

r-process and kilonovae

Shinya Wanajo (Albert Einstein Institute)

Multi-Messenger Astrophysics in the Gravitational Wave Era September 24 - October 25, 2019, YITP, Kyoto

- 1. light curve of the kilonova/GW170817
- 2. r-process and radioactive energies (Wanajo 2018)
- 3. source of the power break at 7 days

1. light curve of the kilonova/GW170817

- 2. r-process and radioactive energies (Wanajo 2018)
- **3. source of the power break at 7 days**

discovery of neutron star mergers

several (possible) neutron star mergers reported by LIGO/Virgo

- 1 neuron star merger, GW170817, with EM emission (kilonova)
- higher frequency than expected (0-5 events per year in O3), probably

what we learned from the kilonova are ...

total ejecta mass of M_{ej} ≈ 0.03-0.06 M_☉ and the lanthanide mass fraction of X_{lan} ≈ 0.001-0.01 (see also Cowperthwaite+2017, etc.)
 no evidence of heavy r-nuclei production (gold, platinum, ...)

Shinya WANAJO

what is the source of the break at 7 days?

bolometric luminosity: steepening from the power index -1 to -3 at ≈ 7 days

because of

- radioactive decay effect (Wanajo 2018; Wu+2019)
- thermalization effect (Waxman+2018, 2019)
- photon diffusion effect
 (Kawaguchi+2018;
 Hotokezaka+2019)

radioactive energy of t^{-1.3} really correct ?

Arr heating is dominated by the β-decays of r-nuclei with $A \simeq 130$

1. light curve of the kilonova/GW170817

2. r-process and radioactive energies (Wanajo 2018)

3. source of the power break at 7 days

origin of the 1st peak: neutron-rich NSE?

Hartmann+1985;

NSE composition at T = 3.5 GK and ρ = 10⁷ g cm⁻³

what are the r-process elements?

r-process "residuals"= solar abundances– s-process component

elements of A > 84
 are made by the r process (including
 2nd and 3rd peaks)

 ◆ but, those of A ≤ 84, "light trans-iron nuclei", can be made in NSE or QSE (including 1st peak)

free expansion (FE) models

Wanajo 2018

free expansion (FE) models that mimic the physical conditions of merger outflows (either of dynamical and disk ejecta)

$$\rho(t) = \rho_0 \left(1 + \frac{t}{R_0/v}\right)^{-3}$$

★ three parameters: $(v/c, S, Y_e)$ = (0.05-0.30, 10-35, 0.01-0.50)with intervals (0.05, 5, 0.01)
in total N_{FE} = 1800 models
(S is in units of k_B/nuc)

fitting to the solar r-residuals

Wanajo 2018; r-residuals from Goriely 1999

fit to $A \ge 69$

- $X_{lan} = 0.014$ (consistent with obs.)
- lighter nuclei are co-produced (A = 48-68)
 MMGW2019

fit to $A \ge 88$

✤ X_{lan} = 0.086 (inconsistent with obs.)

heating rates

fit to $A \ge 69$

not scaled by a power law but rather by an exponential during 1-15 days fit to $A \ge 88$

well scaled by a power law as in previous studies (e.g., Metzger et al. 2010)

MMGW2019

heating rates from individual β -decays

fit to $A \ge 69$

★ two decay chains are identified: ⁶⁶Ni (2.3 d) → ⁶⁶Cu (5.1 m) → ⁶⁶Zn ⁷²Zn (1.9 d) → ⁷²Ga (14 h) → ⁷²Ge fit to $A \ge 88$

a number of A ~ 130 nuclei contribute as in previous studies (e.g., Metzger+2010)

comparison with kilonova of GW170817

- by the decays of ⁶⁶Ni (and ⁷²Zn)
- thermalization effect is insufficient to account for the power break at 7 days

- 1. light curve of the kilonova/GW170817
- 2. r-process and radioactive energies (Wanajo 2018)
- 3. source of the power break at 7 days

thermalization effect

β-decay energies from the solar r-isobars with thermalization effects
 ◆ thermalization effects play a role gradually at late times (> 10 days) that cannot be the source of the power break at 7 days

photon diffusion effect

 β -decay energies from the solar r-isobars with the improved Arnett-type light curve model (with photon diffusion effects)

✤ power break at 7 days for both $A \ge 72$ (with trans-Fe) and $A \ge 85$ (r-only) cases (the authors favor the latter) but with α -decay or fission

with α -decay and fission

fit to $A \ge 69$

* light curve can be well explained with the β -decays of ⁶⁶Ni and α -decay and fission of trans-Pb fit to $A \ge 90$

 light curve is inconsistent with the heating rate at ~10 days

summary and outlook

Iight curve of kilonova/GW170817

- dominant energy from the β -decay of ⁶⁶Ni at early times (< 10 days)
- late-time heating from α -decay and fission of trans-Pb nuclei
- power break at 7 days because of photon diffusion and radioactive decay (of ⁶⁶Ni)
- key to the future observation
 - determination of light curves at late times (> 10 days) to be a

"smoking gun" of heavy (trans-Pb) r-process nuclei production MMGW2019