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2nd candidate as GW sources

•  supernovae


–  event rate : ~1/100 yr in our galaxy


–  compered to binary merger, system is more spherically symmetric


•  less energy of gravitational waves

–  many numerical simulations show the existence of GW signals


2. NUMERICAL METHODS

In our full GR radiation-hydrodynamics simulations, we
solve the evolution equations of metric, hydrodynamics, and
neutrino radiation. Each of them is solved in an operator-
splitting manner, but the system evolves self-consistently as a
whole satisfying the Hamiltonian and momentum constraints
(Kuroda et al. 2012, 2014).

Regarding the metric evolution, we evolve the standard BSSN
variables g̃ij, f, Ãij, K, and G̃i (Shibata & Nakamura 1995;
Baumgarte & Shapiro 1999). The gauge is specified by the “1
+log” lapse and by the Gamma-driver-shift condition.

In the radiation-hydrodynamic part, the total stress-energy
tensor ( )

abT total is expressed as

( )( ) ( )
¯

( )å= +ab ab

n n n n
n
ab

Î

T T T , 1total fluid
, ,e e x

where ( )
abT fluid and ( )n

abT are the stress-energy tensor of fluid and
the neutrino radiation field, respectively. All radiation and
hydrodynamical variables are evolved in conservative ways.
We consider all three flavors of neutrinos ( ¯n n n, ,e e x) with nx

representing heavy-lepton neutrinos (i.e., n nm t, and their anti-
particles). To follow the 3D hydrodynamics up to 1400 ms
postbounce, we shall omit the energy dependence of the
radiation in this work (see, however, Kuroda et al. 2016).

We use three EoSs based on the relativistic-mean-field
theory with different nuclear interaction treatments, which are
DD2 and TM1 of Hempel & Schaffner-Bielich (2010) and
SFHx of Steiner et al. (2013). For SFHx, DD2, and TM14, the
maximum gravitational mass Mmax and the radius of cold NS R
in the vertical part of the mass–radius relationship are

=M 2.13max , 2.42, and 2.21 :M and ~R 12, 13, and, 14.5

km, respectively (Fischer et al. 2014). SFHx is thus softest
followed in order by DD2 and TM1. Among these three, while
DD2 is consistent with nuclear experiments, such as for its
symmetry energy (Lattimer & Lim 2013), SFHx is the best-fit
model with the observational mass–radius relationship. All
EoSs are compatible with NS mass measurement ∼2.04 :M
(Demorest et al. 2010). Our 3D-GR models are named DD2,
TM1, and SFHx, which simply reflects the EoS used.
We study a frequently used 15 Me star of Woosley &

Weaver (1995). The 3D computational domain is a cubic box
with 15,000 km width, and nested boxes with eight refinement
levels are embedded. Each box contains 1283 cells, and the
minimum grid size near the origin is D =x 458 m. In the
vicinity of the stalled shock front ~R 100 km, our resolution
achieves D ~x 1.9 km, i.e., the effective angular resolution
becomes ~ n1 .
Extraction of GWs from our simulations is done by the

conventional quadrupole formula in which the transverse and
the trace-free gravitational field hij is expressed by (Misner
et al. 1973)

( ) ( ) ( ) ( )q f
q f q f

=
++ + ´ ´h

A e A e
D

,
, ,

. 2ij

In Equation (2), ( )q f+ ´A , represents the amplitude of
orthogonally polarized wave components with emission angle
( )q f, dependence (Scheidegger et al. 2010; Kuroda
et al. 2014), + ´e denotes unit polarization tensors, and D is
the source distance where we set D=10 kpc in this Letter.

3. RESULTS

We start by describing the hydrodynamics at bounce. The
central rest mass density rc reaches r = 3.69,c 3.75 and 4.50
×1014 g cm−3 for TM1, DD2, and SFHx, which is higher, as
expected, for the softer EOS (e.g., Fischer et al. 2014).

Figure 1. In each set of panels, we plot (top) the gravitational-wave amplitude of plus mode +A [cm] and (bottom) the characteristic wave strain in the frequency-time
domain h̃ in a logarithmic scale that is overplotted by the expected peak frequency Fpeak (black line denoted by “A”). “B” indicates the low-frequency component. The
component “A” is originated from the PNS g-mode oscillation (Marek & Janka 2009; Müller et al. 2013). The component “B” is considered to be associated with the
SASI activities (see Section 3). Left and right panels are for TM1 and SFHx, respectively. We note that SFHx (left) and TM1 (right) are the softer and stiffer EoS
models, respectively.

4 The symmetry energy S at nuclear saturation density is S=28.67, 31.67,
and 36.95 MeV, respectively (e.g., Fischer et al. 2014).
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Figure 2. Time-integrated GW energy spectra dE/df for models s27, s20,
s11.2 and s20s (top to bottom). The spectra are computed from the Fourier
transform of the entire waveform without applying a window function. The
y-axis is given in a logarithmic scale.

3.2.3 The signal in the time-frequency domain

In order to dissect the signal further, we apply a short-time Fourier
transform (STFT) to our waveforms. For a discrete time series, the
STFT is obtained by applying the discrete Fourier transform (DFT)
to the signal with a sliding window. In this work, we define the DFT,
X̃k , as follows:

X̃k(fk) = 1
M

M∑

m=1

xme−2πikm/N , (14)

Here, xm is the time series obtained by sampling the underlying
continuous signal at M discrete times. fk = k/T is the frequency of
bin k, where T is the duration of the signal.

The resulting amplitude spectrograms for a sliding window of
50 ms are shown in Fig. 3. The spectrograms show the sum of
the squared Fourier components of the cross and plus polarization
modes, |Ã+|2 + |Ã×|2. Before applying the DFT, we convolve the
signal with a Kaiser window with shape parameter β = 2.5. Fre-
quencies below 50 Hz and above 1100 Hz are filtered out of the
resulting DFT. The amplitude spectrograms are computed for the
same two observer directions as before.

Figure 3. Amplitude spectrograms for a sliding window of 50 ms and two different observer directions, summed over the two polarization modes (|Ã+|2 +
|Ã×|2). The different rows show the results for models s27, s20, s20s and s11.2. (top to bottom). The two columns show the spectrograms for two different
viewing angles, the right and the left column represent observers situated along the z-axis (pole) and x-axis (equator) of the computational grid, respectively.
The time is given in ms after core bounce. Vertical lines bracket SASI episodes. All panels have been normalized by the same global factor. The colour bar is
given in a logarithmic scale.
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Figure 11. This figure shows the GW signal (upper panels), the corresponding spectrograms (middle panels), and the spectrograms with a selection of modes
overplotted (lower panels) for models s20 (left) and 35OC (right). Solid lines and dashed lines are used to indicate that the calculations were made using GP

and Gα , respectively. Note that for model s20 those two lines overlap.

with a higher frequency. The main features can be explained by the
2g1 mode and the 2p1 mode. The f mode and all p modes up to
order 5 are also clearly visible, albeit with lower amplitudes. We
note in particular that our computation of the l = 0 mode is able
to reproduce the characteristic feature of this mode close to black
hole formation, namely that its frequency goes to zero at the onset of
instability (Cerdá-Durán et al. 2013), as predicted by Chandrasekhar
(1964).

In addition to estimating the effect of the definition of G in our
mode comparison, we also test its effect on the expression for the

Brunt–Väisälä frequency. In this work we first perform an angular
average of the simulation data and then we compute the Brunt–
Väisälä frequency as N2 = GB, G and B being the radial component
of the vectors Gi and Bi . Alternatively one can compute N2 = GiBi ,
on the 2D grid of the simulation, and then perform the angular
average to obtain 1D profiles of N2. For the fast-rotating case, the
second procedure takes into account the non-radial components of
Gi and Bi , which are otherwise neglected in the first procedure.
We have computed the eigenmodes using both definitions and the

MNRAS 482, 3967–3988 (2019)
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followed by a short, ∼50 ms, quiescent phase, in agreement
with previous results (Marek et al. 2009; Murphy et al. 2009;
Müller et al. 2013; Yakunin et al. 2017).

The dominant part of the signal lasts from ∼150 ms after
core bounce until the end of the simulation, with the frequency
growing from ∼300 to ∼2000 Hz. Despite the high-frequency
noise, most of the energy is concentrated along a relatively thin
stripe, as can be seen from the linear 3D visualization of the
spectrogram in Figure 2. Some of the earlier work predicted the
abrupt reduction in the high-frequency signal at the onset of
explosion due to the cessation of downflowing plume
excitation of the inner core (Murphy et al. 2009; Yakunin
et al. 2015). However, as was shown in Müller et al. (2013), the
high-frequency signal may persist for a certain time before this
happens, and we see the same in our model. As in Müller et al.
(2013), the post-explosion signal from our model M10_SFHo
consists of distinct “bursts” of emission, presumably caused by
the continuing accretion episodes. For another exploding model
in our study (19Me), the post-explosion signal stays strong
until the end of the simulation at ∼1.5 s after bounce, without
decaying in energy (see more in Section 3.3). The explosion is
marked by the offset ofh+D from zero, which indicates that the
shock is not spherical (the prolate explosion shifts the strain up,
while the oblate explosion shifts it down; see Murphy
et al. 2009; Müller et al. 2013; Yakunin et al. 2015).

A number of recent works (Cerdá-Durán et al. 2013; Kuroda
et al. 2016; Andresen et al. 2017; Kuroda et al. 2017; Pan
et al. 2017) pointed to a separate GW feature associated with
the SASI (see more about the SASI phenomenon, e.g., in
Blondin et al. 2003; Foglizzo et al. 2007). This signal is
expected to reside at lower frequency, typically 100–200 Hz,
and coincides in time with the periods of enhanced shock
oscillations. To test this regime in model M10_SFHo, we plot
its entropy along the polar axis in the top panel of Figure 3. The
plot shows that the shock oscillates mildly in the period
100–400 ms after bounce (these oscillations, though, are not as
vigorous as typically seen when the SASI is identified) and
before the explosion sets in. The early part of the GW
spectrogram, plotted in the bottom panel of Figure 3, indeed
shows some power excess at low frequencies in this period, and

Figure 1. Spectrogram (top) and the corresponding waveform (bottom) of the
GW signal from model M10_SFHo.

Figure 2. Linear 3D representation of the GW spectrogram from model
M10_SFHo.

Figure 3. Top panel: entropy along the north and south polar axis as a function
of time for M10_SFHo. Bottom panel: zoomed-in early part of the GW
spectrogram for this model. We associate the weak power excess at low
frequencies between 100 and 400 ms after bounce with the shock oscillations
seen in the top panel.
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(surface) g-mode oscillations?


•  2D non-rotation with convection by Mueller et al. (2013) 
à excitations of specific frequency


Oct. 16, 2019


PNS


the convection & the standing  
accretion-shock instability
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FIG. 10: For the various progenitor models, the frequencies of f -, p1-, and p2-modes are shown as a function of the normalized average
density of PNSs, where the normalized average density is defined by (MPNS/1.4M⊙)1/2(RPNS/10km)−3/2. The thick solid line in each
panel corresponds to the universal relation shown as Eq. (19).

p1, and p2-modes for the various progenitor models are shown in Fig. 10, where the frequencies are calculated with the (Ye, s)
distributions inside the star as in Fig. 6. In this figure, LS220M11.2, LS220M15.0, LS220M27.0, and LS220M40.0 correspond
to the results obtained with the progenitor models with Mpro = 11.2M⊙, 15.0M⊙, 27.0M⊙, and 40.0M⊙ for LS220 EOS,
respectively, while ShenM15.0 is the results obtained with the progenitor model with Mpro = 15.0M⊙ for Shen EOS. From this
figure, one can observe that the frequencies of PNSs are almost on the same line as a function of the average density of PNS,
i.e., the frequencies are almost independent from the progenitor models. Thus, we can get an universal relation between the
frequencies from the PNSs and the average density of PNSs, such as

f (PNS)
i (Hz) ≈ c0

i + c1
i

(
MPNS

1.4M⊙

)1/2 (
RPNS

10 km

)−3/2

, (19)

where i denotes f , p1, and p2 for f -, p1, and p2-modes, and c0
i and c1

i are some constants irrespective of the progenitor models
of PNSs. The coefficients in this relation are shown in Table III and the universal relations obtained here are also plotted in Fig.
10 with thick solid line. Note that one can see the deviation of the frequencies from the relation [Eq. (19)] in the region of higher
average density. This may be an effect of the mass accretion from the outer region of PNS.

TABLE III: Coefficients in the universal relation shown as Eq. (19) for the various progenitor models of PNSs.

modes c0
i (Hz) c1

i (Hz)
f −29.48 3690

p1 343.9 5352

p2 640.8 7435

With respect to the characteristic gravitational waves radiating after bounce of core-collapse supernovae, the evidence of
signal due to the convection and the standing accretion-shock instability has also been reported [32, 33], which is associated
with the g-mode oscillations around (and above) the surface of PNSs. In fact, the frequencies can be well-expressed by using
the radius and mass of PNSs as

fg ≈ 1
2π

GMPNS

R2
PNS

(
1.1mn

⟨Eν̄e⟩

)1/2 (
1 − GMPNS

c2RPNS

)2

, (20)

where mn and ⟨Eν̄e⟩ denote the neutron mass and the mean energy of electron antineutrinos [32]. That is, the frequencies es-
sentially depend on MPNS/R2

PNS, which is completely different from the f -mode frequencies depending on (MPNS/R3
PNS)1/2

as shown above. Thus, carefully observing the frequencies of gravitational waves radiating from the PNSs in supernovae, one
might be possible to determine the mass and radius of PNSs via Eqs. (19) and (20). For example, one might observe the time
evolution of gravitational wave spectra from the PNS for Mpro = 15M⊙ and LS220, as shown in Fig. 11. We remark that, to
calculate the g-mode frequencies with Eq. (20), we adopt the ⟨Eν̄e⟩ distribution given by

⟨Eν̄e⟩ =

{
3t/400 + 13 (0 ≤ t ≤ 400 msec)
16 (400 msec ≤ t)

, (21)

(surface) 
g-mode?


BV frequency @r = RPNS	
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GW signals in numerical simulations


•  Numerical simulations are very powerful, but…


–  still difficult to extract GW signal, especially from protoneutron 
stars (PNSs).


–  additionally, not easy to understand the physics in PNSs directly 
from numerical results


•  linear analysis is another approach


–  GW asteroseismoogy in PNS


–  what is the physics behind  
the GW signals ?


2. NUMERICAL METHODS

In our full GR radiation-hydrodynamics simulations, we
solve the evolution equations of metric, hydrodynamics, and
neutrino radiation. Each of them is solved in an operator-
splitting manner, but the system evolves self-consistently as a
whole satisfying the Hamiltonian and momentum constraints
(Kuroda et al. 2012, 2014).

Regarding the metric evolution, we evolve the standard BSSN
variables g̃ij, f, Ãij, K, and G̃i (Shibata & Nakamura 1995;
Baumgarte & Shapiro 1999). The gauge is specified by the “1
+log” lapse and by the Gamma-driver-shift condition.

In the radiation-hydrodynamic part, the total stress-energy
tensor ( )

abT total is expressed as

( )( ) ( )
¯

( )å= +ab ab

n n n n
n
ab

Î

T T T , 1total fluid
, ,e e x

where ( )
abT fluid and ( )n

abT are the stress-energy tensor of fluid and
the neutrino radiation field, respectively. All radiation and
hydrodynamical variables are evolved in conservative ways.
We consider all three flavors of neutrinos ( ¯n n n, ,e e x) with nx

representing heavy-lepton neutrinos (i.e., n nm t, and their anti-
particles). To follow the 3D hydrodynamics up to 1400 ms
postbounce, we shall omit the energy dependence of the
radiation in this work (see, however, Kuroda et al. 2016).

We use three EoSs based on the relativistic-mean-field
theory with different nuclear interaction treatments, which are
DD2 and TM1 of Hempel & Schaffner-Bielich (2010) and
SFHx of Steiner et al. (2013). For SFHx, DD2, and TM14, the
maximum gravitational mass Mmax and the radius of cold NS R
in the vertical part of the mass–radius relationship are

=M 2.13max , 2.42, and 2.21 :M and ~R 12, 13, and, 14.5

km, respectively (Fischer et al. 2014). SFHx is thus softest
followed in order by DD2 and TM1. Among these three, while
DD2 is consistent with nuclear experiments, such as for its
symmetry energy (Lattimer & Lim 2013), SFHx is the best-fit
model with the observational mass–radius relationship. All
EoSs are compatible with NS mass measurement ∼2.04 :M
(Demorest et al. 2010). Our 3D-GR models are named DD2,
TM1, and SFHx, which simply reflects the EoS used.
We study a frequently used 15 Me star of Woosley &

Weaver (1995). The 3D computational domain is a cubic box
with 15,000 km width, and nested boxes with eight refinement
levels are embedded. Each box contains 1283 cells, and the
minimum grid size near the origin is D =x 458 m. In the
vicinity of the stalled shock front ~R 100 km, our resolution
achieves D ~x 1.9 km, i.e., the effective angular resolution
becomes ~ n1 .
Extraction of GWs from our simulations is done by the

conventional quadrupole formula in which the transverse and
the trace-free gravitational field hij is expressed by (Misner
et al. 1973)

( ) ( ) ( ) ( )q f
q f q f

=
++ + ´ ´h

A e A e
D

,
, ,

. 2ij

In Equation (2), ( )q f+ ´A , represents the amplitude of
orthogonally polarized wave components with emission angle
( )q f, dependence (Scheidegger et al. 2010; Kuroda
et al. 2014), + ´e denotes unit polarization tensors, and D is
the source distance where we set D=10 kpc in this Letter.

3. RESULTS

We start by describing the hydrodynamics at bounce. The
central rest mass density rc reaches r = 3.69,c 3.75 and 4.50
×1014 g cm−3 for TM1, DD2, and SFHx, which is higher, as
expected, for the softer EOS (e.g., Fischer et al. 2014).

Figure 1. In each set of panels, we plot (top) the gravitational-wave amplitude of plus mode +A [cm] and (bottom) the characteristic wave strain in the frequency-time
domain h̃ in a logarithmic scale that is overplotted by the expected peak frequency Fpeak (black line denoted by “A”). “B” indicates the low-frequency component. The
component “A” is originated from the PNS g-mode oscillation (Marek & Janka 2009; Müller et al. 2013). The component “B” is considered to be associated with the
SASI activities (see Section 3). Left and right panels are for TM1 and SFHx, respectively. We note that SFHx (left) and TM1 (right) are the softer and stiffer EoS
models, respectively.

4 The symmetry energy S at nuclear saturation density is S=28.67, 31.67,
and 36.95 MeV, respectively (e.g., Fischer et al. 2014).
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similar motivation in the talks 

by Cerda-Duran in the 1st week &

by Torres-Forne in the 2nd week




linear analysis (asteroseismology)

•  variables = background + perturbations


•  expand the perturbed variables


–  if background is spherically symmetric, the perturbations are 
independent from m


–  ω is an eigenfrequencies of star for each l, where f = ω/2π


–  subscript denotes the number of radial nodes in eigenfunction
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  A = A0 +δ A

  δ A(t,r,θ ,φ) = δ A(r)eiωtYlm(θ ,φ)

frequency

f


~ a few kHz


p1
 p2
 p3
 …	g1
g2
g3
…	

frequency

w1
 w2
 w3
 …	

≳10kHz


fluid


spacetime


for cold NSs
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different two approaches

•  PNS models, whose surface defined with a specific surface 

density, ρs (Model I)

–  Sotani+16; 1D-Newton, without rotation


–  Sotani+17; 3D-GR, without rotation


–  Morozova+18; 2D-effective GR, without rotation


–  Radice+19; 3D-effective GR, without rotation


–  Sotani+19; 3D-GR, without rotation


•  Numerical region up to the shock radius, Rshock (Model II)

–  Torres-Forne+18;  2D-GR, with rotation


–  Torres-Forne+19a; 2D-GR, with rotation/2D-effective GR, without rotation


–  Torres-Forne+19b; 1D-Newton/effective GR/GR, without rotation


•  With either I or II, to prepare the background PNS model for linear 
analysis, the numerical data is averaged in the angular direction, 
assuming the static solution at each time step.

–  linear analysis on the static, spherically background model.
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Difference in two approaches

•  computational domain


–  Model I : only inside RPNS defined by ρs	
–  Model II : δξr	=	0	@r	=	Rshock	

•  Boundary condition for solving the eigenvalue 
problem

–  Model I : Δp	=	0	@r	=	RPNS	
–  Model II : δξr	=	0	@r	=	Rshock

–  mathematically, problem to solve is complete different


•  advantage

–  Model I : matter motion is relatively small 

      mode classification is as usual


–  Model II : boundary is uniquely determined


•  disadvantage

–  Model I : uncertainty in choice of ρs	
–  Model II : matter motion may not be negligible outside RPNS 

      mode classifications is different from the standard one.  
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Uncertainty from ρs in Model I

•  in the late phase after core bounce, e.g., ~ 500ms, f-mode freq. 

becomes almost independent of the choice of	ρs
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At the same time, the frequency of the fundamental mode in
Figure 6 is almost insensitive to the position of the outer
boundary, and the low-order g -modes depend weakly on it.

Importantly, this shows that the dominant GW frequency is not
just proportional to the Brunt–Väisälä frequency at the surface
of the PNS, as was suggested in earlier work. Indeed, Figure 4
shows that the three black lines corresponding to the different
outer boundary locations pass through very different values of
the Brunt–Väisälä frequency. The fact that the fundamental
quadrupolar eigenfrequency in Figure 6 is nearly independent
of the position of the outer boundary tells us that the dominant
frequency of the GW signal is defined by the entire structure of
the PNS, rather than by its surface characteristics alone.
The left panel of Figure 7 illustrates the time evolution of the

radial eigenfunction ηr for the l=2 modes associated with
the dominant frequency of the GW signal. The eigenfunctions
are normalized to 1 and plotted as a function of radial
coordinate from the innermost grid point up to the location of
the outer boundary. In Figure 7, they are shifted along the y-
axis according to the time after bounce at which they are
calculated (the time is indicated on the left side of the panel and
directed downward). As we already mentioned, starting from
∼400 ms after bounce and until the end of the simulation, the
main signal is represented by the f-mode, which has the largest
amplitude at the PNS boundary surface and gradually decreases
toward the center. Before that, in the time interval between
∼200 and ∼400 ms, this mode is smoothly connected to a g -
mode having two radial nodes (see also the left panel of
Figure 5). The right panel of Figure 7 shows the energy density
� defined as (Torres-Forné et al. 2018)

�
s
p
r h

h
= + + ^

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )l l

r8
1 19r

2
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2
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for the corresponding eigenfunctions of the left panel. The
figure shows that the shape of the fundamental eigenfunction is
very similar in the case of the Cowling approximation (black
lines) and in the case when da ¹ 0 (red lines). The energy
density of the modes shows less agreement. Note that the
definition of � contains the mass density, which is larger in the
inner region than at the the surface of the PNS. Therefore, even
a barely visible disagreement between the eigenfunctions in the

Figure 5. Eigenfrequencies σ/2π of the l=2 modes compared to the GW spectrogram from model M10_SFHo. Each digit represents the number of nodes in the
corresponding mode. The left panel shows the results obtained using the Cowling approximation, while the right panel shows the solution of the full system of
Equations (8)–(11). In the right panel, the dominant feature of the spectrogram is well described by the fundamental (0 radial nodes) mode starting from ∼400 ms after
bounce.

Figure 6. Dependence of the derived eigenfrequencies on the position of the
outer boundary in our analysis. This plot demonstrates that the frequencies of
p -modes are only approximately captured by our calculations. At the same
time, the frequencies of the f-mode and the low-order g -modes are almost
insensitive to the position of the outer boundary, which demonstrates the
robustness of our main result, i.e., the association between the dominant GW
feature and the fundamental ( f ) l=2 PNS mode.

8

The Astrophysical Journal, 861:10 (19pp), 2018 July 1 Morozova et al.

At the same time, the frequency of the fundamental mode in
Figure 6 is almost insensitive to the position of the outer
boundary, and the low-order g -modes depend weakly on it.

Importantly, this shows that the dominant GW frequency is not
just proportional to the Brunt–Väisälä frequency at the surface
of the PNS, as was suggested in earlier work. Indeed, Figure 4
shows that the three black lines corresponding to the different
outer boundary locations pass through very different values of
the Brunt–Väisälä frequency. The fact that the fundamental
quadrupolar eigenfrequency in Figure 6 is nearly independent
of the position of the outer boundary tells us that the dominant
frequency of the GW signal is defined by the entire structure of
the PNS, rather than by its surface characteristics alone.
The left panel of Figure 7 illustrates the time evolution of the

radial eigenfunction ηr for the l=2 modes associated with
the dominant frequency of the GW signal. The eigenfunctions
are normalized to 1 and plotted as a function of radial
coordinate from the innermost grid point up to the location of
the outer boundary. In Figure 7, they are shifted along the y-
axis according to the time after bounce at which they are
calculated (the time is indicated on the left side of the panel and
directed downward). As we already mentioned, starting from
∼400 ms after bounce and until the end of the simulation, the
main signal is represented by the f-mode, which has the largest
amplitude at the PNS boundary surface and gradually decreases
toward the center. Before that, in the time interval between
∼200 and ∼400 ms, this mode is smoothly connected to a g -
mode having two radial nodes (see also the left panel of
Figure 5). The right panel of Figure 7 shows the energy density
� defined as (Torres-Forné et al. 2018)

�
s
p
r h

h
= + + ^

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )l l

r8
1 19r

2
2

2

2

for the corresponding eigenfunctions of the left panel. The
figure shows that the shape of the fundamental eigenfunction is
very similar in the case of the Cowling approximation (black
lines) and in the case when da ¹ 0 (red lines). The energy
density of the modes shows less agreement. Note that the
definition of � contains the mass density, which is larger in the
inner region than at the the surface of the PNS. Therefore, even
a barely visible disagreement between the eigenfunctions in the

Figure 5. Eigenfrequencies σ/2π of the l=2 modes compared to the GW spectrogram from model M10_SFHo. Each digit represents the number of nodes in the
corresponding mode. The left panel shows the results obtained using the Cowling approximation, while the right panel shows the solution of the full system of
Equations (8)–(11). In the right panel, the dominant feature of the spectrogram is well described by the fundamental (0 radial nodes) mode starting from ∼400 ms after
bounce.

Figure 6. Dependence of the derived eigenfrequencies on the position of the
outer boundary in our analysis. This plot demonstrates that the frequencies of
p -modes are only approximately captured by our calculations. At the same
time, the frequencies of the f-mode and the low-order g -modes are almost
insensitive to the position of the outer boundary, which demonstrates the
robustness of our main result, i.e., the association between the dominant GW
feature and the fundamental ( f ) l=2 PNS mode.

8

The Astrophysical Journal, 861:10 (19pp), 2018 July 1 Morozova et al.

Morozova et al. 18


r 

shock 

PNS surface violent matter 
motion 

de
ns
ity
 



Comparison between I & II
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PNS models  (HS+19)


•  3D-GR core-collapse simulations with a 15M⊙  
progenitor model and with SFHx EOS


–  sequence A corresponds to the so-called  
surface g-mode


•  calculate the both Models I and II


–  for Model I, ρs	= 5x109, 1010, and 1011 g/cm3
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FIG. 1: (Spherically-averaged) radial profiles of the rest mass density (ρ), entropy per baryon (s), and electron faction (Ye) at 48, 148, 248,
and 348 ms after core bounce for a 3D-GR model of SFHx in [15].
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FIG. 2: Similar to Figure 1, but for the time evolution of the PNS gravitational mass (left panel) and radius (right panel) as a function of the
postbounce time. The different lines correspond to the different definitions of the PNS model, i.e., ρs = 5×109 (filled-circle), 1010 (diamond),
1011 g cm−3 (square), and at the shock (open-circle).

Additionally, the metric function Λ is associated with the mass function m in such a way that e−2Λ = 1 − 2m/r. Then, the
background four-velocity of the fluid element is given by uµ = (e−Φ, 0, 0, 0). Comparing Eqs.(2) and (3), the conversion
relation is expressed as followings

e2Φ = α2, (4)

r2 = γr̂r̂ r̂
2, (5)

and

e2Λdr2 = γr̂r̂dr̂
2. (6)

From these, one can deduce the following relations

dr =

(
γr̂r̂ +

r̂

2

∂γr̂r̂
∂r̂

)
r̂

r
dr̂, (7)

m =

[
1− (γr̂r̂ + r̂∂r̂γr̂r̂/2)2

γ2
r̂r̂

]
γ1/2
r̂r̂

2
r̂. (8)

In this study, instead of using Eq. (8), we evaluate the enclosed gravitational mass m within r̂ and use a simple conversion relation
r = r̂(1 + m/2r̂)2, from isotropic to Schwarzschild coordinates. Although this simple conversion relation can originally be
applied to the exterior of the object, we employ it as it can suppress the high frequency structural noise that appears when using
Eq. (8) without some appropriate smoothing. Since we use the spatial derivative of Λ that is a function of m in the following
seismology analysis, spurious noise should be suppressed. We consider that the difference between the correct, i.e. Eq. (8), and
simple evaluations is not so significant. The highest values of exp (2Λ) = (1− 2m/r)−1 appear at r̂ ∼ 1.3× 106 cm and they
differ approximately 1 % between both evaluations.
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2. NUMERICAL METHODS

In our full GR radiation-hydrodynamics simulations, we
solve the evolution equations of metric, hydrodynamics, and
neutrino radiation. Each of them is solved in an operator-
splitting manner, but the system evolves self-consistently as a
whole satisfying the Hamiltonian and momentum constraints
(Kuroda et al. 2012, 2014).

Regarding the metric evolution, we evolve the standard BSSN
variables g̃ij, f, Ãij, K, and G̃i (Shibata & Nakamura 1995;
Baumgarte & Shapiro 1999). The gauge is specified by the “1
+log” lapse and by the Gamma-driver-shift condition.

In the radiation-hydrodynamic part, the total stress-energy
tensor ( )

abT total is expressed as

( )( ) ( )
¯

( )å= +ab ab

n n n n
n
ab

Î

T T T , 1total fluid
, ,e e x

where ( )
abT fluid and ( )n

abT are the stress-energy tensor of fluid and
the neutrino radiation field, respectively. All radiation and
hydrodynamical variables are evolved in conservative ways.
We consider all three flavors of neutrinos ( ¯n n n, ,e e x) with nx

representing heavy-lepton neutrinos (i.e., n nm t, and their anti-
particles). To follow the 3D hydrodynamics up to 1400 ms
postbounce, we shall omit the energy dependence of the
radiation in this work (see, however, Kuroda et al. 2016).

We use three EoSs based on the relativistic-mean-field
theory with different nuclear interaction treatments, which are
DD2 and TM1 of Hempel & Schaffner-Bielich (2010) and
SFHx of Steiner et al. (2013). For SFHx, DD2, and TM14, the
maximum gravitational mass Mmax and the radius of cold NS R
in the vertical part of the mass–radius relationship are

=M 2.13max , 2.42, and 2.21 :M and ~R 12, 13, and, 14.5

km, respectively (Fischer et al. 2014). SFHx is thus softest
followed in order by DD2 and TM1. Among these three, while
DD2 is consistent with nuclear experiments, such as for its
symmetry energy (Lattimer & Lim 2013), SFHx is the best-fit
model with the observational mass–radius relationship. All
EoSs are compatible with NS mass measurement ∼2.04 :M
(Demorest et al. 2010). Our 3D-GR models are named DD2,
TM1, and SFHx, which simply reflects the EoS used.
We study a frequently used 15 Me star of Woosley &

Weaver (1995). The 3D computational domain is a cubic box
with 15,000 km width, and nested boxes with eight refinement
levels are embedded. Each box contains 1283 cells, and the
minimum grid size near the origin is D =x 458 m. In the
vicinity of the stalled shock front ~R 100 km, our resolution
achieves D ~x 1.9 km, i.e., the effective angular resolution
becomes ~ n1 .
Extraction of GWs from our simulations is done by the

conventional quadrupole formula in which the transverse and
the trace-free gravitational field hij is expressed by (Misner
et al. 1973)

( ) ( ) ( ) ( )q f
q f q f

=
++ + ´ ´h

A e A e
D

,
, ,

. 2ij

In Equation (2), ( )q f+ ´A , represents the amplitude of
orthogonally polarized wave components with emission angle
( )q f, dependence (Scheidegger et al. 2010; Kuroda
et al. 2014), + ´e denotes unit polarization tensors, and D is
the source distance where we set D=10 kpc in this Letter.

3. RESULTS

We start by describing the hydrodynamics at bounce. The
central rest mass density rc reaches r = 3.69,c 3.75 and 4.50
×1014 g cm−3 for TM1, DD2, and SFHx, which is higher, as
expected, for the softer EOS (e.g., Fischer et al. 2014).

Figure 1. In each set of panels, we plot (top) the gravitational-wave amplitude of plus mode +A [cm] and (bottom) the characteristic wave strain in the frequency-time
domain h̃ in a logarithmic scale that is overplotted by the expected peak frequency Fpeak (black line denoted by “A”). “B” indicates the low-frequency component. The
component “A” is originated from the PNS g-mode oscillation (Marek & Janka 2009; Müller et al. 2013). The component “B” is considered to be associated with the
SASI activities (see Section 3). Left and right panels are for TM1 and SFHx, respectively. We note that SFHx (left) and TM1 (right) are the softer and stiffer EoS
models, respectively.

4 The symmetry energy S at nuclear saturation density is S=28.67, 31.67,
and 36.95 MeV, respectively (e.g., Fischer et al. 2014).
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where W0 is constant. The boundary condition is that the Lagrangian perturbation of pressure should be zero at the surface of
PNS, i.e.,

Φ′e−ΛW + ω2r2e−2ΦV = 0, (26)

for the case that the PNS surface is determined by the critical density, while it is that the radial displacement should be zero at
the shock radius, i.e., W = 0, for the case that the oscillations are considered in the domain inside the shock radius. At last, the
problem to solve becomes the eigenvalue problem with respect to ω. Once the eigenfrequency ω is determined, it is connected
to the oscillation frequency, f , via f = ω/2π.

IV. ASTEROSEISMOLOGY OF PNS

Recently, the sophisticated time-frequency analysis [44] showed that the various GW signatures with wide frequency ranges
can be extracted from the GW spectrogram for the 3D-GR model (SFHx) employed in this work [15]. For instance, as shown
in Fig. 4, they found the sequences of A, B, C, C#, and D. The sequence A has been observed in the several previous studies,
which is considered as “the surface g-mode” [13–15] of the PNS. The sequences B and D could come from the mass accretion
influenced by SASI [15]. It is noteworthy that the low frequency component B has been also reported in other recent 3D studies
[17, 45]. The excitation mechanism of the sequence C (and C#) is still unclear. In this paper, we attempt to compare the
eigenfrequencies derived from the perturbation analysis with the GW frequencies obtained from the hydrodynamics simulations
as in Fig. 4. As a baseline, we mainly focus on the sequence A in this work.
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FIG. 4: The characteristic GW frequencies extracted by the time-frequency analysis [44] for the 3D model SFHx in [15].
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FIG. 5: Eigenfrequencies in the PNS model with ρs = 1011 g cm−3. In particular, the f and pi for i = 1 − 6 are explicitly shown with the
open-squares together with the dotted lines, where the double squares denote the cases that the node number in the eigenfunction is different
from the standard definition (see Fig. 7). For reference, the various excited GW frequencies derived from the simulation data are also shown
with the red lines.
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Model I (ρs=1011 g/cm3)

•  sequence A agrees well with f-mode 

oscillations

–  via GW observations, one could extract 

the PNS properties, i.e., average density 


•  we can not find a specific correspondence  
between modes and sequences of B, D, and C (C#)


•  Also, we can not find the g-mode oscillations in this study

–  this is NOT due to the numerical code for eigenvalue problem


–  maybe the frequency is too small, or background data is not general ?
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FIG. 7: The details of the eigenfunction of |W | for the f -modes at 128ms for the PNS model with ρs = 1011 g/cm3 is shown, which is an
example of the specific case shown with the double squares in Fig. 5. This sample has one node in the eigenfunction shown by the arrow, but
the shape of eigenfunction is almost the same as that of the other f -mode shown in the left panel of Fig. 6.
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FIG. 8: The eigenfunctions of W for the p1-modes are shown for the PNS model with ρs = 1011 g/cm3, where the amplitude is normalized
by the surface amplitude and is shifted a little.
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FIG. 9: For the PNS model with ρs = 1011 g/m3, the f -mode frequencies are shown as a function of the square root of the PNS average
density. The solid line denotes the fitting formula given by Eq. (28), while the dashed line is the analytical formula of the f -mode frequency
for the star with uniform incompressible fluid given by Eq. (29).
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FIG. 10: Same as in Fig. 5, but for the PNS models with ρs = 5 × 109 (left panel) and 1010 g cm−3 (right panel). For the PNS model with
ρs = 1010 g/cm3, as an example of the eigenfunction of which eigenmode is left unidentified, we will consider the frequency at 108 ms shown
by the asterisk, discussed with Fig. 13.
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FIG. 11: The f -mode frequencies from the PNS models with different definition of the surface density are shown as a function of the
corresponding PNS average density, where the squares, diamonds, and circles correspond to the results with ρs = 1011, 1010, and 5 × 109 g
cm−3, respectively.

for cold NSs and also [33, 35] even for the PNS models). In Fig. 9, we show the f -mode frequency from the PNS model for
each time step as a function of the corresponding square root of the PNS average density. From this figure, as in the previous
studies, one can observe that the f -mode frequencies can be expressed as a linear function of the square root of the PNS average
density. Additionally, with this data, we obtain the fitting formula expressing the f -mode frequency, i.e.,

ff (Hz) = −87.34 + 4080.78

(
MPNS

1.4M⊙

)1/2( RPNS

10 km

)−3/2

, (28)

where MPNS and RPNS denotes the PNS (gravitational) mass and radius, respectively. The resultant fitting formula is also shown
in Fig. 9 with the thick-solid line. With this fitting formula, one may know the time evolution of the PNS average density from
the observation of the gravitational waves. We remark that the ℓ-th f -mode frequency for the star with uniform incompressible
fluid has been derived analytically as

f (a)
f =

1

2π

√
2MPNS

R3
PNS

2ℓ(ℓ− 1)

2ℓ+ 1
, (29)

which is known as a Kelvin f -mode. The expected ℓ = 2 frequency is also shown in Fig. 9 with dashed line, but it seems that
this formula assuming the incompressible fluid is not suitable for expressing the f -mode frequencies for the PNS models.

In the similar way, we determine the eigenfunctions in the PNS models with ρs = 5× 109 and 1010 g/cm3, which are shown
in Fig. 10. From this figure together with Fig. 5, we find that the eigenfrequencies depend on the selection of the surface density
of the PNS model. In fact, the frequencies of f and pi-modes decrease, as ρs decreases. This tendency may be understood as
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Model I (ρs=5x109 &1010 g/cm3)


•  eigenfrequncies depend on ρs	
–  as ρs decreases, PNS average density also decreases, which leads to the lower f- 

and pi-mode GWs	

•  this dependence could appear only in the early postbounce phase

–  in the phase later than ~500ms after bounce, Morozova et al. (2018) showed 

that the eigenfrequencies are almost independent from the selection of	ρs	
–  this could be because the density gradient in the vicinity of PNS surface becomes 

steeper in the later phase, making the average density less sensitive to the 
selection of	ρs	
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corresponding PNS average density, where the squares, diamonds, and circles correspond to the results with ρs = 1011, 1010, and 5 × 109 g
cm−3, respectively.

for cold NSs and also [33, 35] even for the PNS models). In Fig. 9, we show the f -mode frequency from the PNS model for
each time step as a function of the corresponding square root of the PNS average density. From this figure, as in the previous
studies, one can observe that the f -mode frequencies can be expressed as a linear function of the square root of the PNS average
density. Additionally, with this data, we obtain the fitting formula expressing the f -mode frequency, i.e.,

ff (Hz) = −87.34 + 4080.78

(
MPNS

1.4M⊙

)1/2( RPNS

10 km

)−3/2

, (28)

where MPNS and RPNS denotes the PNS (gravitational) mass and radius, respectively. The resultant fitting formula is also shown
in Fig. 9 with the thick-solid line. With this fitting formula, one may know the time evolution of the PNS average density from
the observation of the gravitational waves. We remark that the ℓ-th f -mode frequency for the star with uniform incompressible
fluid has been derived analytically as

f (a)
f =

1

2π

√
2MPNS

R3
PNS

2ℓ(ℓ− 1)

2ℓ+ 1
, (29)

which is known as a Kelvin f -mode. The expected ℓ = 2 frequency is also shown in Fig. 9 with dashed line, but it seems that
this formula assuming the incompressible fluid is not suitable for expressing the f -mode frequencies for the PNS models.

In the similar way, we determine the eigenfunctions in the PNS models with ρs = 5× 109 and 1010 g/cm3, which are shown
in Fig. 10. From this figure together with Fig. 5, we find that the eigenfrequencies depend on the selection of the surface density
of the PNS model. In fact, the frequencies of f and pi-modes decrease, as ρs decreases. This tendency may be understood as
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f-mode or surface g-mode?


•  The both frequencies strongly depend on ρs	
–  agree well with the GW signal of A for PNS 

with ρs	= 1011 g/cm3


•  Even so, since the surface g-mode (BV frequency @r=RPNS) is local value,  
while f-mode is the global oscillations of PNS, it may be more natural that  
the GW signal A is considered as a result of the f-mode oscillations


–  by comparing to the GW signal in the later phase, one may conclude which modes 

(surface g- or f-) are suitable for the GW signals from PNS
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FIG. 14: The GW signal (the sequence of A) is compared with the f -mode GW of PNS in the left panel and with the surface g-mode calculated
with Eq. (30) in the right panel, where the circles, squares, and diamonds denote the PNS models constructed with ρs = 1011, 1010, and
5× 109 g/cm3, respectively.

Additionally, for the PNS model with ρs = 5× 109 g/cm3, the eigenfunction of W and the radial dependent pulsation energy
density at each time step are shown in Fig. 12. We remark that eigenfunction of W and the radial dependent pulsation energy
density for the PNS model with ρs = 1010 g/cm3 are more or less similar to those for the PNS model with ρs = 5× 109 g/cm3.
The eigenfunctions of W look similar to those shown in Fig. 5, but one can see the difference in the radial dependent pulsation
energy density. From this figure, it seems that the oscillations around the stellar surface become more important in the PNS
model with lower ρs. Furthermore, as an example of the eigenmode that could not be identified as a specific mode, we show the
eigenfunction of W for the PNS model with ρs = 1010 g/cm3 at 108 ms, which is shown with the asterisk in the right panel of
Fig. 10. Obviously, this eigenfunction is satisfied the boundary condition but the shape of eigenfunction is apparently different
from the other f - or p1 mode. We note that the lower frequencies, such as sequences B or D in Fig. 4, are not excited in the
PNS models with the specific surface density irrespective of its value. In addition, some of the eigenfrequencies lower than the
f -mode in Figs. 5 and 10 could be considered as g-mode oscillations. However these modes are left unidentified because of the
lack of the clear node structure in the eigenfunctions as mentioned above.

Finally, the GW signal (the sequence A) is compared with the f -mode frequencies calculated in this study with different
surface density and the surface g-mode with the formula proposed in Ref. [13], i.e.,

fpeak =
1

2π

MPNS

R2
PNS

√
1.1mn

⟨Eν̄e⟩

(
1− MPNS

RPNS

)2

, (30)

where ⟨Eν̄e⟩ denotes the mean energy of electron antineutrinos and mn is the neutron mass. We remark that the Brunt-Väisälä
frequencies estimated at the PNS surface is original “surface g-mode”, with which Eq. (30) is approximately derived. Those
frequencies are shown in Fig. 14, where the left and right panels correspond to the results of f -mode frequencies obtained in
the linear analysis and surface g-mode frequencies calculated with Eq. (30), respectively, for the PNS models with ρs = 1011

(circles), 1010 (squares), and 5 × 109 g/cm3 (diamonds). From this figure, one can observe that the both frequencies strongly
depend on the surface density, but agree well with the GW signal of the sequence of A for the PNS model with ρs = 1011 g/cm3.
Even so, since the surface g-mode (or the Brunt-Väisälä frequency at the PNS surface) is the local value while f -mode is the
global oscillations of PNS, it may be more natural that the GW signal (sequence of A) is considered as a result of the f -mode
oscillations.

B. PNS inside the shock radius

Next, we consider the oscillations inside the shock radius. In this case, as mentioned before, the boundary condition at the
shock radius is that the radial component of the Lagrangian displacement should be zero. That is, the eigenfunction of W
is always zero at the shock radius, where the standard classification of the eigenmode may not be adopted. Intrinsically, the
eigenvalue problem to solve with this PNS model is significantly different from that with the PNS model whose surface density
is fixed. Anyway, as an advantage of this PNS model, the ambiguity for selecting the position of boundary disappears, while the
spherical symmetric model may not be a good assumption in the region whose density is very low, because the matter motion
is not neglected in such a region. Furthermore the excitation of GWs in the numerical simulation may come from such an
oscillation inside the whole shocked region, although there are currently a few studies [36, 38] examining this effect.
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FIG. 10: For the various progenitor models, the frequencies of f -, p1-, and p2-modes are shown as a function of the normalized average
density of PNSs, where the normalized average density is defined by (MPNS/1.4M⊙)1/2(RPNS/10km)−3/2. The thick solid line in each
panel corresponds to the universal relation shown as Eq. (19).

p1, and p2-modes for the various progenitor models are shown in Fig. 10, where the frequencies are calculated with the (Ye, s)
distributions inside the star as in Fig. 6. In this figure, LS220M11.2, LS220M15.0, LS220M27.0, and LS220M40.0 correspond
to the results obtained with the progenitor models with Mpro = 11.2M⊙, 15.0M⊙, 27.0M⊙, and 40.0M⊙ for LS220 EOS,
respectively, while ShenM15.0 is the results obtained with the progenitor model with Mpro = 15.0M⊙ for Shen EOS. From this
figure, one can observe that the frequencies of PNSs are almost on the same line as a function of the average density of PNS,
i.e., the frequencies are almost independent from the progenitor models. Thus, we can get an universal relation between the
frequencies from the PNSs and the average density of PNSs, such as

f (PNS)
i (Hz) ≈ c0

i + c1
i

(
MPNS

1.4M⊙

)1/2 (
RPNS

10 km

)−3/2

, (19)

where i denotes f , p1, and p2 for f -, p1, and p2-modes, and c0
i and c1

i are some constants irrespective of the progenitor models
of PNSs. The coefficients in this relation are shown in Table III and the universal relations obtained here are also plotted in Fig.
10 with thick solid line. Note that one can see the deviation of the frequencies from the relation [Eq. (19)] in the region of higher
average density. This may be an effect of the mass accretion from the outer region of PNS.

TABLE III: Coefficients in the universal relation shown as Eq. (19) for the various progenitor models of PNSs.

modes c0
i (Hz) c1

i (Hz)
f −29.48 3690

p1 343.9 5352

p2 640.8 7435

With respect to the characteristic gravitational waves radiating after bounce of core-collapse supernovae, the evidence of
signal due to the convection and the standing accretion-shock instability has also been reported [32, 33], which is associated
with the g-mode oscillations around (and above) the surface of PNSs. In fact, the frequencies can be well-expressed by using
the radius and mass of PNSs as

fg ≈ 1
2π

GMPNS

R2
PNS

(
1.1mn

⟨Eν̄e⟩

)1/2 (
1 − GMPNS

c2RPNS

)2

, (20)

where mn and ⟨Eν̄e⟩ denote the neutron mass and the mean energy of electron antineutrinos [32]. That is, the frequencies es-
sentially depend on MPNS/R2

PNS, which is completely different from the f -mode frequencies depending on (MPNS/R3
PNS)1/2

as shown above. Thus, carefully observing the frequencies of gravitational waves radiating from the PNSs in supernovae, one
might be possible to determine the mass and radius of PNSs via Eqs. (19) and (20). For example, one might observe the time
evolution of gravitational wave spectra from the PNS for Mpro = 15M⊙ and LS220, as shown in Fig. 11. We remark that, to
calculate the g-mode frequencies with Eq. (20), we adopt the ⟨Eν̄e⟩ distribution given by

⟨Eν̄e⟩ =

{
3t/400 + 13 (0 ≤ t ≤ 400 msec)
16 (400 msec ≤ t)

, (21)
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Model II

•  nodal number monotonically 

increases from bottom to top


–  focus only on the dotted box, behavior is  
very similar to f- and p1-modes


•  we can not find a correspondence between A and a specific mode

–  difficult to explain A with a specific mode with Model II at lease our PNS model


•  lower modes appear close to B and D

–  pulsation energy density concentrates  

r ~ 40-100km, while the energy of B and D 

effectively comes from r ~ 20 km


–  lower modes here do not physically correspond 
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FIG. 15: The eigenfrequencies calculated in this study are shown with marks, while the excited GW frequencies in the numerical simulation
are again shown with various red lines. The double circles are the lowest and the second lowest eigenfrequencies at 268 ms, which are focused
in Fig. 16. The open circles are the examples, of which eigenfunctions will be discussed in Fig. 17. The modes, whose eigenfunctions are the
similar to each other, are connected with the dotted lines.
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FIG. 16: The left and right panels correspond to the eigenfunction W and pulsation energy density given by Eq. (27) for the lowest (denoted
with 1) and the second lowest (denoted with 2) eigenfrequencies at 268 ms after core bounce, respectively. In the both panels, the vertical axis
is normalized appropriately.

We try to determine the eigenfrequencies with the PNS model inside the shock radius. The resultant eigenfrequencies are
shown in Fig. 15, where the same modes are connected with dotted lines. From this figure, one can observe that even lower
frequencies can be excited with the PNS model inside the shock radius, which is different feature compared to the results with
the PNS model whose surface density is fixed. In fact, in some time interval, it seems that the eigenfrequencies are excited close
to the sequences B and D.

In order to see the oscillation behavior for such eigenfrequencies, we especially focus on the lowest and the second low-
est eigenfrequencies at 268 ms after core bounce, which are denoted with the double circles in Fig. 15. The corresponding
eigenfunction of W and the radial dependent pulsation energy density are shown in Fig. 16, where the solid and dashed lines
correspond to the results with the lowest and the second lowest eigenfrequencies, respectively. One can see that the eigenfunc-
tions are very similar to the standard classification of stellar oscillation except for the behavior close to the stellar surface, i.e.,
the lowest and the second lowest eigenfrequencies may correspond to the f - and p1-modes. In addition, in the similar fashion
to the results with the PNS model whose surface density is fixed, the amplitude of eigenfunction W and the radial dependent
pulsation energy density become significant on the outer part of the oscillation region. However, it has been reported that the
excitation of the GW signal according to the sequence B (or maybe also D) effectively comes from the inner part of the PNS,
such as ∼ 20 km [15, 16]. Thus, although the lower eigenfrequencies obtained via the eigenvalue problem inside the shock
radius appear close to the sequences B and D, these frequencies may not physically correspond to the excitation of gravitational
wave signal in the sequences B and D. We remark that in our model we found only f - and pi-mode like frequencies, while not
only f - and pi-mode like frequencies but also gi-mode like frequencies are found in the previous similar analysis [36, 38]. This
discrepancy may come from the different PNS models obtained by the numerical simulations. We need further studies changing
the PNS models to draw a robust conclusion on this choice of the boundary condition.

There are a few possible reasons to explain the discrepancy between the the sequence B (and D) and the eigenmodes obtained
by the linear analysis. The first and perhaps the main reason is that, in our perturbation analysis using the static background
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eigenfunction of W and the radial dependent pulsation energy density are shown in Fig. 16, where the solid and dashed lines
correspond to the results with the lowest and the second lowest eigenfrequencies, respectively. One can see that the eigenfunc-
tions are very similar to the standard classification of stellar oscillation except for the behavior close to the stellar surface, i.e.,
the lowest and the second lowest eigenfrequencies may correspond to the f - and p1-modes. In addition, in the similar fashion
to the results with the PNS model whose surface density is fixed, the amplitude of eigenfunction W and the radial dependent
pulsation energy density become significant on the outer part of the oscillation region. However, it has been reported that the
excitation of the GW signal according to the sequence B (or maybe also D) effectively comes from the inner part of the PNS,
such as ∼ 20 km [15, 16]. Thus, although the lower eigenfrequencies obtained via the eigenvalue problem inside the shock
radius appear close to the sequences B and D, these frequencies may not physically correspond to the excitation of gravitational
wave signal in the sequences B and D. We remark that in our model we found only f - and pi-mode like frequencies, while not
only f - and pi-mode like frequencies but also gi-mode like frequencies are found in the previous similar analysis [36, 38]. This
discrepancy may come from the different PNS models obtained by the numerical simulations. We need further studies changing
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We try to determine the eigenfrequencies with the PNS model inside the shock radius. The resultant eigenfrequencies are
shown in Fig. 15, where the same modes are connected with dotted lines. From this figure, one can observe that even lower
frequencies can be excited with the PNS model inside the shock radius, which is different feature compared to the results with
the PNS model whose surface density is fixed. In fact, in some time interval, it seems that the eigenfrequencies are excited close
to the sequences B and D.

In order to see the oscillation behavior for such eigenfrequencies, we especially focus on the lowest and the second low-
est eigenfrequencies at 268 ms after core bounce, which are denoted with the double circles in Fig. 15. The corresponding
eigenfunction of W and the radial dependent pulsation energy density are shown in Fig. 16, where the solid and dashed lines
correspond to the results with the lowest and the second lowest eigenfrequencies, respectively. One can see that the eigenfunc-
tions are very similar to the standard classification of stellar oscillation except for the behavior close to the stellar surface, i.e.,
the lowest and the second lowest eigenfrequencies may correspond to the f - and p1-modes. In addition, in the similar fashion
to the results with the PNS model whose surface density is fixed, the amplitude of eigenfunction W and the radial dependent
pulsation energy density become significant on the outer part of the oscillation region. However, it has been reported that the
excitation of the GW signal according to the sequence B (or maybe also D) effectively comes from the inner part of the PNS,
such as ∼ 20 km [15, 16]. Thus, although the lower eigenfrequencies obtained via the eigenvalue problem inside the shock
radius appear close to the sequences B and D, these frequencies may not physically correspond to the excitation of gravitational
wave signal in the sequences B and D. We remark that in our model we found only f - and pi-mode like frequencies, while not
only f - and pi-mode like frequencies but also gi-mode like frequencies are found in the previous similar analysis [36, 38]. This
discrepancy may come from the different PNS models obtained by the numerical simulations. We need further studies changing
the PNS models to draw a robust conclusion on this choice of the boundary condition.

There are a few possible reasons to explain the discrepancy between the the sequence B (and D) and the eigenmodes obtained
by the linear analysis. The first and perhaps the main reason is that, in our perturbation analysis using the static background
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discrepancy  


•  Still, we can not understand this discrepancy.


•  Our background data is not general?
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Figure 11. This figure shows the GW signal (upper panels), the corresponding spectrograms (middle panels), and the spectrograms with a selection of modes
overplotted (lower panels) for models s20 (left) and 35OC (right). Solid lines and dashed lines are used to indicate that the calculations were made using GP

and Gα , respectively. Note that for model s20 those two lines overlap.

with a higher frequency. The main features can be explained by the
2g1 mode and the 2p1 mode. The f mode and all p modes up to
order 5 are also clearly visible, albeit with lower amplitudes. We
note in particular that our computation of the l = 0 mode is able
to reproduce the characteristic feature of this mode close to black
hole formation, namely that its frequency goes to zero at the onset of
instability (Cerdá-Durán et al. 2013), as predicted by Chandrasekhar
(1964).

In addition to estimating the effect of the definition of G in our
mode comparison, we also test its effect on the expression for the

Brunt–Väisälä frequency. In this work we first perform an angular
average of the simulation data and then we compute the Brunt–
Väisälä frequency as N2 = GB, G and B being the radial component
of the vectors Gi and Bi . Alternatively one can compute N2 = GiBi ,
on the 2D grid of the simulation, and then perform the angular
average to obtain 1D profiles of N2. For the fast-rotating case, the
second procedure takes into account the non-radial components of
Gi and Bi , which are otherwise neglected in the first procedure.
We have computed the eigenmodes using both definitions and the

MNRAS 482, 3967–3988 (2019)
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PNS asteroseismology


Oct. 16, 2019
 YITP long-term workshop "Multi-Messenger Astrophysics in the Gravitational Wave Era"
 15




what we learn from GW obs.

•  From asteroseismological point of view, via direct observations of 

GWs, one may extract the PNS properties. 


•  In fact, it is known for cold neutron stars that


–  f-mode, which is a acoustic oscillation, is characterized by the stellar 
average density


–  w-mode, which is a spacetime oscillation, is characterized by the 
stellar compactness


•  If similar characterization is possible, one could extract the PNS 
average density and compactness, via the simultaneous 
observations of f- and w-modes GWs.
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Although some of these EOS might be outdated, none of them is
ruled out by present observations. Furthermore, the range of
stiffness of the EOS listed by Arnett & Bowers is still relevant
today. This is important for the present study. In order for our
analysis to be robust it is necessary that our sample of EOS spans the
anticipated range of stiffness. However, we have also included three
more modern EOS: one of the models of Wiringa, Ficks &
Fabrocini (1988) and two models from Glendenning (1985). For
the EOS that were also considered by Lindblom & Detweiler (1983)
we have chosen identical stellar models to facilitate a comparison of
the results. Finally, we have only included stellar models the masses
and radii of which are within the limits accepted by current
observations (Finn 1994; van Kerkwijk, van Paradijs & Zuiderwijk
1995).

2 W H AT C A N W E L E A R N F RO M
O B S E RVAT I O N S ?

Our present understanding of neutron stars comes mainly from
X-ray and radio-timing observations. These observations provide
some insight into the structure of these objects and the properties of
supranuclear matter. The most commonly and accurately observed
parameter is the rotation period, and we know that radio pulsars can
spin very fast (the shortest observed period being the 1.56 ms of
PSR 1937+21). Another basic observable, that can be obtained (in a
few cases) with some accuracy from present day observations, is the
mass of the neutron star. As Finn (1994) has shown, the
observations of radio pulsars indicate that 1:01 < M=M( < 1:64.

Similarly, van Kerkwijk et al. (1995) find that data for X-ray pulsars
indicate 1:04 < M=M( < 1:88. The data used in these two studies is
actually consistent with (if one includes error bars) M < 1:44 M(.
We now recall that the various EOS that have been proposed by
theoretical physicists can be divided into two major categories: (i)
the ‘soft’ EOS, which typically lead to neutron star models with
maximum masses around 1:4 M( and radii usually smaller than 10
km, and (ii) the ‘stiff’ EOS with the maximum values M , 1:8 M(

and R , 15 km (Arnett & Bowers 1977). From this one can deduce
that, even though the constraint put on the neutron star mass by
present-day observations seems strong, it does not rule out many of
the proposed EOS. In order to arrive at a more useful result we
are likely to need detailed observations of the stellar radius
also. Unfortunately, available data provide little information
about the radius. The recent observations of quasiperiodic oscilla-
tions in low-mass X-ray binaries indicate that R < 6M, but again
this is not a severe constraint. Although a number of attempts have
been made, using either X-ray observations (Lewin, van Paradijs &
Taam 1993) or the limiting spin period of neutron stars (Friedman,
Ipser & Parker 1986), to put constraints on the mass–radius
relation, we do not yet have a method which can provide the desired
answer.

2.1 A detection scenario

In view of this situation, any method that can be used to infer
neutron star parameters is a welcome addition. Of specific interest
may be the new possibilities offered once gravitational wave
observations become reality. An obvious question is the extent to
which one can solve the inverse problem in gravitational wave
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Figure 1. The numerically obtained f mode frequencies plotted as functions
of the mean stellar density (M and R are in km and qf mode in kHz).

Figure 2. The normalized damping time of the f modes as functions of the
stellar compactness (M and R are in km and tf mode in s).
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fluid oscillation modes of a star, and we consequently expect that
qf , r̄1=2. That is, we should normalize the f mode frequency with
the average density of the star. The result of doing this is shown in
Fig. 1. From this figure it is apparent that the relation between the f
mode frequencies and the mean density is almost linear, and a linear
fitting leads to the simple relation

qf ðkHzÞ < 0:78 þ 1:635
M̄

R̄3

✓ ◆1=2

; ð5Þ

where we have introduced the dimensionless variables

M̄ ¼
M

1:4 M(

and R̄ ¼
R

10 km
: ð6Þ

From equation (5) it follows that the typical f mode frequency is
around 2.4 kHz.

To deduce a corresponding relation for the damping rate of the f
mode, we can use the rough estimate given by the quadrupole
formula. That is, the damping time should follow from

tf ,
oscillation energy

power emitted in GWs
, R

R
M

✓ ◆3

: ð7Þ

Using this normalization we plot the functional ðtf M
3=R4Þ¹1 as a

function of the stellar compactness, cf. Fig. 2. The data shown in
this figure lead to a relation between the damping time of the f mode
and the stellar parameters M and R,

1
tf ðsÞ

<
M̄3

R̄4 22:85 ¹ 14:65
M̄
R̄

✓ ◆ �
: ð8Þ

The small deviation of the numerical data from the above formula is

apparent in Fig. 2, and one can easily see that a typical value for the
damping time of the f mode is a tenth of a second.

For the damping rate of the p modes the situation is not so
favourable. This is because the damping of the p modes is more
sensitive to changes in the modal distribution inside the star. Thus,
different EOS lead to rather different p mode damping rates, cf.
Fig. 3. Previous evidence for polytropes (Andersson & Kokkotas
1997) actually indicate that this would be the case. Clearly, an
empirical relation based on the data in Fig. 3 would not be very
robust.

The situation is slightly better if we consider the oscillation
frequency of the p mode. From the data shown in Fig. 4 we can
deduce a relation between the p mode frequency and the parameters
of the star,

qpðkHzÞ <
1
M̄

1:75 þ 5:59
M̄
R̄

✓ ◆
; ð9Þ

and we see that a typical p mode frequency is around 7 kHz.
Although the data for several EOS deviate significantly from (9) it is
still a useful result. Stellar masses and radii deduced from it will not
be as accurate as ones based on f mode data, but on the other hand, if
M and R are obtained in some other way (say, from a combination of
observed f - and w modes) the p mode can be used to deduce the
relevant EOS.

That empirical relations based on p mode data would be less
robust and useful than those for the f mode was expected, since the p
modes are sensitive to changes in the matter distribution inside the
star. In contrast, the gravitational wave w modes should lead to
very robust results. It is well known (Kokkotas & Schutz 1992;
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Figure 5. The functional Rqw as a function of the compactness of the star (M
and R are in km and qw mode in kHz).

Figure 6. The functional M=tw as a function of the compactness of the star
(M and R are in km and tw mode in ms).
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PNS models (HS+17)


•  we adopt the results of 3D-GR simulations of core-collapse 
supernovae (Kuroda et al. 2016) 


–  progenitor mass = 15M⊙


–  EOS : SFHx (2.13M⊙) & TM1 (2.21M⊙)


–  RPNS is defined withρs = 1010 g/cm3


–  using the radial profiles as a background PNS model, the eigen-
frequencies are determined.


Oct. 16, 2019
(Tpb ¼ 48ms), the early (Tpb ¼ 148ms) and late
(Tpb ¼ 248ms) nonlinear phase covered in the simulation,
respectively (see also Fig. 2 in [12]). The maximum density
for SFHx (left panel, ρ≳ 2 × 1014 g cm−3) is a few 10%
higher compared to TM1 (right panel). This is because
SFHx is softer than TM1 as mentioned above. In fact, Fig. 2
shows that the PNS radius (left panel) is more compact for
SFHx. Here the surface of the PNS is defined at a fiducial
rest-mass density of ρs ¼ 1010 g cm−3, which is relatively
lower in the literature (e.g., [56]), but necessary in order to
include the nascent PNS from the three-dimensional GR
models with limited simulation time after bounce. In right
panel, we plot gravitational mass of the PNS MPNS (evalu-
ated by Eq. (A1) in Appendix A) for given spherically
averaged hydro and metric datas. We shortly mention the
accuracy of MPNS which is used later in our analysis.
Although the baryon mass conservation is strictly satisfied
because of our conservative formula, the gravitational mass
is not conserved with the same accuracy in general (the
energy loss by gravitational waves is negligible for CCSNe)
in the BSSN formalism. The violation can be ∼1% in our
code [47]. It is also not straightforward to estimate the
gravitational mass of the PNS with taking into account
the non-negligible energy loss by neutrinos. Furthermorewe
first take spherically average with a simple zeroth order

spacial interpolation from three-dimensional Cartesian to
one-dimensional spherical coordinates, and afterward we
evaluate MPNS. Therefore, the gravitational mass of the
PNS can differ from its true value of the order of
∼1%ð∼0.01M⊙Þ. In Appendix A, we discuss impact of
numerical accuracy in MPNS for our results.
The left panel of Fig. 3 shows the evolution of the

“compactness” of the PNS that is defined by MPNS=RPNS
for SFHx (red line) and TM1 (blue line). As one would
imagine, the compactness of the PNS is higher for SFHx
compared to TM1 even after we consider the inaccuracy of
∼1% in MPNS. The right panel of Fig. 3 depicts the time
evolution ofMPNS as a function ofRPNS. The PNS with the
softer EOS (SFHx) evolves from larger to smaller PNS
radius with bigger to smaller enclosed mass compared to
the stiffer EOS (TM1). Depending on the stiffness of
the EOSs, one can see that the evolution track in the
MPNS −RPNS plane differs significantly.
To extract the metric from the background models in a

suitable form, we perform the following coordinate trans-
formation. In the background models obtained by numeri-
cal relativity simulation (e.g., [12]), the line element is
given as

ds2 ¼ −α2dt2 þ γijðdxi þ β idtÞðdxj þ β jdtÞ; ð1Þ

FIG. 1. (Spherically-averaged) radial profiles of the rest-mass density at 48, 148, and 248 ms after core bounce. The left and right panel
corresponds to SFHx and TM1, respectively.

FIG. 2. Time evolution of the PNS radius (left panel) and its gravitational mass (right panel) as a function of the postbounce time. The
circles and diamonds corresponds to SFHx and TM1, respectively. The surface of the PNS is defined at a fiducial rest-mass density of
ρs ¼ 1010 g cm−3.
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Mass & Radius


•  MPNS is increasing by mass accretion


•  RPNS is decreasing due to the relativistic effect
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(Tpb ¼ 48ms), the early (Tpb ¼ 148ms) and late
(Tpb ¼ 248ms) nonlinear phase covered in the simulation,
respectively (see also Fig. 2 in [12]). The maximum density
for SFHx (left panel, ρ≳ 2 × 1014 g cm−3) is a few 10%
higher compared to TM1 (right panel). This is because
SFHx is softer than TM1 as mentioned above. In fact, Fig. 2
shows that the PNS radius (left panel) is more compact for
SFHx. Here the surface of the PNS is defined at a fiducial
rest-mass density of ρs ¼ 1010 g cm−3, which is relatively
lower in the literature (e.g., [56]), but necessary in order to
include the nascent PNS from the three-dimensional GR
models with limited simulation time after bounce. In right
panel, we plot gravitational mass of the PNS MPNS (evalu-
ated by Eq. (A1) in Appendix A) for given spherically
averaged hydro and metric datas. We shortly mention the
accuracy of MPNS which is used later in our analysis.
Although the baryon mass conservation is strictly satisfied
because of our conservative formula, the gravitational mass
is not conserved with the same accuracy in general (the
energy loss by gravitational waves is negligible for CCSNe)
in the BSSN formalism. The violation can be ∼1% in our
code [47]. It is also not straightforward to estimate the
gravitational mass of the PNS with taking into account
the non-negligible energy loss by neutrinos. Furthermorewe
first take spherically average with a simple zeroth order

spacial interpolation from three-dimensional Cartesian to
one-dimensional spherical coordinates, and afterward we
evaluate MPNS. Therefore, the gravitational mass of the
PNS can differ from its true value of the order of
∼1%ð∼0.01M⊙Þ. In Appendix A, we discuss impact of
numerical accuracy in MPNS for our results.
The left panel of Fig. 3 shows the evolution of the

“compactness” of the PNS that is defined by MPNS=RPNS
for SFHx (red line) and TM1 (blue line). As one would
imagine, the compactness of the PNS is higher for SFHx
compared to TM1 even after we consider the inaccuracy of
∼1% in MPNS. The right panel of Fig. 3 depicts the time
evolution ofMPNS as a function ofRPNS. The PNS with the
softer EOS (SFHx) evolves from larger to smaller PNS
radius with bigger to smaller enclosed mass compared to
the stiffer EOS (TM1). Depending on the stiffness of
the EOSs, one can see that the evolution track in the
MPNS −RPNS plane differs significantly.
To extract the metric from the background models in a

suitable form, we perform the following coordinate trans-
formation. In the background models obtained by numeri-
cal relativity simulation (e.g., [12]), the line element is
given as

ds2 ¼ −α2dt2 þ γijðdxi þ β idtÞðdxj þ β jdtÞ; ð1Þ

FIG. 1. (Spherically-averaged) radial profiles of the rest-mass density at 48, 148, and 248 ms after core bounce. The left and right panel
corresponds to SFHx and TM1, respectively.

FIG. 2. Time evolution of the PNS radius (left panel) and its gravitational mass (right panel) as a function of the postbounce time. The
circles and diamonds corresponds to SFHx and TM1, respectively. The surface of the PNS is defined at a fiducial rest-mass density of
ρs ¼ 1010 g cm−3.
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M-R evolution after core-bounce
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where α, βi, and γij are the lapse, shift vector, and
three metric, respectively. If one assumes that the hydro-
dynamical background is static and spherically symmetric,
the spacetime in the isotropic coordinates can also be
written as

ds2 ¼ −
ð1 − M

2r̂Þ
2

ð1þ M
2r̂Þ

2
dt2

þ
!
1þM

2r̂

"
4

ðdr̂2 þ r̂2dθ2 þ r̂2sin2θdϕ2Þ; ð2Þ

where r̂ and M denote the isotropic radius r̂ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and the enclosed gravitational mass,

respectively. From Eqs. (1) and (2), one can easily check
the validity of our static and spherically symmetric back-
ground assumption by comparing γr̂ r̂ and ð1þM=2r̂Þ4
(see Appendix A for detail).
Next, we perform coordinate transformation from the

isotropic, i.e., Eqs. (1) or (2), to the following spherically
symmetric spacetime,

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ

where Φ and Λ are functions of only r. This metric is
similar to the Schwarzschild metric and we apply the well-
known conversion relation r ¼ r̂ð1þM=2r̂Þ2. In addition,
Λ is associated with the mass functionM in such a way that
e−2Λ ¼ 1–2M=r. With this metric form, the four-velocity
of fluid element is given by uμ ¼ ðe−Φ; 0; 0; 0Þ.

III. PERTURBATION EQUATIONS FOR
AXIAL w-MODE GRAVITATIONAL WAVES

On the PNS models mentioned in the previous section,
we examine the oscillations and their spectra with the linear
perturbation approach. In particular, when one focuses on
axial type oscillations, the metric perturbation, hμν, with the
Regge-Wheeler gauge can be decomposed as

hμν ¼
X∞

l¼2

Xl

m¼−l

0

BBBB@

0 0 −h0;lmsin−1θ∂ϕ h0;lm sin θ∂θ

% 0 −h1;lmsin−1θ∂ϕ h1;lm sin θ∂θ

% % 0 0

% % 0 0

1

CCCCA

× Ylm; ð4Þ

where Ylm is the spherical harmonics with the angular
indexes l and m, noting that h0;lm and h1;lm are functions
of t and r [22]. Additionally, the perturbation of the four-
velocity is given by

δuμ ¼
X∞

l¼2

Xl

m¼−l

!
0; 0;−

δulm
r2 sin θ

∂ϕYlm;
δulm
r2 sin θ

∂θYlm

"
;

ð5Þ

while the perturbations of pressure and energy density
should be zero for axial type oscillations.
The perturbation equation governing the axial type of

GWs on the spherically symmetric background can be
expressed as a single wave equation [57,58], such as

−
∂2Xlm

∂t2 þ∂2Xlm

∂r2%
−e2Φ

$
lðlþ1Þ

r2
−
6m
r3

þ4πðε−pÞ
%
Xlm

¼ 0; ð6Þ

where Xlm is related to the metric perturbation, h1;lm, via
rXlm ¼ eΦ−Λh1;lm, while r% is the tortoise coordinate
defined as r%¼rþ2Mlnðr=2M−1Þ. That is, ∂r¼eΛ−Φ∂r% .
The remaining variables, h0;lm and δulm, can be computed
with h1;lm from the relations ∂th0;lm¼ eΦ−ΛXlmþ r∂r%Xlm

and δulm ¼ −e−Φh0;lm. We remark that Eq. (6) outside the
star reduces to the well-known Regge-Wheeler equation.
Hereafter, we omit the index of ðl; mÞ for simplicity.
In fact, by solving this system one can obtain the specific

oscillation spectra of GWs, i.e., the so-called w modes
[44,45]. Replacing Xlm in Eq. (6) with Xlmðt; rÞ ¼
XðrÞ expðiωtÞ, one gets the perturbation equation with
respect to the eigenvalue ω,

FIG. 3. Left: Same as Fig. 2, but for the time evolution of the stellar compactness after bounce. Right: Sequences of the masses and
radii of PNSs for SFHx and TM1. Note that the points at the left (smaller PNS radius) correspond to late postbounce phase, whereas the
points at the right correspond to early phase (larger PNS radius).
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evolution of w1-modes

•  frequencies depend on the EOS.


–  increasing with time


–  can be characterized well by MPNS/RPNS


•  as for cold NS, we can get the fitting formula, almost independent 
from EOS
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X 00 þ ðΦ0 − Λ0ÞX 0

þ e2Λ
!
ω2e−2Φ −

lðlþ 1Þ
r2

þ 6m
r3

− 4πðε − pÞ
"
X ¼ 0:

ð7Þ

By imposing appropriate boundary conditions, the problem
to solve becomes the eigenvalue problem. The boundary
conditions are the regularity condition at the stellar center
and the outgoing wave condition at spatial infinity.
The eigenvalue ω becomes a complex number, because

GWs carry out the oscillation energy, where the real and
imaginary parts of ω correspond to the oscillation fre-
quency (f ¼ ReðωÞ=2π) and damping rate (1=τ ¼ ImðωÞ),
respectively, where τ corresponds to the damping time of
each mode. To determine such a complex frequency, we
adopt the continuous fractional method proposed by
Leaver [59].

IV. ASTEROSEISMOLOGY WITH w MODES

The spacetime modes (w modes) have two families, i.e.,
wII and “ordinary” w modes [44,45]. As shown in
Appendix B, for cold NSs, a few wII modes are excited,
whose damping rate [ImðωÞ] is larger than its oscillation
frequency (ReðωÞ). On the other hand, infinite number of w
modes can exist, which are referred to as w1; w2; % % % ; wn

modes in order from the lowest oscillation frequency. So, in
the similar way to cold NSs, we identify the spacetime
modes with ReðωÞ larger than ImðωÞ as the “ordinary” w
modes for PNSs. Hereafter, the “ordinary” w modes are
called just as the w modes.
In Fig. 4, we show the frequency and damping rate of the

axial spacetime modes for the PNS models at the two
postbounce times of Tpb ¼ 108 ms (circles) and 248 ms
(diamonds), where the left and right panels correspond to
the results with SFHx and TM1 (EOS). In this figure, the
open marks denote the wII modes, while the solid marks
denote the w modes. Thus, the leftmost solid marks
correspond to the w1 mode (fundamental w mode) for
each PNS model. From this figure, one can observe that the
damping rate of wn mode is almost constant independently
of the index n, which is different behavior from the case of
cold NSs as shown in Fig. 10. In fact, the damping rate of
wn modes increase with the index n for cold NSs. With
respect to the w1 mode (Fig. 5), we show the time evolution
of the frequency (fw1

) and damping time (τw1
) as a function

of postbounce time for SFHx and TM1, respectively. We
remark that the damping time is the time with which the
GW amplitude reduces by 1=e. In the early phase of
w1-mode oscillations of PNSs, the frequency is only a
few kHz, which is significantly smaller than that for cold
NSs, while the damping time is around 0.1 ms, which is
much larger than that for cold NSs. This is good news from

FIG. 4. Frequency and damping rate of the axial spacetime modes for PNSs. The left and right panels correspond to the results for
SFHx and TM1 EOSs, respectively, where the circles and diamonds are shown for the PNS models at 108 and 248 ms after core bounce.
The open and solid marks correspond to the wII and “ordinary” w modes.

FIG. 5. Evolutions of frequency ðfw1
Þ and damping time ðτw1

Þ for the w1 mode. The circles and diamonds correspond to SFHx and
TM1, respectively.

PROBING MASS-RADIUS RELATION OF PROTONEUTRON … PHYSICAL REVIEW D 96, 063005 (2017)

063005-5

the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as

fðNSÞw1
ðkHzÞ ≈

!
20.92 − 9.14

"
M

1.4 M⊙

#"
R

10 km

#−1$

×
"

R
10 km

#−1
: ð8Þ

This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
"

M
1.4 M⊙

#
1=2

"
R

10 km

#−3=2
:

ð9Þ

This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈

!
27.99 − 12.02

"
MPNS

1.4 M⊙

#"
RPNS

10 km

#−1$

×
"

RPNS

10 km

#−1
: ð10Þ

We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð11Þ

fðPNSÞp1
ðHzÞ ≈ 43.29þ 8602

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð12Þ

where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as
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This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as
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This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
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27.99 − 12.02
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We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859

"
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#
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"
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;
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#
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10 km
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;
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where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as

fðNSÞw1
ðkHzÞ ≈

!
20.92 − 9.14

"
M

1.4 M⊙

#"
R

10 km

#−1$

×
"

R
10 km

#−1
: ð8Þ

This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
"

M
1.4 M⊙

#
1=2

"
R

10 km

#−3=2
:

ð9Þ

This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈

!
27.99 − 12.02
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We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859
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where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as

fðNSÞw1
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This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
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This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈
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27.99 − 12.02
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We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859
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where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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PNS models adopted in this paper is different from that in
[39]. In practice, these linear fits are also shown in the
middle and right panels of Fig. 7 with solid lines. We
remark that the frequencies of the f and p1 modes are the
same dependence on the properties of PNSs; i.e., one can
get only the information about the average density of PNS
even if one will simultaneously detect the f and p1 modes.
Consequently, one can obtain the information of two

different properties, which are combinations of MPNS and
RPNS, via Eqs. (10) and (11) [or via Eqs. (10) and (12)], if
one would simultaneously detect the f and w1 modes (or
the p1 and w1 modes) in GWs from PNSs, which enables us
to know the values of MPNS and RPNS. Furthermore, unlike
the GWasteroseismology for cold NSs, for PNSs one might
get the sequence in MPNS −RPNS plain as shown in Fig. 3
with the time evolution of the GW spectra from the PNS
produced by just one supernova explosion, because MPNS
and RPNS changes with time. Namely, in principle one
would find the EOS via the detection of the GWs from just
one supernova explosion.
Finally, we discuss the detectability of GWs from PNSs.

In Refs. [30,31], the effective amplitude of f and w1 modes
in GWs radiating from cold NSs are estimated, where the
background stellar model should be static at least during the
damping time. Since the damping time of the w1 mode from
PNSs is typically τw1

∼ 0.1 ms as shown in Fig. 5, which is
shorter than the typical timescale of change of PNS
properties, one might possible to adopt the estimation of
effective amplitude for the w1 mode derived in [30,31] even
for PNSs. On the other hand, if one estimates the damping
time of the f mode for PNSs in the same way as for cold
NSs, such as τf ∼R4

PNS=M
3
PNS [31], τf becomes ∼1–50

second, which is much larger than the typical timescale of
change of PNS properties. Thus, it must be inappropriate to
adopt the estimation of effective amplitude for the f mode
derived in [30,31] in the case of PNSs. Thus, here we only
consider the detectability of the w1 mode in gravitational
waves. Even so, we may deduce that the upper limit of the
effective amplitude of the f mode in gravitational waves
from PNSs would be around h ∼ 10−21, assuming that the
f-mode oscillations can be also captured as well as the

other excited modes in the previous numerical simulations
of core-collapse supernovae [11,12,14].
For PNSs, we choose that the energy of the w1 mode in

the gravitational waves, Ew1
, for each time step, and

estimate the effective amplitude of such gravitational waves
with the same formula as in [30,31]. Thus, the effective
amplitude is given by

hðw1Þ
eff ∼7.7×10−23

!
Ew1

10−10 M⊙

"
1=2

!
4 kHz
fw1

"
1=2

!
10 kpc
D

"
;

ð13Þ

where D denotes the distance between the source and the
Earth. We remark that the effective amplitude depends on
the frequencies of the w1 mode, which change with time.
Assuming the total radiation energy with w1 mode in the
gravitational waves from PNS (Eðw1Þ

T ), the energy for each
time step (Ew1

) can be estimated as Eðw1Þ
T ≈Ew1

Tw1
=τw1

,
where Tw1

denotes the duration time of the w1 mode. In this
paper, we simply assume that Tw1

¼ 250 ms and
τw1

¼ 0.1 ms. Since the total energy of the w1 mode in
gravitational waves is also unknown, we consider

FIG. 7. Evolutions of f and p1 modes in GWs from PNSs after core bounce are shown in the left panes. The solid and open marks
correspond to the f and p1 modes, while the circles and diamonds are, respectively, the results for SFHx and TM1. The middle and right
panels shows respectively the frequencies of the f and p1 modes as a function of average density of PNSs. The solid line denotes the
linear fitting given by Eqs. (11) and (12).

FIG. 8. The effective amplitude of w1 modes in gravitational
waves radiated from the PNSs with SFHx EOS are shown
together with the sensitivity curves of KAGRA, advanced LIGO
(aLIGO), Einstein Telescope (ET), and Cosmic Explorer (CE).
The circles, squares, diamonds, triangles, and upside-down
triangles correspond to the results with Eðw1Þ

T ¼ 10−4 M⊙,
10−5 M⊙, 10−6 M⊙, 10−7 M⊙, and 10−8 M⊙, respectively.
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PNS models adopted in this paper is different from that in
[39]. In practice, these linear fits are also shown in the
middle and right panels of Fig. 7 with solid lines. We
remark that the frequencies of the f and p1 modes are the
same dependence on the properties of PNSs; i.e., one can
get only the information about the average density of PNS
even if one will simultaneously detect the f and p1 modes.
Consequently, one can obtain the information of two

different properties, which are combinations of MPNS and
RPNS, via Eqs. (10) and (11) [or via Eqs. (10) and (12)], if
one would simultaneously detect the f and w1 modes (or
the p1 and w1 modes) in GWs from PNSs, which enables us
to know the values of MPNS and RPNS. Furthermore, unlike
the GWasteroseismology for cold NSs, for PNSs one might
get the sequence in MPNS −RPNS plain as shown in Fig. 3
with the time evolution of the GW spectra from the PNS
produced by just one supernova explosion, because MPNS
and RPNS changes with time. Namely, in principle one
would find the EOS via the detection of the GWs from just
one supernova explosion.
Finally, we discuss the detectability of GWs from PNSs.

In Refs. [30,31], the effective amplitude of f and w1 modes
in GWs radiating from cold NSs are estimated, where the
background stellar model should be static at least during the
damping time. Since the damping time of the w1 mode from
PNSs is typically τw1

∼ 0.1 ms as shown in Fig. 5, which is
shorter than the typical timescale of change of PNS
properties, one might possible to adopt the estimation of
effective amplitude for the w1 mode derived in [30,31] even
for PNSs. On the other hand, if one estimates the damping
time of the f mode for PNSs in the same way as for cold
NSs, such as τf ∼R4

PNS=M
3
PNS [31], τf becomes ∼1–50

second, which is much larger than the typical timescale of
change of PNS properties. Thus, it must be inappropriate to
adopt the estimation of effective amplitude for the f mode
derived in [30,31] in the case of PNSs. Thus, here we only
consider the detectability of the w1 mode in gravitational
waves. Even so, we may deduce that the upper limit of the
effective amplitude of the f mode in gravitational waves
from PNSs would be around h ∼ 10−21, assuming that the
f-mode oscillations can be also captured as well as the

other excited modes in the previous numerical simulations
of core-collapse supernovae [11,12,14].
For PNSs, we choose that the energy of the w1 mode in

the gravitational waves, Ew1
, for each time step, and

estimate the effective amplitude of such gravitational waves
with the same formula as in [30,31]. Thus, the effective
amplitude is given by

hðw1Þ
eff ∼7.7×10−23
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where D denotes the distance between the source and the
Earth. We remark that the effective amplitude depends on
the frequencies of the w1 mode, which change with time.
Assuming the total radiation energy with w1 mode in the
gravitational waves from PNS (Eðw1Þ

T ), the energy for each
time step (Ew1

) can be estimated as Eðw1Þ
T ≈Ew1

Tw1
=τw1

,
where Tw1

denotes the duration time of the w1 mode. In this
paper, we simply assume that Tw1

¼ 250 ms and
τw1

¼ 0.1 ms. Since the total energy of the w1 mode in
gravitational waves is also unknown, we consider

FIG. 7. Evolutions of f and p1 modes in GWs from PNSs after core bounce are shown in the left panes. The solid and open marks
correspond to the f and p1 modes, while the circles and diamonds are, respectively, the results for SFHx and TM1. The middle and right
panels shows respectively the frequencies of the f and p1 modes as a function of average density of PNSs. The solid line denotes the
linear fitting given by Eqs. (11) and (12).

FIG. 8. The effective amplitude of w1 modes in gravitational
waves radiated from the PNSs with SFHx EOS are shown
together with the sensitivity curves of KAGRA, advanced LIGO
(aLIGO), Einstein Telescope (ET), and Cosmic Explorer (CE).
The circles, squares, diamonds, triangles, and upside-down
triangles correspond to the results with Eðw1Þ

T ¼ 10−4 M⊙,
10−5 M⊙, 10−6 M⊙, 10−7 M⊙, and 10−8 M⊙, respectively.
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where α, βi, and γij are the lapse, shift vector, and
three metric, respectively. If one assumes that the hydro-
dynamical background is static and spherically symmetric,
the spacetime in the isotropic coordinates can also be
written as

ds2 ¼ −
ð1 − M

2r̂Þ
2

ð1þ M
2r̂Þ

2
dt2

þ
!
1þM

2r̂

"
4

ðdr̂2 þ r̂2dθ2 þ r̂2sin2θdϕ2Þ; ð2Þ

where r̂ and M denote the isotropic radius r̂ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and the enclosed gravitational mass,

respectively. From Eqs. (1) and (2), one can easily check
the validity of our static and spherically symmetric back-
ground assumption by comparing γr̂ r̂ and ð1þM=2r̂Þ4
(see Appendix A for detail).
Next, we perform coordinate transformation from the

isotropic, i.e., Eqs. (1) or (2), to the following spherically
symmetric spacetime,

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ

where Φ and Λ are functions of only r. This metric is
similar to the Schwarzschild metric and we apply the well-
known conversion relation r ¼ r̂ð1þM=2r̂Þ2. In addition,
Λ is associated with the mass functionM in such a way that
e−2Λ ¼ 1–2M=r. With this metric form, the four-velocity
of fluid element is given by uμ ¼ ðe−Φ; 0; 0; 0Þ.

III. PERTURBATION EQUATIONS FOR
AXIAL w-MODE GRAVITATIONAL WAVES

On the PNS models mentioned in the previous section,
we examine the oscillations and their spectra with the linear
perturbation approach. In particular, when one focuses on
axial type oscillations, the metric perturbation, hμν, with the
Regge-Wheeler gauge can be decomposed as

hμν ¼
X∞

l¼2

Xl

m¼−l

0

BBBB@

0 0 −h0;lmsin−1θ∂ϕ h0;lm sin θ∂θ

% 0 −h1;lmsin−1θ∂ϕ h1;lm sin θ∂θ

% % 0 0

% % 0 0

1

CCCCA

× Ylm; ð4Þ

where Ylm is the spherical harmonics with the angular
indexes l and m, noting that h0;lm and h1;lm are functions
of t and r [22]. Additionally, the perturbation of the four-
velocity is given by

δuμ ¼
X∞

l¼2

Xl

m¼−l

!
0; 0;−

δulm
r2 sin θ

∂ϕYlm;
δulm
r2 sin θ

∂θYlm

"
;

ð5Þ

while the perturbations of pressure and energy density
should be zero for axial type oscillations.
The perturbation equation governing the axial type of

GWs on the spherically symmetric background can be
expressed as a single wave equation [57,58], such as

−
∂2Xlm

∂t2 þ∂2Xlm

∂r2%
−e2Φ

$
lðlþ1Þ

r2
−
6m
r3

þ4πðε−pÞ
%
Xlm

¼ 0; ð6Þ

where Xlm is related to the metric perturbation, h1;lm, via
rXlm ¼ eΦ−Λh1;lm, while r% is the tortoise coordinate
defined as r%¼rþ2Mlnðr=2M−1Þ. That is, ∂r¼eΛ−Φ∂r% .
The remaining variables, h0;lm and δulm, can be computed
with h1;lm from the relations ∂th0;lm¼ eΦ−ΛXlmþ r∂r%Xlm

and δulm ¼ −e−Φh0;lm. We remark that Eq. (6) outside the
star reduces to the well-known Regge-Wheeler equation.
Hereafter, we omit the index of ðl; mÞ for simplicity.
In fact, by solving this system one can obtain the specific

oscillation spectra of GWs, i.e., the so-called w modes
[44,45]. Replacing Xlm in Eq. (6) with Xlmðt; rÞ ¼
XðrÞ expðiωtÞ, one gets the perturbation equation with
respect to the eigenvalue ω,

FIG. 3. Left: Same as Fig. 2, but for the time evolution of the stellar compactness after bounce. Right: Sequences of the masses and
radii of PNSs for SFHx and TM1. Note that the points at the left (smaller PNS radius) correspond to late postbounce phase, whereas the
points at the right correspond to early phase (larger PNS radius).
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PNS models (HS & Sumiyoshi 19)


•  1D-GR core-collapse simulations (by Sumiyoshi)


–  40M⊙ progenitor model (W40) based on Woosley & Weaver 95


–  50M⊙ progenitor model (T50) based on Tominaga, Umeda & Nomoto 07


–  EOS: Shen (2.2M⊙), LS180 (1.8M⊙), LS220 (2.0M⊙)


–  surface density = 1011 g/cm3
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FIG. 3: Evolution of the PNS radius (left), the gravitational mass (center), and the average density (right) for various PNS models, where the
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III. PROTONEUTRON STAR ASTEROSEISMOLOGY

We perform the linear perturbation analysis of the PNS models described above. Once the PNS models are given, how to
determine the eigenfrequencies of PNS is the same as in Ref. [21]. That is, for simplicity, we assume the relativistic Cowling
approximation, i.e., the metric perturbations are neglected during the fluid oscillations. In this case, the perturbation equations
can be derived by linearizing the energy momentum conservation law. The concrete equation system is given by Eqs. (23) and
(24) in Ref. [21]. By imposing appropriate boundary conditions, it eventually becomes an eigenvalue problem with respect to
the eigenvalue of ω. Then, the eigenfrequency of gravitational wave is determined by ω/(2π). As the boundary conditions, one
has to impose the regularity condition at the stellar center, while the Lagrangian perturbation of pressure should be zero at the
PNS surface.

First, we show the evolution of eigenfrequencies for the PNS model of W40-Shen in Fig. 4, where the right panel is just an
enlarged view of the left panel. The diamonds, squares, and circles correspond to the frequencies of the f -, pi-, and gi-mode
gravitational waves. One can clearly observe the phenomena of the avoided crossing. That is, for example, focusing on the
f -mode frequency, the avoided crossing occurs with p1-mode at Tpb ∼ 200 ms and with g1-mode at Tpb ∼ (300 − 350) ms.
Due to the avoided crossing, one can observe the plateau for a while in the evolution of the f -mode frequency. The evolutions
of eigenfrequencies for the other PNS models are shown in Appendix A.

Next, we focus on the behavior of the f -mode frequency. In Fig. 5, the evolution of f -mode frequency is shown for various
PNS models. It is interesting to commonly observe the plateau for a while around Tpb ∼ (200 − 300) ms. As a general trend
except for the small plateau, we find that the f -mode frequency can be fitted well as

ff (kHz) = c0 + c1

(
Tpb

1000ms

)
+ c2

(
Tpb

1000ms

)2

, (4)

where c0, c1, and c2 are fitting coefficients depending on the PNS models, as shown in Table II. In Fig. 6, the fitted line for each
PNS model is shown with the thick-solid line. By using this fitting formula together with the information about TBH determined
from the neutrino observations, one could estimate the f -mode frequency from the PNS model with the maximum mass (at



GW frequency for W40-Shen


•  One can clearly observe the phenomena of the avoided crossing in 
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III. PROTONEUTRON STAR ASTEROSEISMOLOGY

We perform the linear perturbation analysis of the PNS models described above. Once the PNS models are given, how to
determine the eigenfrequencies of PNS is the same as in Ref. [21]. That is, for simplicity, we assume the relativistic Cowling
approximation, i.e., the metric perturbations are neglected during the fluid oscillations. In this case, the perturbation equations
can be derived by linearizing the energy momentum conservation law. The concrete equation system is given by Eqs. (23) and
(24) in Ref. [21]. By imposing appropriate boundary conditions, it eventually becomes an eigenvalue problem with respect to
the eigenvalue of ω. Then, the eigenfrequency of gravitational wave is determined by ω/(2π). As the boundary conditions, one
has to impose the regularity condition at the stellar center, while the Lagrangian perturbation of pressure should be zero at the
PNS surface.

First, we show the evolution of eigenfrequencies for the PNS model of W40-Shen in Fig. 4, where the right panel is just an
enlarged view of the left panel. The diamonds, squares, and circles correspond to the frequencies of the f -, pi-, and gi-mode
gravitational waves. One can clearly observe the phenomena of the avoided crossing. That is, for example, focusing on the
f -mode frequency, the avoided crossing occurs with p1-mode at Tpb ∼ 200 ms and with g1-mode at Tpb ∼ (300 − 350) ms.
Due to the avoided crossing, one can observe the plateau for a while in the evolution of the f -mode frequency. The evolutions
of eigenfrequencies for the other PNS models are shown in Appendix A.

Next, we focus on the behavior of the f -mode frequency. In Fig. 5, the evolution of f -mode frequency is shown for various
PNS models. It is interesting to commonly observe the plateau for a while around Tpb ∼ (200 − 300) ms. As a general trend
except for the small plateau, we find that the f -mode frequency can be fitted well as

ff (kHz) = c0 + c1

(
Tpb

1000ms

)
+ c2

(
Tpb

1000ms

)2

, (4)

where c0, c1, and c2 are fitting coefficients depending on the PNS models, as shown in Table II. In Fig. 6, the fitted line for each
PNS model is shown with the thick-solid line. By using this fitting formula together with the information about TBH determined
from the neutrino observations, one could estimate the f -mode frequency from the PNS model with the maximum mass (at
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FIG. 6: Comparison between ff obtained by eigenvalue problems (marks) and the expectation with the fitting formula given by Eq. (4)
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Tpb = TBH), even though the f -mode gravitational wave at Tpb ∼ TBH would not be observed directly due to the fact that the
frequency of f -mode in the final phase is relatively high for observation.

In addition, as in Fig 7, we find that the frequency of the f -mode gravitational waves strongly depends on the square root of the
PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.

EOS Model c0 (kHz) c1 (kHz) c2 (kHz)
Shen W40 0.4525 1.4453 −0.1618

T50 0.3960 1.7183 −0.3943

LS180 W40 0.4629 0.9244 4.2095
T50 0.5018 0.1830 6.6968

LS220 W40 0.3181 2.6230 0.3272
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Tpb = TBH), even though the f -mode gravitational wave at Tpb ∼ TBH would not be observed directly due to the fact that the
frequency of f -mode in the final phase is relatively high for observation.

In addition, as in Fig 7, we find that the frequency of the f -mode gravitational waves strongly depends on the square root of the
PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.

EOS Model c0 (kHz) c1 (kHz) c2 (kHz)
Shen W40 0.4525 1.4453 −0.1618

T50 0.3960 1.7183 −0.3943

LS180 W40 0.4629 0.9244 4.2095
T50 0.5018 0.1830 6.6968

LS220 W40 0.3181 2.6230 0.3272
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III. PROTONEUTRON STAR ASTEROSEISMOLOGY

We perform the linear perturbation analysis of the PNS models described above. Once the PNS models are given, how to
determine the eigenfrequencies of PNS is the same as in Ref. [21]. That is, for simplicity, we assume the relativistic Cowling
approximation, i.e., the metric perturbations are neglected during the fluid oscillations. In this case, the perturbation equations
can be derived by linearizing the energy momentum conservation law. The concrete equation system is given by Eqs. (23) and
(24) in Ref. [21]. By imposing appropriate boundary conditions, it eventually becomes an eigenvalue problem with respect to
the eigenvalue of ω. Then, the eigenfrequency of gravitational wave is determined by ω/(2π). As the boundary conditions, one
has to impose the regularity condition at the stellar center, while the Lagrangian perturbation of pressure should be zero at the
PNS surface.

First, we show the evolution of eigenfrequencies for the PNS model of W40-Shen in Fig. 4, where the right panel is just an
enlarged view of the left panel. The diamonds, squares, and circles correspond to the frequencies of the f -, pi-, and gi-mode
gravitational waves. One can clearly observe the phenomena of the avoided crossing. That is, for example, focusing on the
f -mode frequency, the avoided crossing occurs with p1-mode at Tpb ∼ 200 ms and with g1-mode at Tpb ∼ (300 − 350) ms.
Due to the avoided crossing, one can observe the plateau for a while in the evolution of the f -mode frequency. The evolutions
of eigenfrequencies for the other PNS models are shown in Appendix A.

Next, we focus on the behavior of the f -mode frequency. In Fig. 5, the evolution of f -mode frequency is shown for various
PNS models. It is interesting to commonly observe the plateau for a while around Tpb ∼ (200 − 300) ms. As a general trend
except for the small plateau, we find that the f -mode frequency can be fitted well as

ff (kHz) = c0 + c1

(
Tpb

1000ms

)
+ c2

(
Tpb

1000ms

)2

, (4)

where c0, c1, and c2 are fitting coefficients depending on the PNS models, as shown in Table II. In Fig. 6, the fitted line for each
PNS model is shown with the thick-solid line. By using this fitting formula together with the information about TBH determined
from the neutrino observations, one could estimate the f -mode frequency from the PNS model with the maximum mass (at



Universality in f-mode GWs


•  The f-mode frequencies are 
well-expressed as a function 
of stellar average density, 
independently of progenitor 
models and EOSs.


•  Through the f-mode GW, one can extract the PNS average density, 
which leads to the time evolution of PNS average density.
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average density larger than 0.1.

of the f -mode gravitational waves. That is, using the observed frequency of f -mode gravitational wave, ff (Tpb), the square
root of the PNS average density, X(Tpb), is determined by

X(Tpb) = 9.8582× 10−2 ×
[
1 +

{
1− 7.2673×

(
1− ff (Tpb)

0.9733

)}1/2
]
, (6)

where ff is in the unit of kHz. We stress that the evolution of f -mode frequency for accreting PNSs is different from that for
ordinary non-accreting PNSs. It is possible to explore higher average density for the black hole forming case and the f -mode
frequency evolves beyond the linear relation, which was used in the ordinary PNSs.

Furthermore, as an advantage for considering the black hole formation, we can discuss the PNS model with the maximum
mass allowed by the adopted EOS. As mentioned above, the moment when the PNS would collapse to a black hole can be
determined via the neutrino observation. The PNS models at this moment should correspond to that with the maximum mass
allowed by the adopted EOS. We remark that the maximum mass of the PNS is different from that for the cold neutron star even
with the same nuclear EOS, due to the effects of the entropy and lepton distributions including neutrinos. As shown in Table I
and Fig. 6, TBH and the evolution of f -mode gravitational waves depend on the progenitor models of PNSs and the EOS. Even
so, the observed f -mode gravitational wave can be generally fitted as Eq. (4). Hence, via Eq. (4) with the help of the neutrino
observation, one can estimate the frequency of the f -mode gravitational waves from the last moment of the PNS re-collapse to
a black hole. With the resultant f -mode frequency (or the observed f -mode frequency if the f -mode gravitational wave would
be directly observed), the average density of the PNS with the maximum mass can be estimated via Eq. (6).

Now, we check how one can determine the square root of the average density of the PNS with the maximum mass in the
scheme suggested above by using the specific PNS models considered in this study. For this purpose, we compare the square
root of the average density for PNS with the maximum mass estimated with the fitting formula (4) and the neutrino observation,
Xest, with the corresponding value, Xsim, which is known from the simulation in advance. The result is shown in Table III for
various PNS models, where the relative error determined by (Xsim −Xest)/Xsim is also shown. From this Table, we can find
that the relative error in the square root of the average density for the PNS model with the maximum mass becomes at least
less than 10% independently of the progenitor models. In fact, even though the f -mode frequency for the progenitor model of
T50-Shen deviates relatively from the fitting formula given by Eq. (5) as shown in Fig. 7, one can estimate the square root of the
average density for the PNS model with the maximum mass within less than 10% accuracy even for the model of T50-Shen.

In contrast to the f -mode frequency, one can see the complex behavior in the gi-mode frequency. It comes from the avoided
crossing with the f - and g2-modes for i = 1 and with the gi±1-modes for i > 1. For example, as shown in Fig. 4, the avoided
crossing in the g1-mode frequency for the PNS model with W40-Shen happens at Tpb ∼ (300 − 350) ms with f -mode and at
Tpb ∼ 150 and ∼ 1100 ms with g2-mode. For various progenitor models, we show the evolution of the g1-mode gravitational
waves in the left panel of Fig. 8, from which one can observe that the time evolution of the g1-mode gravitational waves strongly
depends on the progenitor models. In particular, it seems that the time when the avoided crossing happens between the g1- and
g2-mode gravitational waves strongly depends on the progenitor models.

Nevertheless, we find the universal behavior, which is insensitive to the progenitor models, in the ratio of the g1-mode fre-
quency to the f -mode frequency, fg1/ff , as shown in the right panel of Fig. 8. That is, fg1/ff can be characterized well by
the PNS compactness independently of the progenitor models, although the progenitor dependence of fg1/ff remains in the
final phase just before the PNS would collapse to a black hole [65]. Owing to this feature, one can derive the PNS compactness
at each time step via the observation of the f - and g1-mode gravitational waves. On the other hand, from the observation of
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FIG. 6: Comparison between ff obtained by eigenvalue problems (marks) and the expectation with the fitting formula given by Eq. (4)
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Tpb = TBH), even though the f -mode gravitational wave at Tpb ∼ TBH would not be observed directly due to the fact that the
frequency of f -mode in the final phase is relatively high for observation.

In addition, as in Fig 7, we find that the frequency of the f -mode gravitational waves strongly depends on the square root of the
PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.

EOS Model c0 (kHz) c1 (kHz) c2 (kHz)
Shen W40 0.4525 1.4453 −0.1618

T50 0.3960 1.7183 −0.3943

LS180 W40 0.4629 0.9244 4.2095
T50 0.5018 0.1830 6.6968

LS220 W40 0.3181 2.6230 0.3272
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Tpb = TBH), even though the f -mode gravitational wave at Tpb ∼ TBH would not be observed directly due to the fact that the
frequency of f -mode in the final phase is relatively high for observation.

In addition, as in Fig 7, we find that the frequency of the f -mode gravitational waves strongly depends on the square root of the
PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.

EOS Model c0 (kHz) c1 (kHz) c2 (kHz)
Shen W40 0.4525 1.4453 −0.1618

T50 0.3960 1.7183 −0.3943

LS180 W40 0.4629 0.9244 4.2095
T50 0.5018 0.1830 6.6968

LS220 W40 0.3181 2.6230 0.3272



g1-mode GWs

•  g1-mode GW also strongly depends on the progenitor models.


•  Even so, we find that the ratio of g1-mode to f-mode can be 
well-expressed as a function of PNS compactness, independently 
of the progenitor models. 


•  one can extract the PNS compactness via the simultaneous 
observations of g1- and f-mode GWs.


Oct. 16, 2019
 YITP long-term workshop "Multi-Messenger Astrophysics in the Gravitational Wave Era"
 28


8

TABLE III: Comparison between the square root of the average density of PNS with maximum mass estimated with the fitting formula (4)
and the neutrino observation, Xest, and the corresponding value, Xsim, which is known from the simulation in advance. The relative error is
calculated by (Xsim −Xest)/Xsim.

EOS Model Xest Xsim relative error (%)
Shen W40 0.4014 0.4027 0.32

T50 0.4000 0.3674 −8.87

LS180 W40 0.4230 0.4234 0.09
T50 0.4244 0.4336 2.12

LS220 W40 0.4532 0.4567 0.77
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FIG. 8: Left: evolution of the frequency of the g1-mode gravitational wave for various PNS models. Right: ratio of the g1-mode frequency to
the f -mode frequency, fg1/ff , as a function of the PNS compactness.

the f -mode gravitational waves, one can derive also the PNS average density, as mentioned above. Thus, via the simultaneous
observation of the f - and g1-mode gravitational waves from the PNSs, one can determine the evolution of the PNS average
density and compactness independently of the progenitor models. With this information, one can reconstruct the evolution of
the PNS radius and mass, which enables us to probe the EOS for a high density region.

IV. CONCLUSION AND DISCUSSION

We examine the eigenfrequency of the accreting PNSs toward the black hole formation for the two progenitor models with
three EOSs. As PNS models, we adopt the numerical results of spherically symmetric neutrino-radiation hydrodynamics in
general relativity. We focus on the black hole forming case having the information of time evolution of neutrino emission with
the termination of neutrino burst at the black hole formation. We performed a linear perturbation analysis by assuming the
relativistic Cowling approximation. We show the evolution of the eigenfrequencies with the occurrence of the avoided crossing
between the adjoining modes. We find that the frequency of the f -mode gravitational waves can be expressed as a function of
the PNS average density independently of the progenitor models. We also find that the ratio of the g1-mode frequency to the
f -mode frequency can be characterized by the PNS compactness independently of the progenitor models. As a result, it is found
that the evolution of the PNS average density and compactness can be determined independently of the progenitor models via
the simultaneous observations of the f - and g1-mode gravitational waves. In addition, we can suggest that the average density
of the PNS with the maximum mass could be determined via the observations of the f -mode gravitational waves together with
the neutrino observation. That is, the time when the PNS would collapse to a black hole will be provided from the neutrino
observation, while the PNS average density at such a time could be determined from the universal relation between the average
density and the f -mode frequency. These information for the PNS could help us to constrain the EOS for a high density region.

Finally, in some of the numerical simulations (e.g., Ref. [15]), it is reported that the gravitational wave signal with low fre-
quency (∼ 100 Hz) would be excited together with the f -mode like gravitational wave signal (the so-called surface g-mode),
which is considered as a result from the standing accretion-shock instability (or maybe the g-mode oscillations of PNS). If one
would examine the ratio of such a gravitational wave signal with low frequency to the f -mode like signal with various progenitor
models and show such a ratio is almost insensitive to the progenitor models, one may conclude that low frequency signals are
strongly associated with the g-mode oscillations. Last but not least, it would be beneficial to perform further systematic studies
with progenitors and EOSs in order to firmly establish the analytic formulae and its application to observations although we
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the f -mode gravitational waves, one can derive also the PNS average density, as mentioned above. Thus, via the simultaneous
observation of the f - and g1-mode gravitational waves from the PNSs, one can determine the evolution of the PNS average
density and compactness independently of the progenitor models. With this information, one can reconstruct the evolution of
the PNS radius and mass, which enables us to probe the EOS for a high density region.

IV. CONCLUSION AND DISCUSSION

We examine the eigenfrequency of the accreting PNSs toward the black hole formation for the two progenitor models with
three EOSs. As PNS models, we adopt the numerical results of spherically symmetric neutrino-radiation hydrodynamics in
general relativity. We focus on the black hole forming case having the information of time evolution of neutrino emission with
the termination of neutrino burst at the black hole formation. We performed a linear perturbation analysis by assuming the
relativistic Cowling approximation. We show the evolution of the eigenfrequencies with the occurrence of the avoided crossing
between the adjoining modes. We find that the frequency of the f -mode gravitational waves can be expressed as a function of
the PNS average density independently of the progenitor models. We also find that the ratio of the g1-mode frequency to the
f -mode frequency can be characterized by the PNS compactness independently of the progenitor models. As a result, it is found
that the evolution of the PNS average density and compactness can be determined independently of the progenitor models via
the simultaneous observations of the f - and g1-mode gravitational waves. In addition, we can suggest that the average density
of the PNS with the maximum mass could be determined via the observations of the f -mode gravitational waves together with
the neutrino observation. That is, the time when the PNS would collapse to a black hole will be provided from the neutrino
observation, while the PNS average density at such a time could be determined from the universal relation between the average
density and the f -mode frequency. These information for the PNS could help us to constrain the EOS for a high density region.

Finally, in some of the numerical simulations (e.g., Ref. [15]), it is reported that the gravitational wave signal with low fre-
quency (∼ 100 Hz) would be excited together with the f -mode like gravitational wave signal (the so-called surface g-mode),
which is considered as a result from the standing accretion-shock instability (or maybe the g-mode oscillations of PNS). If one
would examine the ratio of such a gravitational wave signal with low frequency to the f -mode like signal with various progenitor
models and show such a ratio is almost insensitive to the progenitor models, one may conclude that low frequency signals are
strongly associated with the g-mode oscillations. Last but not least, it would be beneficial to perform further systematic studies
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PNS maximum mass


•  PNS at the moment when it collapses to BH, corresponds to the PNS 
model with maximum mass.





•  BUT, the f-mode frequency is too high to detector?


•  How to determine the PNS property


①  With the data of the f-mode GW, one can  
fit the time evolution of the f-mode GW 


②  Owning to the neutrino observation, one can 
know the moment when PNS collapses to BH


③  The f-mode frequency is expected via ① and ②


④  Via the universal relation of the f-mode,  
one can extract the average density of  
PNS with maximum mass
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FIG. 7: Frequencies of the f -mode gravitational waves from various PNS models are shown as a function of the square root of the PNS average
density for each time step. The solid-thick line denotes the fitting formula given by Eq. (5), using the data for PNSs with the square root of the
average density larger than 0.1.

of the f -mode gravitational waves. That is, using the observed frequency of f -mode gravitational wave, ff (Tpb), the square
root of the PNS average density, X(Tpb), is determined by

X(Tpb) = 9.8582× 10−2 ×
[
1 +

{
1− 7.2673×

(
1− ff (Tpb)

0.9733

)}1/2
]
, (6)

where ff is in the unit of kHz. We stress that the evolution of f -mode frequency for accreting PNSs is different from that for
ordinary non-accreting PNSs. It is possible to explore higher average density for the black hole forming case and the f -mode
frequency evolves beyond the linear relation, which was used in the ordinary PNSs.

Furthermore, as an advantage for considering the black hole formation, we can discuss the PNS model with the maximum
mass allowed by the adopted EOS. As mentioned above, the moment when the PNS would collapse to a black hole can be
determined via the neutrino observation. The PNS models at this moment should correspond to that with the maximum mass
allowed by the adopted EOS. We remark that the maximum mass of the PNS is different from that for the cold neutron star even
with the same nuclear EOS, due to the effects of the entropy and lepton distributions including neutrinos. As shown in Table I
and Fig. 6, TBH and the evolution of f -mode gravitational waves depend on the progenitor models of PNSs and the EOS. Even
so, the observed f -mode gravitational wave can be generally fitted as Eq. (4). Hence, via Eq. (4) with the help of the neutrino
observation, one can estimate the frequency of the f -mode gravitational waves from the last moment of the PNS re-collapse to
a black hole. With the resultant f -mode frequency (or the observed f -mode frequency if the f -mode gravitational wave would
be directly observed), the average density of the PNS with the maximum mass can be estimated via Eq. (6).

Now, we check how one can determine the square root of the average density of the PNS with the maximum mass in the
scheme suggested above by using the specific PNS models considered in this study. For this purpose, we compare the square
root of the average density for PNS with the maximum mass estimated with the fitting formula (4) and the neutrino observation,
Xest, with the corresponding value, Xsim, which is known from the simulation in advance. The result is shown in Table III for
various PNS models, where the relative error determined by (Xsim −Xest)/Xsim is also shown. From this Table, we can find
that the relative error in the square root of the average density for the PNS model with the maximum mass becomes at least
less than 10% independently of the progenitor models. In fact, even though the f -mode frequency for the progenitor model of
T50-Shen deviates relatively from the fitting formula given by Eq. (5) as shown in Fig. 7, one can estimate the square root of the
average density for the PNS model with the maximum mass within less than 10% accuracy even for the model of T50-Shen.

In contrast to the f -mode frequency, one can see the complex behavior in the gi-mode frequency. It comes from the avoided
crossing with the f - and g2-modes for i = 1 and with the gi±1-modes for i > 1. For example, as shown in Fig. 4, the avoided
crossing in the g1-mode frequency for the PNS model with W40-Shen happens at Tpb ∼ (300 − 350) ms with f -mode and at
Tpb ∼ 150 and ∼ 1100 ms with g2-mode. For various progenitor models, we show the evolution of the g1-mode gravitational
waves in the left panel of Fig. 8, from which one can observe that the time evolution of the g1-mode gravitational waves strongly
depends on the progenitor models. In particular, it seems that the time when the avoided crossing happens between the g1- and
g2-mode gravitational waves strongly depends on the progenitor models.

Nevertheless, we find the universal behavior, which is insensitive to the progenitor models, in the ratio of the g1-mode fre-
quency to the f -mode frequency, fg1/ff , as shown in the right panel of Fig. 8. That is, fg1/ff can be characterized well by
the PNS compactness independently of the progenitor models, although the progenitor dependence of fg1/ff remains in the
final phase just before the PNS would collapse to a black hole [65]. Owing to this feature, one can derive the PNS compactness
at each time step via the observation of the f - and g1-mode gravitational waves. On the other hand, from the observation of
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FIG. 5: Evolution of the frequency of the f -mode gravitational waves for various PNS models.
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FIG. 6: Comparison between ff obtained by eigenvalue problems (marks) and the expectation with the fitting formula given by Eq. (4)
(solid-thick lines). The left and right panels correspond to the cases for the PNS models with W40 and T50, respectively.

Tpb = TBH), even though the f -mode gravitational wave at Tpb ∼ TBH would not be observed directly due to the fact that the
frequency of f -mode in the final phase is relatively high for observation.

In addition, as in Fig 7, we find that the frequency of the f -mode gravitational waves strongly depends on the square root of the
PNS average density, (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, almost independently of the progenitor models. This behavior is
understood, because the f -mode gravitational waves are excited as a result of acoustic oscillations, which can be characterized
by the average density. In fact, it is shown that the f -mode frequency can be written as a linear function of the square root
of the average density not only for cold neutron stars [29, 30], but also for the PNS born after the core-collapse supernovae
[21, 38, 40]. Owing to this behavior of the f -mode frequency, it is suggested that the evolution of the PNS average density could
be determined via the direct observation of the f -mode gravitational waves. On the other hand, for the black hole formation
considered in this study, we find the f -mode frequency can be fitted as

ff (kH) = 0.9733− 2.7171X + 13.7809X2, (5)

where X is the square root of the PNS average density defined by X ≡ (MPNS/1.4M⊙)1/2(RPNS/10 km)−3/2, i.e., fitting is
not a linear function of X . In this way, the evolution of the PNS average density would be determined via the direct observation

TABLE II: Coefficients in the fitting formula given by Eq. (4) for the various PNS models considered in this study.

EOS Model c0 (kHz) c1 (kHz) c2 (kHz)
Shen W40 0.4525 1.4453 −0.1618

T50 0.3960 1.7183 −0.3943

LS180 W40 0.4629 0.9244 4.2095
T50 0.5018 0.1830 6.6968

LS220 W40 0.3181 2.6230 0.3272
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conclusion

•  Asteroseismology could be a powerful technique for extracting the interior 

information. 


•  In the context of PNS asteroseismology, two different approaches are considered


–  The eigenvalue problem to solve is mathematically different each other


–  f-mode GW from PNS model with ρs=1011 g/cm3 agrees well with the GW signals 
obtained by the numerical simulation


•  As for cold NSs, the f- and w1-mode GWs from PNS can be characterized by the 
stellar average density and compactness, respectively. 


–  via simultaneous observation of f- and w1-mode GW, one can see the evolution of 
(MPNS, RPNS) after core bounce


–  in principle, even with ONE GW event from supernova, one might determine the EOS 
for high density region.


•  we also consider the asteroseismology on the PNSs toward BH formation.


–  we find that, independently of the progenitor models,


•  the f-mode GW can be expressed as PNS average density, and


•  the ratio of g1- to f-mode GWs can be expressed as PNS compactness.


–  owning to the neutrino obs., one would determine the average density of PNS with 
maximum mass by detecting the f-mode GW.
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