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2nd candidate as GW sources

* sSupernovae
— event rate: ~1/100 yr in our galaxy
— compered to binary merger, system is more spherically symmetric
e less energy of gravitational waves

— many numerical simulations show the existence of GW signals
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(surface) g-mode oscillations?

« 2D non-rotation with convection by Mueller et al. (2013)
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(similar expression is also given in Cerda-Duran-+13)
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GW signals in numerical simulations

e Numerical simulations are very powerful, but...

— still difficult to extract GW signal, especially from protoneutron
stars (PNSs).

— additionally, not easy to understand the physics in PNSs directly
from numerical results
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linear analysis (asteroseismology)

e variables = background + perturbations
A=4 +684
e expand the perturbed variables

S A(t,r,0,9) =S5 A(r)e™Y, (0,9)

— if background is spherically symmetric, the perturbations are
independent from m

— w is an eigenfrequencies of star for each [ where f = w/2 x

— subscript denotes the number of radial nodes in eigenfunction

for cold NSs
939, 94 °T P P, P4
fluid —i } } } } } > frequency
~ a few KHz
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spacetime | | I > frequency
= 1TOkHz
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different two approaches

e TPNS models, whose surface defined with a specific surface
density, p, (Model )
— Sotani+16; 1D-Newton, without rotation
— Sotani+17; 3D-GR, without rotation
— Morozova+18; 2D-effective GR, without rotation
— Radice+19; 3D-effective GR, without rotation
— Sotani+19; 3D-GR, without rotation

e Numerical region up to the shock radius, R (Model II)
— Torres-Forne+18; 2D-GR, with rotation
— Torres-Forne+ 19a; 2D-GR, with rotation/2D-effective GR, without rotation

— Torres-Forne+ 19b; 1D-Newton/effective GR/GR, without rotation

shock

e With either | or I, to prepare the background PNS model for linear
analysis, the numerical data is averaged in the angular direction,
assuming the static solution at each time step.

— linear analysis on the static, spherically background model.
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Difference in two approaches

e -

computational domain

— Model | : only inside R4 defined by p,

— Model I: 6&'=0@r=R
Boundary condition for solving the eigenvalue
problem

— Model | : Ap =0 @r = R\

— Model Il : 66 =0 @r =R,

— mathematically, problem to solve is complete different

shock

advantage

— Model | : matter motion is relatively small
mode classification is as usual

— Model Il : boundary is uniquely determined

disadvantage

— Model | : uncertainty in choice of p,

— Model Il : matter motion may not be negligible outside R, g

mode classifications is different from the standard one.
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Uncertainty from p. in Model |

e in the late phase after core bounce, e.g., ~ 500ms, f-mode freq.
becomes almost independent of the choice of p,
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Comparison between | & Il
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PNS models ;s

e 3D-GR core-collapse simulations with a 15ME
progenitor model and with SFHx EOS

— sequence A corresponds to the so-called <
surface g-mode 5400
Y

e calculate the both Models | and |l
— for Model |, p.= Ex10°, 107°, and 10"'! g/cm?
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Model | (p=10'" g/em?)

oscillations

sequence A agrees well with f-mode

via GW observations, one could extract

the PNS properties, i.e., average density
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Also, we can not find the g-mode oscillations in this study

maybe the frequency is too small, or background data is not general ?
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Model | (p=5x10° &10'° g/cm?)
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* eigenfrequncies depend on p,
— as p, decreases, PNS average density also decreases, which leads to the lower f-
and p-mode GWs
e this dependence could appear only in the early postbounce phase

— in the phase later than ~500ms after bounce, Morozova et al. (20 18) showed
that the eigenfrequencies are almost independent from the selection of p,

— this could be because the density gradient in the vicinity of PNS surface becomes
steeper in the later phase, making the average density less sensitive to the
selection of p,
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f-mode or surface g-mode?
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* The both frequencies strongly depend on p, P 1 GMpys (L1lm, 1/2 . G Mpns \ 2
— agree well with the GW signal of A for PNS 97 o R%NS (E3,) c2RpNs

with p.= 107" g/cm?
* Even so, since the surface g-mode (BV frequency @r=R.,) is local value,
while f-mode is the global oscillations of PNS, it may be more natural that
the GW signal A is considered as a result of the f-mode oscillations

— by comparing to the GW signal in the later phase, one may conclude which modes
(surface g- or f-) are suitable for the GW signals from PNS
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nodal number monotonically
increases from bottom to top
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we can not find a correspondence between A and a specific mode

difficult to explain A with a specific mode with Model Il at lease our PNS model

lower modes appear close to B and D
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pulsation energy density concentrates

r ~ 40-100km, while the energy of B and D
effectively comes from r ~ 20 km

lower modes here do not physically correspond
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Frequency [Hz]

discrepancy
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e Still, we can not understand this discrepancy.

e Our background data is not general?
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PNS asteroseismology
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what we learn from GW obs.

e From asteroseismological point of view, via direct observations of
GWs, one may extract the PNS properties.
e In fact, it is known for cold nheutron stars that

— T-mode, which is a acoustic oscillation, is characterized by the stellar
average density

— w-mode, which is a spacetime oscillation, is characterized by the
stellar compactness
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e |f similar characterization is possible, one could extract the PNS
average density and compactness, via the simultaneous
observations of - and w-modes GWs.
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pNS mOdels (HS+17)

e we adopt the results of 3D-GR simulations of core-collapse
supernovae (Kuroda et al. 2016)
— progenitor mass = 15M
— EOS:SFHx (2.13M_) & TM1 (2.21M)
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Rppns 1S defined with p = 1079 g/cm
— using the radial profiles as a background PNS model, the eigen-
frequencies are determined.
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Mass & Radius

M, s IS Increasing by mass accretion

R
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M-R evolution after core-bounce
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evolution of w,-modes

e Trequencies depend on the EOS.
— increasing with time

— can be characterized well by M, o/Ros

e as for cold NS, we can get the fitting formula, almost independent

from EOS
-1 -1
> M R R
NS (kHz) ~ [27.99 — 12,02 — 2 PNS x [ —PNS
1.4 M5/ \10 km 10 km
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evolution of f-mode

e Tfrequencies can be expressed well by the average density
independent of the EOS (and progenitor mass)

« we derive the fitting formula as a function of My, o/ Rpps

M 12/ R -3/2
f;PNS)(Hz)z14.48—|—4859(—PNS) ( PNS)
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* Note that we neglect the g-mode oscillations in this study
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determination of EQS

 GW spectra evolutions f.(t) & T ,(t)
- evolutions of M, /Ry & Mo/ R

e one can determine (MPNS, RPNS) at each time after core bounce
- determination of the EOS

PNS PNS PNS PNS

e unlike cold NS cases, in principle one can determine the EOS even

with ONE GW event ! 1.0 ———m—————r————rr————r—————r
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e 1D-GR core-collapse simulations (by Sumiyoshi)

pNS mOde|S (HS & Sumiyoshi 19)

— 40OMOG progenitor model (W40) based on Woosley & Weaver 95
— BOMOG progenitor model (T5E0) based on Tominaga, Umneda & Nomoto O7
— EOS: Shen (2.2M0), LS180 (1.8M0), L.S220 (2.0M0)

— surface density = 107" g/cm?3
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GW frequency for W4.0-Shen
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e One can clearly observe the phenomena of the avoided crossing in
the evolution of GW freqguency

— focusing the f-mode GW,

* T~ 200 ms with p,-mode,

* T~ (300-350) ms with g,-mode

Oct. 16, 2019

YITP long-term workshop "Multi-Messenger Astrophysics in the Gravitational Wave Era"

1500

25



Dependence on PNS models

30— :

e Time evolution of f-mode GW 25; ]
strongly depends on the ’ 1
20F _8d00%

progenitor models.
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Universality in f-mode GWs

3 0m m—m—m—————1———1———— .
e The f-mode frequencies are [ —®— W40-Shen ]

, 2.5 = W40-LS180
well-expressed as a function 5 Qb —% W40-LS220

—_
of stellar average density, E F -0~ T50-Shen
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0.5k

) =007 - 2T+ BT g

0 0.1 0.2 0.3 04 0.5

Y= (Mpys L4 i [ Rpyg/10km|™ 30 (Mexs/14Mo) *(Rpys/10 k)™

e Through the f-mode GW, one can extract the PNS average density,
which leads to the time evolution of PNS average density.
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g,-mode GWs

e g,-mode GW also strongly depends on the progenitor models.
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« Even so, we find that the ratio of g,-mode to f-mode can be
well-expressed as a function of PNS compactness, independently
of the progenitor models.

e one can extract the PNS compactness via the simultaneous
observations of g,- and f-mode GWs.
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PNS maximum mass

e PNS at the moment when it collapses to BH, corresponds to the PNS
model with maximum mass. T

one can know via neutrino observation :
) _ neutrino ob.
e BUT, the f-mode frequency is too high to detector? |

258 _i? - wﬁl
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= d o jof . Shen
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one can extract the average density of
PNS with maximum mass
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conclusion

Asteroseismology could be a powerful technique for extracting the interior
information.

In the context of PNS asteroseismology, two different approaches are considered

The eigenvalue problem to solve is mathematically different each other

f-mode GW from PNS model with p_="1 O™ g/cm?3 agrees well with the GW signals
obtained by the numerical simulation

As for cold NSs, the f- and w,-mode GWs from PNS can be characterized by the
stellar average density and compactness, respectively.

we

via simultaneous observation of - and W1—mode GW, one can see the evolution of
(Mpns» Rppns) after core bounce

in principle, even with ONE GW event from supernova, one might determine the EOS
for high density region.

also consider the asteroseismology on the PNSs toward BH formation.

we find that, independently of the progenitor models,
e the f-mode GW can be expressed as PNS average density, and
* the ratio of g,- to f-mode GWs can be expressed as PNS compactness.

owhning to the neutrino obs., one would determine the average density of PNS with
maximum mass by detecting the f-mode GW.
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