MARK KRUMHOLZ

MASSII STAR FORMATION (A PRIMER FOR PEOPLE WHO DONT CARE ABOUT THE ISW)

MOTIVATION FOR THIS TALK

- Massive stars are the ultimate sources of many of the multimessenger signals of interest to most at this meeting
- The demographics of massive stars are therefore a crucial input to efforts to model source populations; conversely, these demographics can be constrained by observations
- Many demographic features matter: IMF, binary statistics, spin; we care about how these depend on environment
- My goal: tell you what is known theoretically (and a little observationally) about these demographics

OUTLINE

- Observational background on massive star formation
- Key physical processes for massive star formation
- Fragmentation
- Feedback and the upper mass limit
- Disks: fragmentation and braking
- Variations: what changes with environment, and why?
- The initial mass function
- Binarity / multiplicity
- Rotation
- Implications and questions

SITES OF MASSIVE STAR FORMATION

- Massive stars form in cold, dense, dusty interstellar clouds
- Detect massive protostars in clouds by mid-IR emission
- Detect clouds by near- or mid-IR absorption, FIR or mm emission
- Typical surface density $\Sigma \sim 0.1$ - 1 g cm^{-2}, temperature $\mathrm{T} \sim 10 \mathrm{~K}$
- Contain MIR-dark cores with M ~ 100 $M_{\odot}, \Sigma \sim 1 \mathrm{~g} \mathrm{~cm}^{-2}, \sigma \sim 1 \mathrm{~km} \mathrm{~s}^{-1}$

Rathborne+ 2005
Left: Spitzer NIR + IRAM mm
Right: Spitzer MIR + IRAM mm

MASSIVE CORES

Left: Beuther+ 2005, Spitzer MIR + IRAM mm Right: Tan+ 2014, Herschel MIR + ALMA mm

THE OBSERVED IMF

IMF VARIATIONS

MASSIVE STAR MULTIPLICITY

- Essentially all massive stars form in multiple systems, many with multiple companions
- Compared to lower mass stars at Solar metallicity, significant excess of close companions
- Mass ratios mostly moderate at most separations, q ~ 0.3 - 0.5, with 10% excess of "twin" binaries ($q>0.95$) at small separation

MASSIVE STAR ROTATION

- Observed massive stars mostly rotating at $\sim 10-20 \%$ of breakup, but with tail to up ~50\% of breakup
- Rotation speed at birth very likely higher, close to $\sim 50 \%$ - stars spin down due to magnetised winds
- Evidence for wind spin-down: B stars with weak winds typically at ~50\% of breakup

For no reason whatsoever, here is a baby quokka

ISOTHERMAL FRAGMENTATION

- Jeans mass $M_{J} \sim \rho^{-1 / 2}$, so as collapse occurs, mass that is able to fragment goes to zero
- Numerical experiments show that this produces fragmentation to infinitely small scales
- To form a massive star, the fragmentation cascade must be halted
- Likely agent: radiative feedback

8 LOZ + ^ou!əzsnפ

OBSERVATIONAL EVIDENCE

- Observations of temperature structure around massive protostars shows warm gas
- Observed heating sufficient to suppress fragmentation on >1000 AU scales
- Supports the idea that radiative feedback is key to allowing massive star formation

LIMITING STELLAR MASSES: WINDS AND PHOTOIONIZATION

- Photoionization feedback mostly ineffective because $\mathrm{dM} / \mathrm{dt} \sim 10^{-4}$ sufficient to keep ionized region trapped near star (Walmsley 1995, Keto+ 2002, 2003, 2007)
- Main sequence winds can only become important at masses above $\sim 40 \mathrm{M}_{\odot}-$ otherwise star is bloated and has $\mathrm{T}_{\text {eff }}$ too low to drive wind
- Winds conceivably important after that, but only if they become trapped; otherwise too little momentum

DIRECT RADIATION PRESSURE

- Radiation force > gravitational force on any gas column with $\Sigma<$ $\Sigma_{\text {crit }}=(\mathrm{L} / \mathrm{M}) / 4 \pi \mathrm{Gc} \sim 300 \mathrm{M}_{\odot} \mathrm{pc}^{-2}$ (Fall, Krumholz, \& Matzner 2010)
- In a turbulent medium with a PDF of Σ 's, low Σ regions unstable to ejection even if mean $\Sigma>\Sigma_{\text {crit }}$ (Thompson \& Krumholz 2016)
- However, most massive stars have $\mathrm{L} / \mathrm{M} \approx 10^{4} \mathrm{~L}_{\odot} / \mathrm{M}_{\odot} \rightarrow \Sigma_{\text {crit }} \approx 0.8 \mathrm{~g}$ cm^{-2}; direct radiation pressure cannot set a mass limit in cores of higher Σ

INDIRECT RADIATION PRESSURE

- Near massive star, radiation creates a dustfree zone with low opacity
- Radiation free-streams to dust destruction front, is
 reprocessed into IR
- In IR-dominated region, Eddington ratio is for isotropic radiation flux is $\mathrm{f}_{\text {Edd }}=\mathrm{K}_{\mathbb{R}} \mathrm{L} / 4 \pi \mathrm{GMc} \approx 8\left(\mathrm{~K}_{\mathrm{R}} / 10 \mathrm{~cm}^{2} \mathrm{~g}^{-1}\right)$
- Thus accretion is possible only if some mechanism makes the radiation flux anisotropic

BEATING RP: OUTFLOWS

MASSIVE STAR DISKS

- Accretion rate onto disk $\dot{\mathrm{M}} \sim \sigma^{3} / \mathrm{G}$ \sim few $\times 10^{-4} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$
- Disk accretion rate $\dot{\mathrm{M}}=3 \mathrm{ac}_{\mathrm{s}}{ }^{3} / \mathrm{GQ}$ $=1.5 \times 10^{-4} \mathrm{~T}_{2}{ }^{3 / 2}(\mathrm{a} / \mathrm{Q}) \mathrm{M} \odot \mathrm{yr}^{-1}$
- Implication: disk can only deposit material on star as quickly as it accretes if $\mathrm{a} \approx 1$ AND $\mathrm{Q} \approx 1$
- Disk likely to be gravitationally unstable (Kratter \& Matzner 2006; Kratter+ 2008, 2010)

Krumholz+ 2007

DISK FRAGMENTATION

MAGNETIC BRAKING BY DISKS

- Bipolar stellar B field: $B_{z}=B_{*}\left(r / R_{*}\right)^{-3}$
- Magnetic truncation of disk: $\mathrm{B}^{2} / 8 \pi=\mathrm{pv}^{2}$

$>$ Combining the above: $\mathrm{R}_{A} / \mathrm{R}_{*} \sim\left(\mathrm{~B}_{*} 4^{4} \mathrm{R}_{*} 5 / \dot{\mathrm{M}}^{2} \mathrm{M}_{*}\right)^{1 / 7}$
- Accretion torque $T_{A}=\dot{M}\left(G M * R_{A}\right)^{1 / 2}$
- Magnetic torque $\mathrm{T}_{\mathrm{M}}=(1 / 3) \mathrm{B}_{*}{ }^{2} \mathrm{R}_{*} 6\left[R_{A^{-3}}-2\left(\mathrm{R}_{\mathrm{CO}} \mathrm{R}_{\mathrm{A}}\right)^{-3 / 2}\right]$

MAGNEIC BRAKING FALLS

GRAVITATIONAL BRAKING

MAGNETIC + GRAVITATIONAL BRAKING

VARIATION WITH ENVIRONMENT

For no reason whatsoever, here are baby platypuses

POSSIBLE SOURCES OF IMF VARIATION

- IMF affected by two main factors:
- Upper mass limit shaped by radiation pressure
- Slope of upper IMF affected by fragmentation
- Radiation pressure problem appears to be overcome by RRT instability and outflows - seems unlikely that this depends on environment
- Fragmentation more likely to vary, since this depends on how effectively radiation is able to heat the gas

DEPENDENCE ON $\operatorname{IAND} Z$

- Radiation coupled to gas by dust, so metallicity might matter
- Turns out it doesn't, because at Σ ~ $1 \mathrm{~g} \mathrm{~cm}^{-2}$, even opacity 1% of Milky Way is sufficient to render gas optically thick to stellar photons
- However, Σ needs to be high enough to trap the radiation
- For no B fields, "high enough" is $\Sigma \sim 1 \mathrm{~g} \mathrm{~cm}^{-2}$ (Krumholz \& McKee 2008)
- Value with B fields unknown

Myers+ 2011

NUMERICAL EXPERIMENTS: VARIATION WITH Σ

- Three simulations with identical mass, virial ratio, resolution, velocity field shape, but different column density (Krumholz+ 2010)

NUMERICAL EXPERIMENTS WITH Σ

NUMERICAL EXPERIMENTS WITH Σ

MULTIPLICITY VARIATION

- Metallicity affects disk ability to absorb starlight and cool; big effect for solar-type stars
- For massive stars with high accretion rate, disk fragmentation unavailable even at $Z=Z_{\odot}$, so probably no big change with Z

Moe+ 2019

VARIATION IN ROTATION

- Gravitational torques independent of environment, so birth rotation distribution probably constant
- Post-birth spin down via winds depends on wind strength and therefore on metallicity
- Main effect: longer rapid rotation for low Z stars
- Probably affects WNL star frequency, maybe other things

Roy+ 2019

IMPLICATIONS AND QUESTIONS
For no reason whatsoever, here is a baby sugar glider

WHAT WE UNDERSTAND (MAYBE)

- Formation of massive stars controlled mostly by fragmentation; feedback probably ineffective
- Fragmentation does not depend on Z, but does depend Σ - possibly less fragmentation at high Σ
- All massive stars are multiples due to disk fragmentation; no obvious reason this should vary with environment
- Massive stars born rotating fast in all environments, but spin-down weaker at lower metallicity

WHAT WE DEFINTEEYY DONT UNDERSTAND

- How do any potential variations in demographics at birth interact with subsequent evolution (particularly in binaries) to affect rate of compact object production?
- How does variation with microscopic environment (for example local surface density) change the demographics averaged over galactic or cosmological scales? For example, do we have more high- Σ environments, and thus more massive stars, at higher redshift?

