other hand, this region has a
slope ∼0.2–0.3 in the log ρ–log T plane at all times of 0.2tff
or more, similar to the result obtained by KKM07, indicating
that the effective equation of state is closer to γ = 1.2–1.3. As
Larson (2005) points out, and the simulations of Jappsen et al.
(2005) confirm, fragmentation is likely as long as the effective
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Figure 5. Same as Figure 2, except that the plots show column-density-weighted temperature, defined as
∫
ρT dz/

∫
ρ dz. The color scales are the same in both the left

and right sides.

In contrast, as pointed out by McKee & Tan (2003), mas-
sive cores such as those we simulate are turbulent, since their
masses are many times the thermal Jeans mass. We find that,
at low Σ, such cores will fragment so that their stellar mass
is divided among many star systems. Figure 7 gives a more
detailed picture of how this happens in run L. There are five
fragments whose masses appear to be asymptotically approach-
ing fixed fractions of the total stellar mass, ranging from 11%
to 37%, plus three more smaller stars whose masses appear to
have reached nearly fixed maxima, and that are therefore de-
clining with time in the total fraction of stellar mass that they
represent.

We can use this result to make a toy model for how the
fraction of the stellar mass that is in massive stars is likely to
vary with surface density. We begin from the observation that
stars form from cores that have a mass distribution with the
same functional form as the IMF, so that the IMF is set at the
phase when gas fragments into protostellar cores (Motte et al.
1998; Testi & Sargent 1998; Johnstone et al. 2001; Onishi et al.
2002; Beuther et al. 2004; Reid & Wilson 2005, 2006a, 2006b;
Alves et al. 2007; Nutter & Ward-Thompson 2007; Simpson
et al. 2008; Enoch et al. 2008; Rathborne et al. 2009). We model
this core mass function (CMF) using a Chabrier (2005) stellar
system IMF shifted to higher mass by a factor of 3 to account
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masses are many times the thermal Jeans mass. We find that,
at low Σ, such cores will fragment so that their stellar mass
is divided among many star systems. Figure 7 gives a more
detailed picture of how this happens in run L. There are five
fragments whose masses appear to be asymptotically approach-
ing fixed fractions of the total stellar mass, ranging from 11%
to 37%, plus three more smaller stars whose masses appear to
have reached nearly fixed maxima, and that are therefore de-
clining with time in the total fraction of stellar mass that they
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We can use this result to make a toy model for how the
fraction of the stellar mass that is in massive stars is likely to
vary with surface density. We begin from the observation that
stars form from cores that have a mass distribution with the
same functional form as the IMF, so that the IMF is set at the
phase when gas fragments into protostellar cores (Motte et al.
1998; Testi & Sargent 1998; Johnstone et al. 2001; Onishi et al.
2002; Beuther et al. 2004; Reid & Wilson 2005, 2006a, 2006b;
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this core mass function (CMF) using a Chabrier (2005) stellar
system IMF shifted to higher mass by a factor of 3 to account
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Table 2
Stellar Content versus Time

t/tff N∗ M∗,tot M∗,max fmax N∗ M∗,tot M∗,max fmax N∗ M∗,tot M∗,max fmax

Run L Run M Run H
0.0 0 . . . . . . . . . 0 . . . . . . . . . 0 . . . . . . . . .

0.1 1 0.18 0.18 1.00 1 0.29 0.29 1.00 1 0.37 0.37 1.00
0.2 2 0.95 0.86 0.90 3 1.55 1.16 0.75 2 1.91 1.86 0.97
0.3 3 5.06 2.54 0.50 6 5.73 2.56 0.45 3 5.60 5.13 0.92
0.4 7 8.10 2.93 0.36 7 9.61 5.07 0.53 2 8.16 7.10 0.87
0.5 7 11.55 4.06 0.35 4 12.44 7.18 0.58 2 10.92 10.83 0.99
0.6 8 15.58 5.75 0.37 7 16.42 8.77 0.53 9 14.96 13.41 0.90

Notes. Column 1: run time. Column 2: number of stars present in run L. Column 3: total mass of stars in
run L. Column 4: mass of the largest star in run L. Column 5: fraction of total stellar mass in the largest
star. Columns 6–9 and Columns 10–13: same as Columns 2–5, but for runs M and H.

Figure 3. Star formation histories in runs L, M, and H. Top: total stellar mass
M∗,tot (thick lines) and mass of the most massive star M∗,max (thin lines) vs. time,
as indicated. Bottom: fraction, fmax, of total stellar mass in the most massive
star vs. time. Sharp jumps represent mergers between a central massive star and
a smaller star.

equation of state for the gas is γ ! 1, and is unlikely when
γ > 1. In runs M and H, there is no significant gas mass with
γ ! 1, which is why fragmentation is suppressed.

Finally, we emphasize that these phenomena cannot be
correctly captured by analytic equations of state that are based
on either a barotropic or and optically thin cooling assumption.
Examples of such equations of state from Dobbs et al. (2005)
and Larson (2005) are shown in Figure 6, and they clearly do
not even come close to reproducing the results with radiative
transfer, a point also made by Boss et al. (2000), Krumholz
(2006), Krumholz et al. (2007a), and Offner et al. (2009b). Any
such approximation would give the same temperature–density
relation for all three of our simulated clouds, while clearly the
results are different at different times and for different initial
cloud column densities. Urban et al. (2010) reach the same
conclusion for lower-density, larger-scale clouds based on their
simulations.

Although we have not tested the Bate (2009) approach
of omitting radiation from stars and including only radiative
emission by gas on size scales resolved by the computation

Figure 4. Fraction, f (<M), of total stellar mass contained in stars with mass
<M as a function of M, for each of the runs at time t = 0.6tff .

(which are much larger than stellar scales in both Bate’s
calculation and ours), it seems unlikely that this approximation
could succeed either in the case of clouds with differing initial
column densities. It would capture the difference in optical
depth between runs, but it would not capture the effect that
higher-density runs produce higher accretion rates and thus
higher accretion luminosities from the embedded protostars.
The analytic models of KM08 suggest that both effects are of
comparable importance.

4. DISCUSSION

4.1. The Massive Star Fraction

Our results demonstrate that the amount of fragmentation
that a cloud undergoes is likely to depend strongly on its surface
density, and this has important implications for where we expect
massive stars to form. Consider a protostellar core, an object
with a mass of a few tenths to a few hundreds of M" that
collapses to make one or more stars. Low-mass cores do not have
significant internal turbulence (André et al. 2007; Kirk et al.
2007; Rosolowsky et al. 2008), as is expected on theoretical
grounds (Offner et al. 2008b). Consequently, while they may
fragment into a binary like run M, we expect most of the stellar
mass they produce to end up in a single star system. The overall
efficiency of turning gas mass into stellar mass is expected to
be ε ≈ 1/3 rather than ε = 1 as a result of mass ejection
by protostellar outflows (Matzner & McKee 2000; Alves et al.
2007; Enoch et al. 2008).



ENVIRONMENTAL VARIATION: MULTIPLICITY

MULTIPLICITY VARIATION

▸ Metallicity affects disk ability to 
absorb starlight and cool; big 
effect for solar-type stars 

▸ For massive stars with high 
accretion rate, disk fragmentation 
unavailable even at Z = Z⨀, so 
probably no big change with Z 

▸ Changing Σ may affect accretion 
rate and thus fragmentation, but 
there have been no studies to date

GK IV/V stars (Section 4), and Kepler EBs with F3V–K3V
primaries (Section 5). Based on the Raghavan et al. (2010)
volume-limited sample of solar-type stars, we also showed in
Section 2 that the binary fraction below logP(days)<6
(a200 au) is 50%±8% across −0.9<[Fe/H]<−0.4 and
25%±2% across −0.3<[Fe/H]<0.4. According to our
adopted lognormal period distribution, 55% of binaries below
logP(days)<6 are close binaries with logP(days)<4.
This provides close binary fractions of Fclose=28%±5%
and 14%±2% across −0.9<[Fe/H]<−0.4 and −0.3<
[Fe/H]< 0.4, respectively, which we also show in Figure 18.

All five samples/methods presented in Figure 18 exhibit a
quantitatively consistent anticorrelation between Fclose and
[Fe/H]. Because of the different methods used to identify
binaries in the various samples, it is difficult for them to
conspire to produce consistent results erroneously. The error
bars for each of the data points in Figure 18 incorporate not
only the measurement uncertainties according to their respec-
tive sample sizes but also the systematic uncertainties in
transforming the observed (incomplete) close binary fractions
into intrinsic bias-corrected close binary fractions. Attempting
to fit a constant Fclose to the 23 independent measurements in
Figure 18 results in a reduced χ2/ν=6.2 with ν=22 degrees
of freedom. Even after considering systematic uncertainties, we
can reject the null hypothesis that the close binary fraction of
solar-type stars is invariant with respect to metallicity at the
8.7σ significance level (p=2.2×10−18).

We instead adopt a weighted moving average for Fclose([Fe/H])
that can be accurately fitted by two line segments. The corrected
close binary fraction of solar-type stars decreases from Fclose=
53%±12% at [Fe/H]=−3.0 to Fclose=40%±6% at

[Fe/H]=−1.0 and then to Fclose=10%±3% at [Fe/H]=
+0.5. We display our two-segment fit to the various observations in
Figure 18. Across the full metallicity interval −3.0<[Fe/H]<
0.5, the close binary fraction of solar-type stars decreases by a
factor of ≈5. Metal-poor halo stars clearly have a higher close
binary fraction than metal-rich disk stars. Most of the variation in
Fclose occurs across the narrower interval −1.0<[Fe/H]<0.5,
whereby the close binary fraction decreases by a factor of≈4. Even
within the galactic disk, the close binary fraction of solar-type stars
decreases dramatically with metallicity. By interpolating our fit at
the mean metallicity of the field, i.e., [Fe/H]≈−0.2, we measure a
close binary fraction of Fclose=24%±4%. This matches the
close binary fraction inferred from volume-limited samples of solar-
type stars in the solar neighborhood (Duquennoy & Mayor 1991;
Raghavan et al. 2010; Tokovinin 2014; Moe & Di Stefano 2017).

6.2. Binary Period Distributions

Solar-type binaries in the field follow a lognormal
companion period distribution that peaks at log P(days)=4.9
(apeak≈40 au) with a dispersion of σlog P=2.3 (Duquennoy
& Mayor 1991; Raghavan et al. 2010; Tokovinin 2014). After
making small corrections for incompleteness (Chini et al. 2014;
Moe & Di Stefano 2017), the single-, binary-, triple-, and
quadruple-star fractions are Fsingle≈51%, Fbinary≈34%,
Ftriple≈12%, and Fquadruple≈3%, respectively. These frac-
tions provide the average multiplicity frequency of companions
per primary of fmult=Fbinary + 2Ftriple + 3Fquadruple=
0.67±0.05. We define the frequency flog P of stellar
companions per decade of orbital period such that

¨� ( )f f d Plog . 3Pmult
0

9

log

In Figure 19, we plot the lognormal period distribution flog P of
solar-type multiples in the solar neighborhood scaled to
fmult=0.67 across log P(days)=0–9 (black line).

Figure 18. Intrinsic close binary fraction (P<104 days; a<10 au) of
M1≈1 :M primaries as a function of metallicity after correcting for
incompleteness and other selection biases. We compare the measurements
from (1) SBs in samples of metal-poor giants (orange), (2) Kepler EBs with
solar-type dwarf primaries (blue), (3) a volume-limited sample of solar-type
primaries (magenta), (4) RV variables in the APOGEE survey of GK IV/V
stars (red), and (5) SBs in the Carney–Latham survey of high proper motion
stars (green). All five samples/methods show a consistent metallicity trend that
can be fitted by two line segments (black) in which the close binary fraction
decreases from Fclose=53%±12% at [Fe/H]=−3.0 to Fclose=
40%±6% at [Fe/H]=−1.0 and then to Fclose=10%±3% at [Fe/H]=
+0.5. Even after accounting for systematic uncertainties, the close binary
fraction of solar-type stars is anticorrelated with metallicity at the ≈9σ
significance level.

Figure 19. Frequency flog P of stellar companions per decade of orbital period.
We compare the canonical lognormal period distribution of solar-type multiples
in the solar neighborhood (black line) to the companion distribution of early-B
stars (dashed magenta line). We also show the metallicity-dependent period
distributions for solar-type primaries with [Fe/H]=−3.0 (blue), −1.0 (green),
−0.2 (orange), and +0.5 (red). The close binary fraction (log P<4;
a<10 au) of solar-type stars is significantly anticorrelated with metallicity,
while the frequency of wide companions (log P>6; a>200 au) is metallicity
invariant. As solar-type stars decrease in metallicity, both their binary fraction
and binary period distribution approach that of early-B stars.
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ENVIRONMENTAL VARIATION: ROTATION

VARIATION IN ROTATION

▸ Gravitational torques independent 
of environment, so birth rotation 
distribution probably constant 

▸ Post-birth spin down via winds 
depends on wind strength and 
therefore on metallicity 

▸ Main effect: longer rapid rotation 
for low Z stars 

▸ Probably affects WNL star 
frequency, maybe other things

6 A. Roy et al.

Figure 2. Same as Figure 1, except here colours indicate 14N surface mass-fraction normalised by initial 14N abundance; the initial
abundances are 6.73 ⇥ 10�4, 6.97 ⇥ 10�5, and 7.024 ⇥ 10�6 for the [Fe/H] = 0.0, �1.0, and �2.0, cases, respectively.

3.2.1 Rotational mixing

The first phase of He enhancement visible in Figure 4,
denoted ‘AB’, occurs only for the rotating case, and be-
gins almost immediately. This mechanism enhances the sur-
face He abundance to 40 - 50% by ages ⇡ 2.5 Myr for
stars of 100 M� or more. A few important mixing mech-
anisms work simultaneously in rotating stars. As an exam-
ple, we show the radial profiles of the di↵usion coe�cients
of the primary mixing mechanisms for a 100 M� star with
v/vcrit = 0.4 and [Fe/H = 0] at an age of 1.8 Myr, dur-
ing phase ‘AB’, in Figure 5. The figure shows that the most
important non-rotational mixing mechanisms are convective
and overshoot-convective mixing. For rotating stars, the two
convective zones (inner core and outer shell) are connected
by three dominant rotational transport mechanisms: merid-
ional circulation (Eddington-Sweet circulation), Goldreich-
Schubert Fricke instability, and Spruit dynamo mixing. In
non-rotating stars during phase ‘AB’, there are no di↵u-
sion mechanisms for the transport of chemical elements from
the inner convective core to the outer convective shell, and
therefore no surface enhancement occurs, as shown in the
topmost left panel of Figure 4. The e↵ect of rotational mix-
ing of chemical elements has previously been studied by a
number of authors (e.g., Maeder & Meynet 2005; Heger et
al. 2000; Meynet & Maeder 2005, 2000; Crowther 2007).

3.2.2 Exposing “fossil” convective cores

The second phase of helium enrichment is denoted as ‘BC’
in Figure 4. This mechanism begins at ⇠ 1.2˘2.2 Myr and
ends after ⇠ 2.5˘3 Myr, and enhances the surface He-mass
fraction to ⇠ 50% and 60˘65% for the 100 M� non-rotating
and rotating stars respectively. This phase of surface He en-
hancement in non-rotating stars is a result of two pieces of
physics acting together:

(i) When very massive stars are young, their inner con-
vective zones are very big. In Figure 6, we show the radial
profiles of the He mass fraction and non-rotational di↵usion
coe�cient for a 100 M� star at two times: immediately after
the star forms (⇡ 0.01 Myr), and at the start of phase ‘BC’
(⇡ 2.1 Myr). The profiles of N are similar to those of He,
but we omit them to avoid clutter. At the earlier time, the
inner convective zone goes out to 80 M� as shown in the top
panel of Figure 6. Consequently, nucleosynthetic products
get mixed out to large masses/radii. As the star evolves, the
convective zone shrinks and by 2.13 Myr, during phase ‘BC’,
it ends inside the 60 M� shell, as shown in the bottom panel
of Figure 6. The gradual retreat of the convective core leaves
behind a smooth gradient in He abundance that is in e↵ect a
record of how long a particular Lagrangian mass shell spent
inside the inner convective zone. The 80 M� shell shows
almost no He enhancement, because that shell falls out of
the convective zone only a few ⇥ 10 kyr into the star’s life.
By contrast, the 60 M� shell remains inside the convective
core for ⇡ 2 Myr, by which time the helium abundance has
increased to ⇡ 70%.
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IMPLICATIONS AND QUESTIONS For no reason whatsoever, here is 
a baby sugar glider



IMPLICATIONS AND QUESTIONS

WHAT WE UNDERSTAND (MAYBE)

▸ Formation of massive stars controlled mostly by 
fragmentation; feedback probably ineffective 
▸ Fragmentation does not depend on Z, but does depend 

Σ — possibly less fragmentation at high Σ 

▸ All massive stars are multiples due to disk fragmentation; 
no obvious reason this should vary with environment 

▸ Massive stars born rotating fast in all environments, but 
spin-down weaker at lower metallicity



IMPLICATIONS AND QUESTIONS

WHAT WE DEFINITELY DON’T UNDERSTAND

▸ How do any potential variations in demographics at birth 
interact with subsequent evolution (particularly in binaries) 
to affect rate of compact object production? 

▸ How does variation with microscopic environment (for 
example local surface density) change the demographics 
averaged over galactic or cosmological scales? For 
example, do we have more high-Σ environments, and thus 
more massive stars, at higher redshift?


