Multi-Messenger Astrophysics in the Graviational Wave Era @YITP 24/10/2019

Generalized compactness limit and its application

Tatsuya Matsumoto

with Ehud Nakar (Tel Aviv), Tsvi Piran (Hebrew) Shigeo Kimura (Tohoku), Kohta Murase(PSU) & Peter Meszaros(PSU)

> Ref. Matsumoto et al. 2019a,b Matsumoto&Piran 2019 Matsumoto+ in prep

Outline

- Generalized compactness argument & GRB 170817A
- Similar events to GRB 170817A
- Other applications of compactness
- · Minimal Lorentz factor of extended emissions in short GRBs

Abbott+17 Goldstein+17 Savchenko+17

GRB170817A

- δt ~ 2 s
 Power law+cut-off
- *ε*_p ~ 185 keV (~520 keV: Veres+18

Using time-resolved analysis

Weakest sGRB 10⁵⁶ 10⁵⁵ 10⁵⁴ E_{iso} (1 keV - 10 MeV) (erg) 10⁵³ 10⁵² 10⁵¹ 10⁵⁰ 10⁴⁹ 10⁴⁸ Long GRBs Short GRBs 1047 GRB 170817A 1046 2 8 4 6 0 Redshift (z)

LIGO&VIRGO+17

The origin of y-rays 1) An ordinary sGRB viewed **off**-axis?

2) Shock breakout from a cocoon? (not the focus of this talk)

Compactness Problem

- Luminous, high-variable, non-thermal GRBs
- compact & photon dense

=> pair production : $\tau_{\gamma\gamma} \sim 10^{13}$ Ruderman75, Schimdt78

• Relativistic effects : $\tau_{\gamma\gamma} \sim 10^{13}/\Gamma^6$

Generalization to an arbitrary viewing angle

- On axis : Γ
- General angle : Doppler factor $\delta_{D} = \frac{1}{\Gamma(1 - \beta \cos \theta_{obs})}$

Source Structure

Limit A : Pair production $\varepsilon > (\delta_D m_e c^2)^2 / \varepsilon_{max}$

Limit B : Scattering by created pair # of pair ~ # of photon $\varepsilon > \delta_D m_e c^2$

Lithwick&Sari01

Limit C : Scattering by electron in outflow

 Spectrum is extrapolated beyond observed energy

Mooley+18, Ghirlanda+18

Properties of the jet

Matsumoto+19a,b

Constraint on y-ray emission

5W band : n average

The origin of y-rays

1) An ordinary sGRB viewed off-axis?

Goldstein+17, Murguia-Berthier+17, Ioka&Nakamura18

2) Shock breakout from a cocoon?

Kasliwal+17, Gottlieb+18, Bromberg+18, Kathirgamaraju+18

Outline

- Generalized compactness argument & GRB 170817A
- Similar events to GRB 170817A
- Other applications of compactness
- · Minimal Lorentz factor of extended emissions in short GRBs

GRB 150101B : a similar event to GRB 170817A

Troja+18, Burns+18

Other similar CRBS

Selection criteria

- 1) a first pulse in 50-300keV
- 2) a soft tail in 8-50 keV

3) a discernible change in a light curve

Manual selection in Fermi GBM 10yr catalog

Other similar GRBs

Event	Energy flux	Fluence	Duration	Minimal variable timescale	Peak energy	Spectral index
	$F [10^{-7} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	$S [10^{-7} \mathrm{erg} \mathrm{cm}^{-2}]$	δt [s]	δt_{\min} [ms]	$\epsilon_{\rm p}$ [keV]	α_p
GRB 081209A	40.14	15.4	0.384	< 15	1473	-0.75
GRB 100328A	33.61	15.1	0.448	< 11	927	-0.54
GRB 101224A	4.04	2.07	0.512	47	341	-1.04
GRB 110717A	25.57	3.27	0.128	11	328	-0.34
GRB 111024C	4.11	1.58	0.384	41	144	0.53
GRB 120302B	3.72	1.90	0.512	< 120	133	0.66
GRB 120915A	13.66	6.99	0.512	41	526	-0.21
GRB 130502A	2.12	3.26	1.536	221	91	-0.80
GRB 140511A	14.85	2.85	0.192	< 94	280	-0.78
GRB 170111B	7.42	3.80	0.512	< 63	154	-0.62
GRB 180511A	34.29	2.19	0.064	< 5	639	-0.61

Are they normal

Cocoon shock breakout?

Closure relation:

$$\delta t' \simeq 1 \text{ s} \left(\frac{E_{\gamma,\text{iso}}}{10^{46} \text{ erg}}\right)^{1/2} \left(\frac{\epsilon_p'}{150 \text{ keV}}\right)^{-\frac{9+\sqrt{3}}{4}} \text{Nakar&Sari12}$$

$$\delta t = (1+z)\delta t'$$

$$\epsilon_p = \epsilon_p'/(1+z)$$

$$E_{\gamma,\text{iso}} = 4\pi d_L^2 S$$

$$\delta t_0^{-1} S_{-7}^{1/2} \epsilon_{p,150 \text{ keV}}^{-\frac{9+\sqrt{3}}{4}} \simeq (1+z)^{\frac{5+\sqrt{3}}{4}} \left(\frac{d_L(z)}{29 \text{ Mpc}}\right)^{-1}$$

Cocoon shock breakout?

Outline

- Generalized compactness argument & GRB 170817A
- Similar events to GRB 170817A
- Other applications of compactness
- · Minimal Lorentz factor of extended emissions in short GRBs

Γ_{min} of Extended Emissions

Γ_{min} of Extended Emissions

=> 39 EEs with spectrum detected by BATSE, BAT, GBM

Origin of shallow decay after EE?

Shallow decay powered by **EE** (low Γ) outflow (1) Prompt emission $L \cap M$ Matsumoto+ in prep

Summary

- Generalized Compactness argument : Γ_{\min} , θ_{\max}
- GRB 170817A : we did not see γ-rays from the jet core (the region that could have emitted a regular sGRB.) Γ_{min} > 5, θ_{max} < 0.1 rad <-> jet core => another γ-ray emission mechanism is favored. The source is relativistic and consistent with a cocoon emission.
- Similar GRBs to GRB 170817A 150101B : off-axis model is inconsistent with compactness Other events : ~2/395 events can be consistent with cocoon emissions
- Other application

 $\Gamma_{min} \sim 10$ of extended emissions of sGRBs => very inefficient energy dissipation?

