NEUTRON STAR MERGERS: GRAVITATIONAL WAVES AND JET STRUCTURE

Dimitrios Giannios Physics and Astronomy, Purdue University

Multi-Messenger Astrophysics in the GW era Kyoto, 10/23/2019

Collaborators

A. Kathirgamaraju R. Barniol-Duran, A. Tchekhovskoy, R. Margutti, ...

Short Gamma-Ray Bursts

Short GRBs: duration of prompt emission < 2 sLong GRBs: duration of prompt emission > 2 s (Kouveliotou+1993)

 ~ 30 years ago, it was postulated that GRBs could originate from binary mergers involving NSs (e.g., Eichler+1989, Narayan+1992) Binary neutron star merger

4

Gravitational waves

Short GRBs

The Progenitor - Binary Neutron Star Merger

The Post-Merger System

The Post-Merger System

The amazing NS merger GW170817

Prompt emission duration of ~1s

The amazing NS merger GW170817

Time since Merger (days)

Peculiar Properties of GRB 170817A

 Closest sGRB detected yet (~40 Mpc), but ~10³ -10⁴ times less luminous than typical sGRBs (e.g., Fong +2017, LIGO/Virgo +2017).

• Afterglow emission showed a shallow ($\propto t^{0.8}$) rise for ~150 days.

Structured jet: On-Axis vs. Off-Axis Observers

Since the jet is initially ultra-relativistic, the prompt and early afterglow emission is beamed along the direction of the jet

Fast, luminous core

 θ_{obs}

Slower, fainter lateral edge

narrow beaming cone
(dominates emission for on-axis observers)

wider beaming cone (dominates early emission for off-axis observers)

Structured Jet Interpretation of GRB 170817A

 A coincident GW trigger and proximity of a LIGO/Virgo can increase the chances of detecting and identifying the propert emission of structured jets for off-axis obs

• The shallow rise in the afterglo viewed off-axis (e.g., Alexander+20

• Observation of superluminal n structured jet in GRB 170817.

How is the Jet Structure Obtained?

 We want to eliminate initial assumptions made about the jet structure in the modeling.

• Utilize 3D general relativistic magnetohydrodynamic (GRMHD) simulations of a post-merger system, starting at the central engine.

Initial Setup of Post-Merger System

Simulations of the Post-Merger System

Extracting Jet Structure

 Measure the average Lorentz factor and energy of the jet (averaged over azimuthal angle) flowing through a surface of fixed radius.

Energy includes the EM, kinetic and thermal components.

Prompt Emission Profile

 Calculate how the total observed luminosity of the prompt emission is distributed vs. observing angle.

Prompt emission is 10³ - 10⁴ times fainter for observers between ~20°- 30° (compared to on-axis observers).

Future detections GW + prompt gamma-rays

The LIGO NS merger rate and the sGRB rates imply that
i) a large fraction of mergers have successful jets
ii) the jet core opening angle is ~3°- 5°
iii) only ~1-10% of the GW NS mergers will have GRB detection

Beniamini+ 2019

Afterglow of the Structured Jet

Calculate the synchrotron er propagating in an external m i+1999). 160 d 10^{0} The initial structure of the bla as that x1e-3 of the jet. Flux density (µJy) $t=15 \ d$ 10^{-5} x1e-7 Particles in forward shock ac $\gamma \propto \gamma^{-p}$ Radio t= 9 d Optical/NIR 10^{-10} iRB We use p=2.17 as indicated ●X-rays ·Afterglow: $F_{\nu} \sim \nu^{-0.6}$ 170817A afterglow (Margutti+2 …… Kilonova 10¹⁸ 1018 1010 1014 10^{18} 108 (Margutti +2018) Frequency (Hz)

Structured Jet Afterglow for Off-Axis Observers

Eventually see core of jet

Initially see edge of jet

Afterglow of GRB 170817A

Data points from Margutti+(2018), Alexander+(2018)

 $E_j \approx 5 \times 10^{50} \text{ erg}, \ \theta_{obs} = 30^{\circ}$

Viewing angle of GRB 170817A

 The larger the viewing angle, the steeper the rise of the afterglow, constraining the observing angle at ~30°.

The Post-Merger System

The Kilonova AT2017gfo

Thermal: powered by radioactive decay

Optical and near-infrared light curves of GW170817 / AT2017gfo

Non-thermal: kilonova afterglow?

The kilonova afterglow

• The KN ejecta drives a shock through the external medium producing an afterglow (e.g., Nakar & Piran 2011)

 Modeling KN emission indicates ejecta with E ≈10⁵¹ erg, β ≈ 0.1-0.3 (e.g., Cowperthwaite+ 2018), leading to peak in the afterglow at ~10 yrs (e.g., Alexander+ 2018)

• Assume energy of KN ejecta has a power law dependance on 3-velocity $E(>\beta\Gamma)\propto(\beta\Gamma)^{-lpha}$ (e.g., Hotokezaka+ 2018, Radice+ 2018)

Modeling the kilonova ejecta

• Assume energy of KN ejecta has a power law dependance on 3-velocity $E(>\beta\Gamma)\propto(\beta\Gamma)^{-\alpha}$ (e.g., Hotokezaka+ 2018, Radice+ 2018)

Inferences from the KN afterglow

- Peak flux and time can constrain the external density bulk velocity and energy of the outflow
- Slope of light curve can constrain α (larger α leads to a steeper rise) $E(>\beta\Gamma)\propto(\beta\Gamma)^{-\alpha}$

X-ray view of the host galaxy Hajela+ 2019 Constraints on ISM density n < 0.01/cc

The latest afterglow data and constraints Hajela+ 2019

Summary

- GW detections of NS mergers allow for unique probes of the structure of the outflowing gas
- Using 3D GRMHD simulations, we studied the emission from the jet of a post-merger system, without making any assumptions on the initial jet structure
- The result is a structured jet, which can explain the properties of both the prompt and afterglow emission of GRB 170817A
- Follow up observations of GW170817 may catch the emergence of the KN afterglow

Breakdown of afterglow from structured jet

