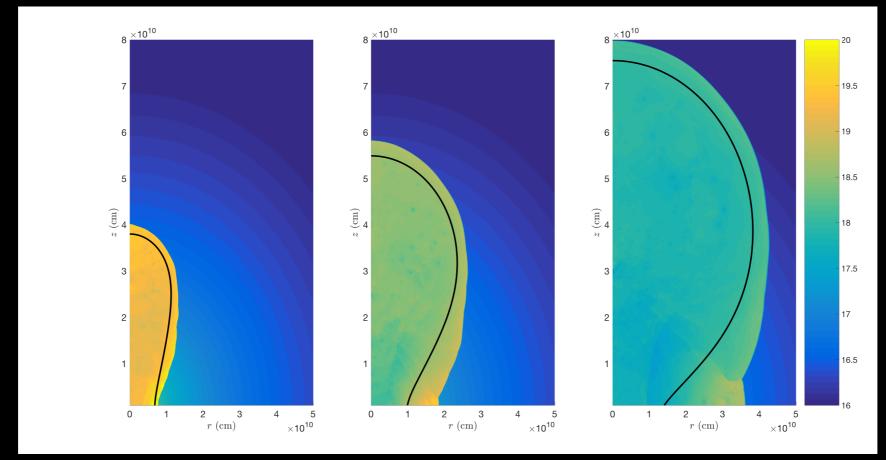
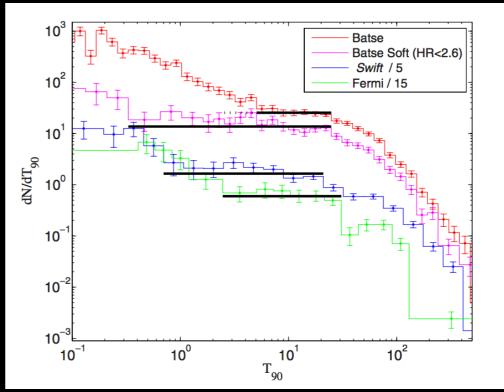
The Propagation of Choked Jet Outflows

Christopher Irwin, Tel Aviv University
Collaborators: Tsvi Piran (HUJI), Ehud Nakar & Ore Gottlieb (TAU)

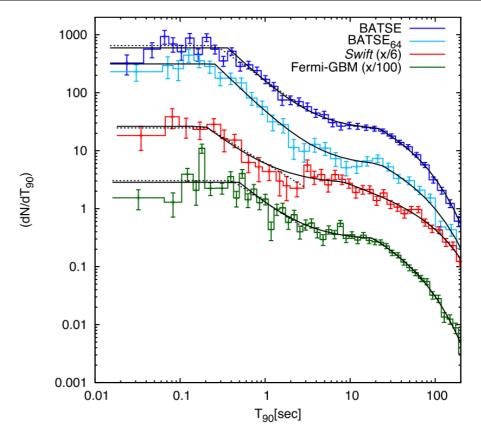


Evidence for Choked Jets in Long GRBs

- GRB duration distribution
 - A plateau suggests that many objects do not escape the star to produce typical GRBs
 - This is also seen in short GRBs, albeit with a lower significance
- Early spectroscopy
- Low-luminosity GRBs



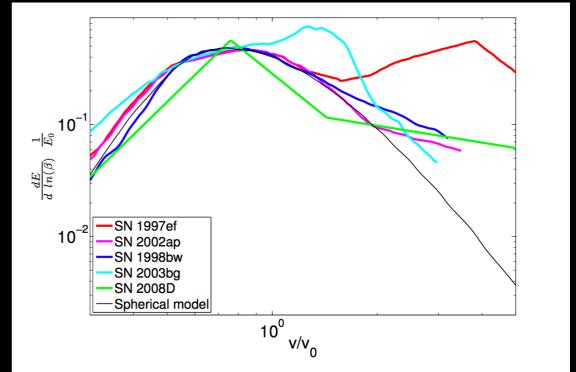
Bromberg+ 2012

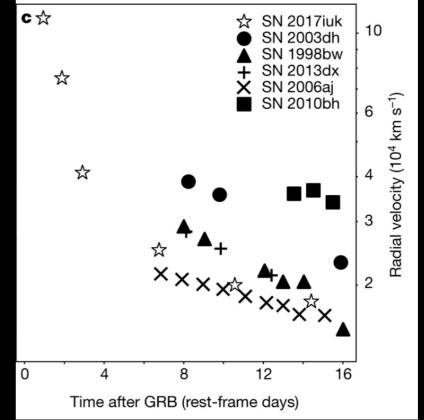


Moharana & Piran 2017

Evidence for Choked Jets in Long GRBs

- Duration distribution
- Early spectroscopy
 - Analysis of some SNe reveal a high-velocity component
 - The mass (~0.1 Msun) and energy (~1 foe) are consistent with expectations for a GRB jet's cocoon
- Low-luminosity GRBs

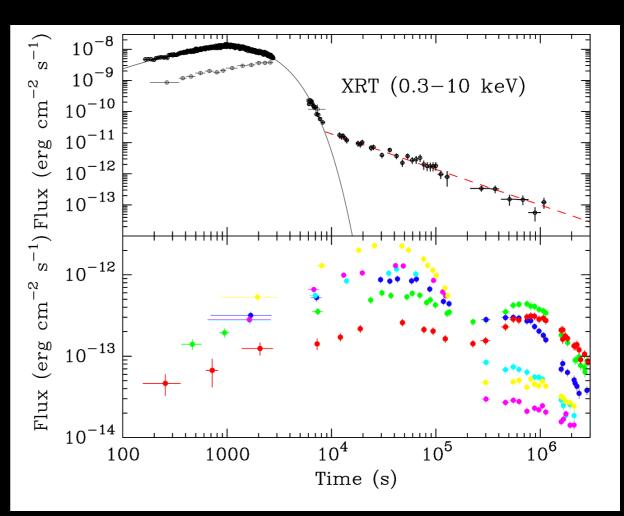




Izzo+ 2019

Evidence for Choked Jets in Long GRBs

- Duration distribution
- Early spectroscopy
- Low-luminosity GRBs
 - LLGRBs are long, faint, soft, and smooth compared to typical GRBs—all features which are expected in a relativistic shock breakout
 - UV/optical cooling emission suggests an extended (~100 Rsun) envelope with sufficient mass (0.01 Msun) to choke a standard GRB jet

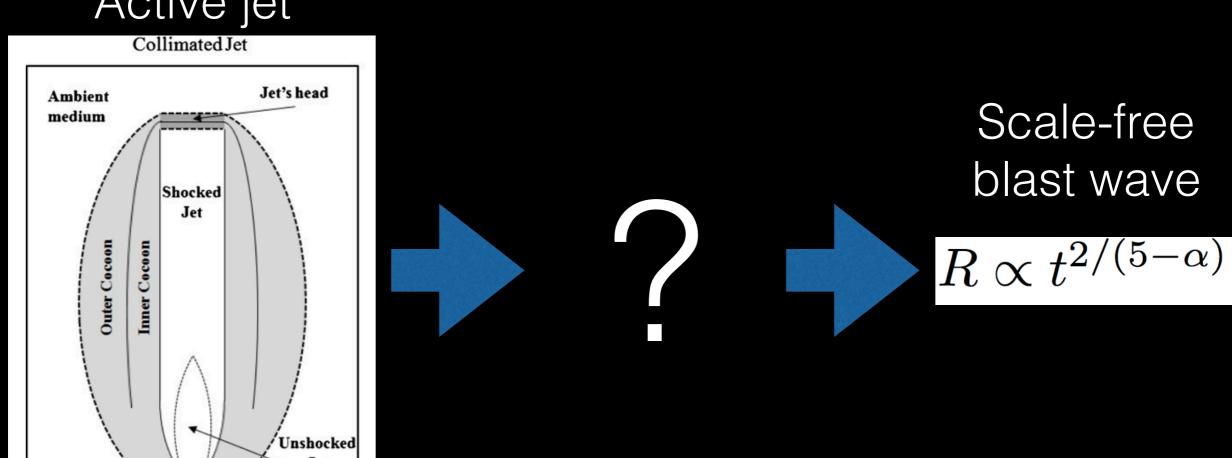


Campana+ 2006

$$t_{\rm bo}^{\rm obs} \sim 20 \,{\rm s} \left(\frac{E_{\rm bo}}{10^{46}\,{\rm erg}}\right)^{1/2} \left(\frac{T_{\rm bo}}{50\,{\rm keV}}\right)^{-\frac{9+\sqrt{3}}{4}}$$

A gap in our analytical understanding

Active jet



Bromberg+ 2011

Two Key Questions

 What happens to a jet-driven outflow after the jet is switched off?

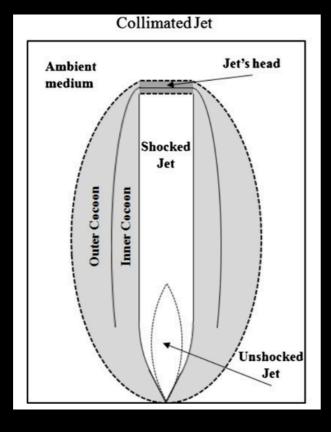
 What can we learn about the jet's properties by studying the 'choked' outflow it leaves behind?

Jet Choking

 Once the jet turns off and all of the jet material flows into the cocoon, we consider the system "choked"

Before

Bromberg+ 2011

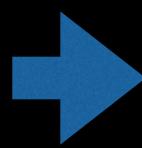


 $a = \begin{pmatrix} R_0, \theta_0 \end{pmatrix}$ $\rho(R) = \rho_0 (R/a)^{-\alpha}$

After

CMI+ 2019b

luminosity, L_j duration, t_b op. angle, θ_0



energy, E₀ initial height, a initial width, b

For a collimated relativistic jet, a/b >> 1.

Kompaneets Approximation

- We utilize the well-known Kompaneets approximation, which involves 3 assumptions:
 - 1. The cocoon drives a strong shock into the external medium.
 - 2. The local expansion velocity is always normal to the cocoon surface.
 - 3. The postshock pressure, P_{ps} , is similar to the volume-averaged pressure of the cocoon, i.e.

$$P_{ps}(t) = \frac{\lambda(\gamma - 1)E_0}{V_c(t)}$$

where E_0 is the cocoon energy, γ is the adiabatic index,V is the cocoon volume, and λ is an order-unity constant

Equation of Motion

 Assumptions 1 and 2 let us write two expressions for normal velocity: one from shock jump conditions, the other from geometry in polar coordinates:

$$\sqrt{\frac{\gamma+1}{2}\frac{P_{ps}(t)}{\rho(R)}} = v(R,t) = \frac{|\partial\theta/\partial t|}{\sqrt{1/R^2 + (\partial\theta/\partial R)^2}}$$

• This PDE can be solved subject to the initial condition $\theta(R,t)|_{t=t_0} = \theta_i(R_i)$

to yield the shape of the shock over time.

Dynamical Regimes

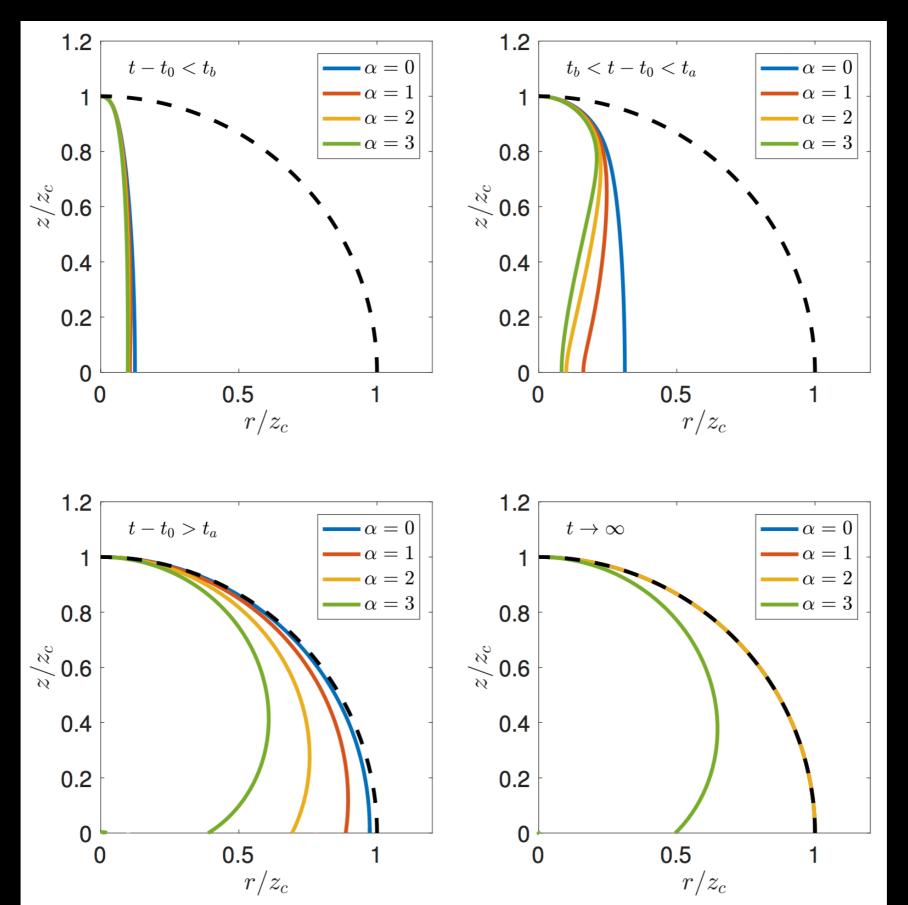
- The cocoon evolution has two characteristic timescales:
 - The time for the width to double, t_b
 - The time for the height to double, t_a

$$t_b \sim t_0 \sim \left(\frac{\rho b^4 a}{E_0}\right)^{1/2}.$$

$$t_a \sim \left(\frac{\rho a^5}{E_0}\right)^{1/2} \sim \left(\frac{a}{b}\right)^2 t_b$$

- Evolution proceeds in three phases:
- 1. $t < t_b$ ($r_c < 2b$ and $z_c < 2a$). The cocoon volume is roughly constant and the pressure does not change much.
- 2. $t_b < t < t_a$ ($r_c > 2b$, but $z_c < 2a$): The pressure starts to drop due to sideways expansion. Most of the expansion takes place near the tip, where the density is lowest.
- 3. $t \gg t_a (z_c \gg 2a)$: The outflow becomes scale-free.

Overview of Results



CMI+ 2019b

Shape at infinity

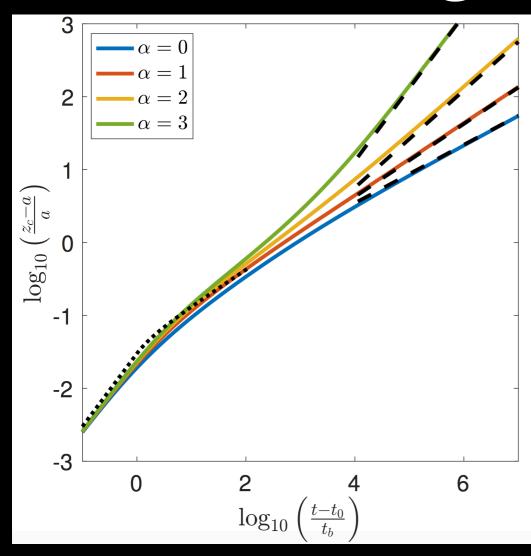
Instead of a sphere, the asymptotic shape for α >2 is

$$R(\theta) \approx z_c \left[\cos(k_\alpha \theta)\right]^{-1/k_\alpha}$$

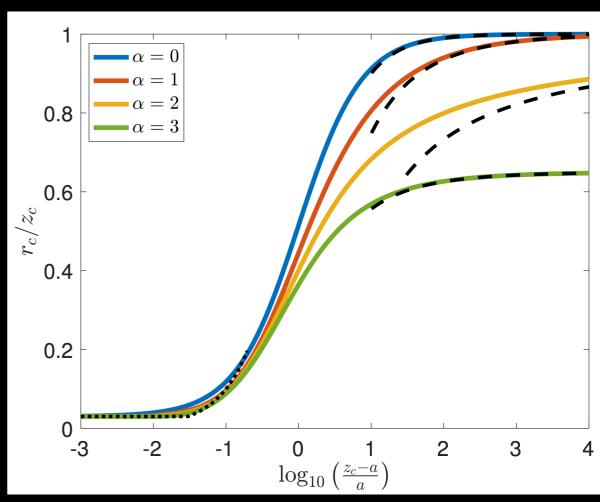
$$k_{\alpha} \equiv \frac{2 - \alpha}{2}$$

- The limiting shape is the same as if two point explosions were set off at z=+a and z=-a (Korycansky 1992)
- Interestingly, the shape for α =3 is a cardioid

Evolution of the outflow's height and width



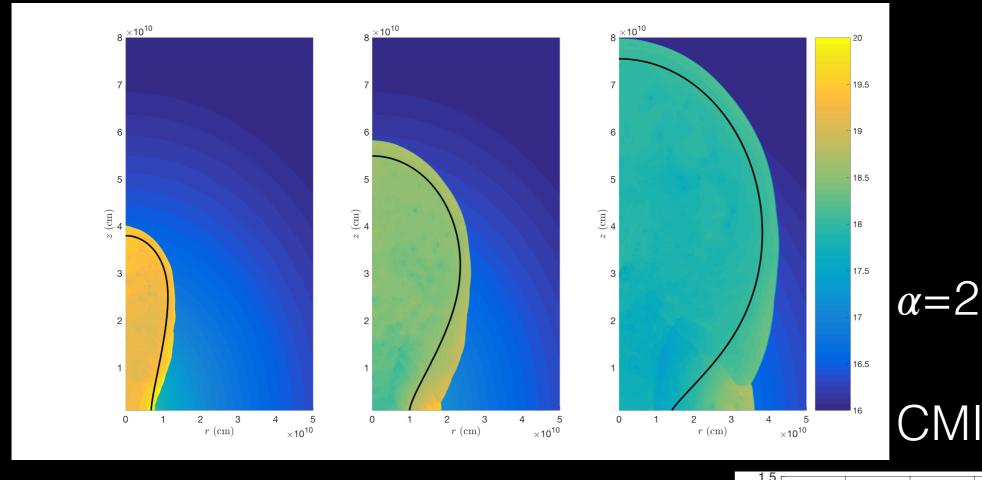
$$z_c \simeq \begin{cases} a + b(t/t_0 - 1), & t \lesssim 2t_0 \\ a + b(2t/t_0 - 3)^{1/2}, & 2t_0 \lesssim t \ll t_a \\ a\left(\frac{5-\alpha}{2}C_{\alpha}^{-1/2}\frac{b^2}{a^2}\frac{t}{t_0}\right)^{2/(5-\alpha)}, & t \gg t_a \end{cases}$$



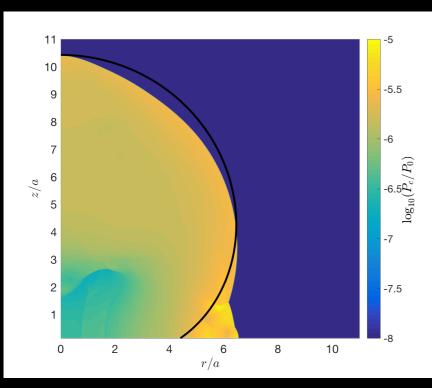
$$r_c \simeq \begin{cases} b, & z_c - a \ll b \\ z_c - a, & b \ll z_c - a \ll a \\ f_{\alpha} z_c \left(1 - A_{\alpha}/\zeta\right), & z_c \gg 2a \end{cases}$$

$$\zeta(z_c) \equiv \frac{(z_c/a)^{|k_{\alpha}|} - 1}{|k_{\alpha}|}$$

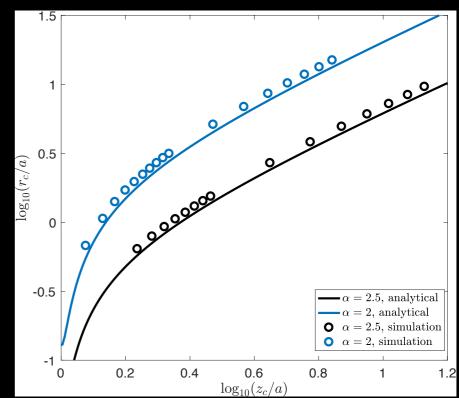
Comparison with Simulations



CMI+ in prep.



 $\alpha = 2.5$



Extracting Constraints on the Jet Parameters

- How do we glean information about the jet even if we don't observe it directly?
- Suppose observations can provide estimates for the energy of the outflow, E₀, along with its height, z_c, and width, r_c
- In a spherical model, we have the constraint $L_j t_j = E_0$ —and that's it
- However, with information on the asphericity, it is possible to estimate the radius, a, where the jet deposited its energy:

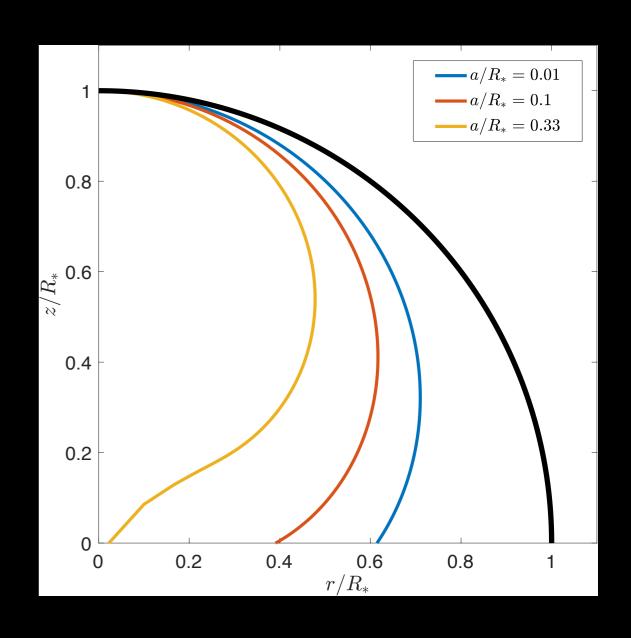
$$a \sim \begin{cases} z_c - r_c, & z_c - r_c \gtrsim z_c/2 \\ [z_c^{-\alpha}(z_c - r_c)^2]^{1/(2-\alpha)}, & z_c - r_c \ll z_c/2. \end{cases}$$

• If the density at z_c is also known, this translates into a constraint on the jet duration and opening angle:

$$t_j \theta_{op}^{-2} \sim \left(\frac{\rho(z_c) z_c^5}{E_0}\right)^{1/2} \left(\frac{z_c - r_c}{z_c}\right)^{q_\alpha} q_\alpha \equiv \begin{cases} (5 - \alpha)/2, & z_c - r_c \gtrsim z_c/2\\ (5 - \alpha)/(2 - \alpha), & z_c - r_c \ll z_c/2 \end{cases}$$

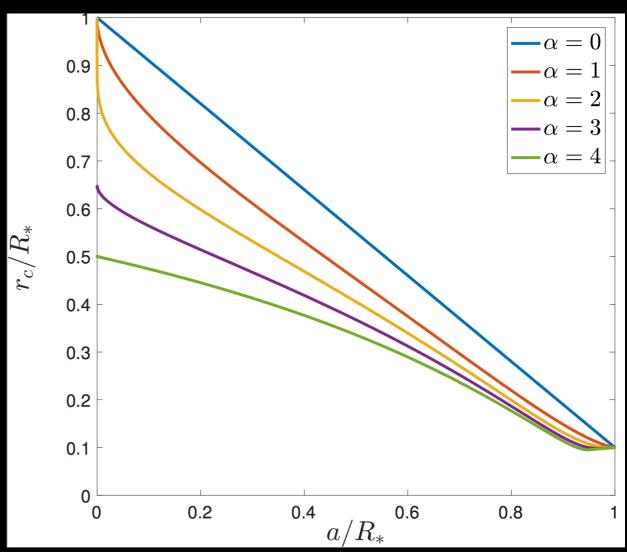
Future Applications

- AGN bubbles (CMI+ 2019a)
- Shock breakout signature
 - The breakout signal is sensitive to deviations from sphericity; it may be possible to use this to constrain the choking radius
- Cocoon cooling emission
- Distribution of velocity with mass



Future Applications

- AGN bubbles (CMI+, submitted)
- Shock breakout signature
- Cocoon cooling emission
 - The timescale of cooling emission enables an estimate of the mass swept up by the cocoon, M_c
- Distribution of velocity with mass



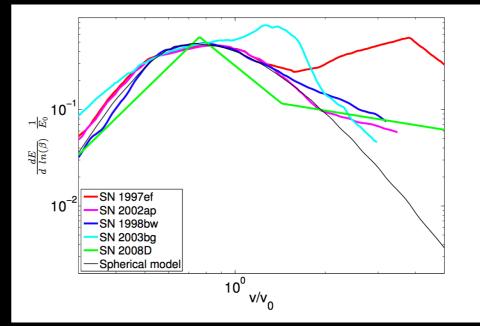
At breakout:

$$z_c \sim R_*$$

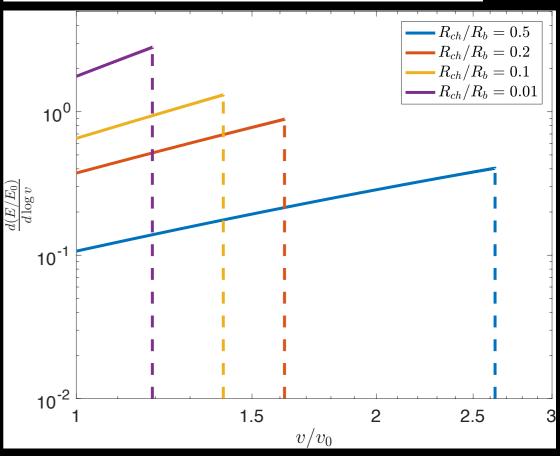
$$r_c/z_c \sim (M_c/M_*)^{1/2}$$

Future Applications

- AGN bubbles (CMI+, submitted)
- Shock breakout signature
- Cocoon cooling emission
- Distribution of velocity with mass
 - Can be calculated and compared to observations to estimate choking location and jet energy



Piran+ 2019



PRELIMINARY

Conclusions

- Choked jet outflows are inherently aspherical, and that asphericity carries valuable information about the central engine's properties
- There are many potential avenues to constrain the shape of the outflow through observations
- If the shape of the shock is constrained, a lot can be learned about the jet's properties, even if you don't see the jet itself