Radio and Submillimetre Constraints on the Pulsar-Driven Supernova Model

Conor Omand + Many Collaborators

Based on: Omand, Kashiyama, Murase (2018) Law, Omand et al. (2019) Murase, Omand et al. (in prep) Omand, Kashiyama, Murase (preliminary)

VLA/NRAO/AUI/NSF; Chandra/CXC; Spitzer/JPL-Caltech; XMM-Newton/ESA; and Hubble/STScI. https://commons.wikimedia.org/w/index.php?curid=5880957)

24/10/2019

What is the Pulsar-Driven Supernova Model?

- The discovery of SLSNe and GRBs necessitates an energy source
- A newly formed highly magnetic millisecond pulsar spins down inside a young supernova, injecting energy into the ejecta
- In order to test the pulsar-driven SN model for Type I SLSNe, late-phase emission should be probed

A variety of Pulsar-Driven Transients

Fast Radio Bursts (FRBs)

MMGW19

 One repeating source, FRB 121102 localized to z~0.2 dwarf, star-forming galaxy

Model Overview

~ a few months after the explosion

The PWNe emission is absorbed and thermalized in the supernova ejecta, powering a superluminous supernova.

~ 1 yr after the explosion

The non-thermal PWNe emission in the ALMA bands starts to escape the SN ejecta.

Strategy

- Predict emission from young SLSN remnants in radio/submillimetre (Omand+ (2018))
- Observe oldest candidates in radio (Law, Omand+ (2019))
- Select promising candidates in submillimetre and observe (Murase, Omand+ (in prep))
- Revise the model if needed (Omand+ (prelim))

Predictions (1 GHz Radio emission)

P = 1 ms

P = Pmax

Omand+ (2018)

VLA Targets

Name

Table 1. SLSN-I Sample

Name	Redshift	R.A.	Decl.	Age
		(J2000)	(J2000)	(yr)
SN 2005 ap^a	0.283	13:01:14:83	+27:43:32:3	9.9
SN 2007bi	0.127	13:19:20:14	+08:55:43:7	9.4
SN 2006oz	0.396	22:08:53:56	+00:53:50:4	8.0
$\rm PTF10hgi^{c}$	0.098	16:37:47:04	+06:12:32:3	6.8
PTF09cnd	0.258	16:12:08:94	+51:29:16:1	6.6
SN 2010 kd	0.101	12:08:00:89	+49:13:32:9	6.4
$SN 2010gx^b$	0.23	11:25:46:71	-08:49:41:4	6.2
PTF09cwl	0.349	14:49:10:08	+29:25:11:4	6.1
SN 2011 ke	0.143	13:50:57:77	+26:16:42:8	5.7
PTF09atu	0.501	16:30:24:55	+23:38:25:0	5.5

 a Late-time radio limit at 1.4 GHz by Schulze et al. (2018).

^bLate-time radio limit at 3 GHz by Hatsukade et al. (2018).

 $^{c}\mathrm{Late-time}$ radio detection at 6 GHz by Eftekhari et al. (2019).

		1.5
(MJD)	(\min)	$(\mu Jy \text{ beam}^{-1};$
Epochs	Obs. Time	Sensitivity

 Table 2. Observations of SLSN-I

	(MJD)	(\min)	$(\mu Jy \text{ beam}^{-1}; 1\sigma)$
SN 2005ap	58060, 58131	57	10
SN 2007 bi	58074, 58128	34	22
SN 2006 oz	58036, 58124	60	8
$\rm PTF10hgi^{a}$	58045, 58130	26	14
PTF09cnd	58045, 58130	46	11
SN 2010 kd	58074, 58128	27	14
SN 2010gx	58074, 58128	41	11
PTF09cwl	58060, 58131	73	9
SN 2011 ke	58060, 58131	35	12
PTF09atu	58045, 58130	109	8

 $^a \text{Detection}$ with peak flux density of 47 $\mu \text{Jy}.$

VLA Non-detections

Name	P_{\min} abs	$P_{\rm min}$ unabs	$P_{\rm max}$ abs	$P_{\rm max}$ unabs	$P_{\rm min}$ w/ PTF10hgi-like abs
SN2005ap	Excluded	Excluded	Excluded	Excluded	Excluded
SN2007bi	Viable	Excluded	Viable	Excluded	Viable
SN2006oz	Viable	Viable	Excluded	Excluded	Viable
PTF09cnd	Viable	Excluded	Viable	Excluded	Viable
SN2010kd	Viable	Excluded	Viable	Excluded	Viable
SN2010gx	Viable	Excluded	Excluded	Excluded	Excluded
PTF09cwl	Viable	Excluded	Viable	Excluded	Viable
SN2011ke	Viable	Excluded	Excluded	Excluded	Excluded
PTF09atu	Viable	Viable	Viable	Viable	Viable

Predictions (100 GHz Radio emission)

P = 1 ms

P = Pmax

Omand+ (2018)

24/10/2019

Submillimetre Targets

SN2017egm

Optical (SDSS)

24/10/2019

Observational Summary

- 10 targets observed in radio:
 - 1 detection, consistent with model
 - 9 non-detections, 1 inconsistent with model
 - No FRBs found
- 3 targets observed in submillimetre:
 3 non-detections, all inconsistent with model
- Suggests problem with the model, either:
 - SLSNe are not pulsar driven
 - Ejecta is more heavily ionized than predictions
 - Electron injection spectrum is not Crab-like

Adjusting the Model

- Changing the injection spectrum to be sharply peaked may resolve theory/observation tension
- Hysteresis effects in the PWN evolution may become important for the relic electron spectrum

MMGW19

 FRB 121102 has a spectral break at 10 GHz

 may be effect of relic electrons

Analytical PWN Spectrum: Time Evolution

Comparison to Numerical Results

Higher B, higher $\gamma_{\rm b}$

Lower B, lower γ_{h}

Omand+ (prelim)

24/10/2019

Analytical Model

- Pros
 - Much faster than numerical simulations
 - Works well for high B, high $\gamma_{\scriptscriptstyle b}$ now, small fixes should achieve consistency at low B, low $\gamma_{\scriptscriptstyle b}$
 - Should be able to put constraints on PTF10hgi and FRB 121102
- Cons
 - Doesn't account for ICS, pair-cascades
- Still To-Do
 - Implement SSA self-consistently
 - Solve Compton Y self-consistently
 - Figure out why there's no peak in the spectrum at $\gamma_{\scriptscriptstyle \rm c}$

Summary

- Radio/submillimetre predictions found several candidates for follow-up
- Radio observations got one detection expected another PWN detection
- Submillimetre observations got no detections, three expected
- Revised model still needs work, but should be able to ease theory/observation tension