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ABSTRACT

We study the final state of the gravitational collapse of uniformly rotating supramassive neutron stars by
axisymmetric simulations in full general relativity. The rotating stars provided as the initial condition are
marginally stable against quasi-radial gravitational collapse, and its equatorial radius rotates with the Kepler
velocity (i.e., the star is at the mass-shedding limit). To model the neutron stars, we adopt the polytropic
equations of state for a wide range of the polytropic index as n ¼ 2=3, 4/5, 1, 3/2, and 2. We follow the
formation and evolution of the black holes and show that irrespective of the value of n ð2=3 � n � 2Þ, the
final state is a Kerr black hole, and the disk mass is very small (<10�3 of the initial stellar mass).

Subject headings: black hole physics — hydrodynamics — relativity — stars: rotation

1. INTRODUCTION

Neutron stars are, in general, rotating. Rotation can
support neutron stars with higher mass than the maximum
static limit, producing supramassive stars, as defined and
numerically computed by Cook, Shapiro, & Teukolsky
(1992, 1994a). Supramassive neutron stars may be created
when neutron stars accrete gas from a normal binary
companion (Cook et al. 1994b), after the merger of binary
neutron stars (Shibata & Uryū 2000, 2002), and after
gravitational collapse of massive stellar cores.

Since viscosity drives any equilibrium star to a uniformly
rotating state, stationary neutron stars are believed to be
uniformly rotating. The final state after the collapse of the
marginally stable and uniformly rotating supramassive
neutron stars is the subject of this paper.

Rotating neutron stars with a density higher than a
critical value are unstable against gravitational collapse.
Such critical density is determined using the turning-point
theorem (Friedman, Ipser, & Sorkin 1988; Cook et al.
1992). The final state of the unstable spherical stars in the
adiabatic collapse is a Schwarzschild black hole. On the
other hand, in the rotating case, it is not trivial: all the fluid
elements may not collapse to a Kerr black hole, leaving a
fraction of the mass around the black hole to form disks.
The final state after the collapse of rotating stars is one
of the fundamental questions in general relativistic
astrophysics.

To clarify the final state of the gravitational collapse of
rotating neutron stars, numerical simulations in full general
relativity are the best approach. Two groups have already
performed the simulations for relativistic collapse of rotat-
ing stars (Nakamura 1981; Nakamura, Oohara, & Kojima
1987; Stark & Piran 1985; Piran & Stark 1986). However,
they have not studied the collapse of marginally stable rotat-
ing neutron stars, which are plausible initial conditions for
the collapse in nature. This is probably because numerical
methods for computation of initial data sets describing
rapidly rotating neutron stars, as well as numerical tools,
techniques, and sufficient computational resources have

become available only quite recently. Over the last 15 yr,
robust numerical techniques for constructing equilibrium
models of rotating neutron stars in full general relativity
have been established (Komatsu, Eriguchi, & Hachisu 1989;
Cook et al. 1992; Salgado et al. 1994; Stergioulas 1998).
More recently, robust methods for the numerical evolution
of the coupled equations of Einstein’s and hydrodynamic
equations have been also established (Shibata 1999b, 2003;
Font 2000; Font et al. 2002; Siebel et al. 2002, 2003).

In a previous paper (Shibata, Baumgarte, & Shapiro
2000a), we reported the first numerical result for the gravita-
tional collapse, which was computed by a three-dimensional
numerical implementation in full general relativity. In that
paper, we adopted the polytropic equation of state with
n ¼ 1, where n is the polytropic index, and gave a uniformly
rotating and marginally stable neutron star at a mass-
shedding limit (at which the equator of a star rotates with
the Kepler velocity) as the initial condition. The total grid
number in the simulations was only 153� 77� 77 for x-y-z
(we assumed the equatorial plane symmetry and the � rota-
tion symmetry) because of the restricted computational
resources at that time, and as a result, the equatorial radius
(polar radius) of the neutron star is covered only by 40 (23)
grid points initially. We found that the collapse leads to a
black hole (we determined the location of the apparent
horizon) and that nonaxisymmetric instabilities do not turn
on during the collapse. However, we were not able to deter-
mine the final state of the gravitational collapse because of
the insufficient grid resolution.

Since nonaxisymmetric instabilities are not likely to be
relevant during the collapse, the simulation should be car-
ried out assuming the axial symmetry because with this
restriction, We could significantly improve the grid resolu-
tion for a given computational resource. Motivated by this
fact, we have constructed a numerical code for axisymmetric
numerical simulation in full general relativity, which has
been recently completed (Shibata 2000, 2003). Because of
the restriction to the axial symmetry as well as progress in
computational resources, we can easily increase the grid
number to be 3–5 times as large as that in the previous
three-dimensional simulation (Shibata et al. 2000a), even
if inexpensive personal computers are used. As a result,
we can search for convergent numerical results changing
the grid number for a wide range with inexpensive
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computational costs. In addition, we adopt a high-
resolution shock-capturing scheme for evolving the hydro-
dynamic equations (Shibata 2003), which enables us to
assess whether shocks play an important role during the
collapse to a black hole.

In this paper, we present new numerical results for gravi-
tational collapse computed by the new axisymmetric numer-
ical implementation. The simulations were carried out
setting marginally stable equilibrium neutron stars as the
initial condition. We focus on the collapse of uniformly
rotating supramassive neutron stars at mass-shedding limits
as before. By exploring rotating stars at mass-shedding
limits, we can clarify the final state of the collapsed objects
most efficiently. To investigate the effect of the stiffness of
equations of state, we adopt polytropic equations of state
with a wide variety of the polytropic index. The state of mar-
ginally stable stars, which is characterized by its compact-
ness, the angular momentum parameter, and the density
distribution, depends strongly on the equations of state.
This implies that the final state after the gravitational
collapse of rotating stars could depend strongly on the equa-
tions of state, in contrast to the collapse of nonrotating stars
in which the Schwarzschild black hole with no disks is the
unique outcome.

The paper is organized as follows. In x 2, we briefly
describe our formulation, initial data, and spatial gauge con-
ditions. In x 3, we present numerical results. In x 4, we provide
a summary. Throughout this paper, we adopt the units
G ¼ c ¼ K ¼ 1, where G, c, and K denote the gravitational
constant, the speed of light, and the polytropic constant,
respectively. We use Cartesian coordinates xk ¼ ðx; y; zÞ as
the spatial coordinate, with r ¼ x2 þ y2 þ z2ð Þ1=2: t denotes
coordinate time.

2. SUMMARY OF FORMULATION AND
INITIAL CONDITIONS

We performed hydrodynamic simulations in general rela-
tivity for the axisymmetric spacetime using the same formu-
lation as that used in a previous paper (Shibata 2003), to
which the reader may refer for details and basic equations.

We assume that neutron stars are composed of the invis-
cid, ideal fluid. Then, the fundamental variables for the
hydrodynamic equations are

� � rest-mass density ;

" � specific internal energy ;

P � pressure ;

ul � four velocity ;

vi ¼ dxi

dt
¼ ui

ut
; ð1Þ

where subscripts i; j; k; � � � denote x; y; and z, and l the
spacetime components. As the fundamental variables to be
evolved in the numerical simulations, in addition, we define
a density ��ð¼ ��ute6�Þ (� is defined below) and weighted
four-velocity ½ûui ¼ ð1þ "þ P=�Þui�, from which the total
baryon rest mass and angular momentum of the system can
be integrated as

M� ¼
Z

d3x�� ; ð2Þ

J ¼
Z

d3x��ûu’ : ð3Þ

General relativistic hydrodynamic equations are solved
using the so-called high-resolution shock-capturing scheme
(Shibata 2003; see Font et al. 2002 for an extensive review
of high-resolution shock-capturing schemes) with the
cylindrical coordinates.

We neglect effects of viscosity and magnetic fields. The
dissipation and angular momentum transport timescales by
these effects are much longer than the dynamical timescale,
unless the magnitude of viscosity and magnetic fields is
extremely large (Baumgarte, Shapiro, & Shibata 2000).
Thus, neglecting them is appropriate assumption.

The fundamental variables for the geometry are

� � lapse function ;

�k � shift vector ;

�ij � metric in three-dimensional spatial hypersurface ;

� ¼ e12� ¼ detð�ijÞ ;
~��ij ¼ e�4��ij ;

Kij � extrinsic curvature : ð4Þ

As in the series of our papers, we evolve ~��ij , �,
~AAij � e�4�ðKij � �ijK

k
k Þ, and the trace of the extrinsic curva-

ture Kk
k together with the three auxiliary functions

Fi � �jk@j ~��ik using an unconstrained free evolution code.
The Einstein equations are solved in the Cartesian coordi-

nates. To impose the axisymmetric boundary condition, the
so-called Cartoon method is used (Alcubierre et al. 2001b):
assuming a reflection symmetry with respect to the z ¼ 0
plane, we perform simulations using a fixed uniform grid
with the size N � 3�N in x-y-z, which covers a computa-
tional domain as 0 � x � L, 0 � z � L, and �D � y � D.
Here,N and L are constants and D ¼ L=N. For y ¼ �D, the
axisymmetric boundary conditions are imposed.

The slicing conditions are basically the same as those
adopted in previous papers (Shibata 1999a, 1999b, 2000,
2003; Shibata & Uryū 2000, 2002), i.e., we impose an
approximate maximal slice condition (Kk

k ’ 0). On the
other hand, we adopt two spatial gauge conditions for
the shift vector. One is an approximate minimal distor-
tion (AMD) gauge condition [~DDið@t~��ijÞ ’ 0, where ~DDi is
the covariant derivative with respect to ~��ij ; Shibata
1999a], which has been used in our previous works. In
contrast with previous papers (e.g., Shibata et al. 2000a),
we used the AMD gauge condition without modification.
The other is a dynamical gauge condition (Alcubierre
et al. 2001a; Lindblom & Scheel 2003). In the present
work, we impose the dynamical gauge condition solving
the equation

@t�
k ¼ ~��klðFl þ Dt@tFlÞ ; ð5Þ

where Dt denotes a time step in numerical computation.
The second term in the right-hand side of equation (5) is
introduced to stabilize numerical computation. With this
choice, �k obeys a hyperbolic-type equation (for a suffi-
ciently small value of Dt), because the right-hand side of
the evolution equation for Fl contains vector Laplacian
terms as �k

	;ii þ �i
	;ik=3 (Shibata & Nakamura 1995;

Shibata & Uryū 2002). The outstanding merit of this
gauge condition is that we can save computational time
significantly, since we do not have to solve elliptic-type
equations. In the numerical computations, we adopted
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these two spatial gauge conditions and found that both
give (almost) identical numerical results. As in the case of
the AMD gauge condition, the dynamical gauge enables
us to carry out a long-term stable simulation irrespective
of the equations of state. Thus, here we present
numerical results with the dynamical gauge condition to
demonstrate its robustness.

During numerical simulations, violations of the
Hamiltonian constraint and conservation of mass and
angular momentum are monitored as code checks. Several
test calculations, including stability and collapse of spheri-
cal and rotating neutron stars as well as convergence tests,
have been described in a previous paper (Shibata 2003).
Formation of a black hole is determined by finding an
apparent horizon.

To model supramassive neutron stars, we adopted the
polytropic equations of state of the form

P ¼ K�1þð1=nÞ : ð6Þ

In this paper, we choose n ¼ 2
3,

4
5, 1,

3
2, and 2 to systematically

study the effects of stiffness of equations of state. During the
simulations, we use a C-law equation of state as

P ¼ ð�� 1Þ�" ; ð7Þ

where C is the adiabatic constant and is set as 1þ ð1=nÞ. In
the absence of shocks, no heat is generated and the collapse
is adiabatic, preserving the polytropic form of the equations
of state. This implies that the quantity P=�� measures the
efficiency of the shock heating.

As initial conditions, we gave marginally stable and
uniformly rotating supramassive neutron stars at mass-
shedding limits in equilibrium states. To induce gravita-
tional collapse, we initially reduced the pressure (i.e., K)
uniformly by 0.5% in all the simulations. Whenever we
reduced the pressure, we solved the equations for the
Hamiltonian and momentum constraints to enforce them
at t ¼ 0.

Marginally stable supramassive neutron stars of poly-
tropic equations of state with 2

3 � n � 2 have the compact-
ness 0:06 � M=R � 0:25 (see Table 1). Typical compactness
of neutron stars is considered to be 	0.15–0.2 (Shapiro &
Teukolsky 1983; Glendenning 1996). Thus, the present
choice of n yields plausible models for marginally stable
supramassive neutron stars.

Physical units enter the problem only through the poly-
tropic constant K, which can be chosen arbitrarily or else
completely scaled out of the problem. Thus, we display only

the dimensionless quantities which are defined as

�MM� ¼ M�K�n=2 ; �MM ¼ MK�n=2 ; �RR ¼ RK�n=2 ;

�JJ ¼ JK�n ; ��� ¼ �Kn ; ��� ¼ �Kn ; ð8Þ

where M, R, and � denote the ADM mass, the equatorial
circumferential radius, and the angular velocity. Hereafter,
we adopt the units ofK ¼ 1 so that we will omit the bar.

In Table 1, we list the rotating stars at mass-shedding
limits that we picked up as initial conditions in the
present simulations. All the quantities are scaled to be
nondimensional using the relation described in equation
(8). Stability of uniformly rotating polytropes with n ¼ 1,
3/2, and 2 against gravitational collapse has been already
studied by Cook et al. (1994). Thus, for these polytropic
indices, we chose the stars close to the marginally stable
point on the basis of their results. For n ¼ 2

3 and
4
5, we do

not know the critical point for the stability. As shown by
Cook et al. (1994), however, for stiff equations of state
with nd1, the stability of the uniformly rotating stars at
mass-shedding limits changes near a point where the
ADM mass is maximum. Thus, we chose the stars of
nearly maximum mass along the sequence of the
uniformly rotating star at mass-shedding limits.

The ratio of the kinetic energy to the gravitational bind-
ing energy for all the stars that we picked up here is much
smaller than 0.27, which is a widely believed critical value
for onset of the dynamical bar-mode instability in a uni-
formly rotating star (Chandrasekhar 1969; Shibata et al.
2000b). Thus, the nonaxisymmetric deformation is unlikely
to turn on during the collapse. This justifies the assumption
of axial symmetry.

3. NUMERICAL RESULTS

3.1. Prediction

Before presenting numerical results, we predict the plausi-
ble outcome of the gravitational collapse. Such a prediction
helps to understand the reason that a result obtained in a
numerical simulation should be the output.

Because of the axial symmetry of the system (and since
the fluid is assumed to be inviscid), the rest-mass distribu-
tion as a function of the specific angular momentum as well
as the baryon rest mass and the angular momentum are con-
served throughout the evolution of the system. Using this
fact, we can predict the final state of gravitational collapse
from the initial condition.

TABLE 1

Parameters of the Initial Conditions

n

(1)

�c
(2)

M�
(3)

M

(4)

M=R
(5)

�

(6)

J=M2

(7)

T=jW j
(8)

�ðr ¼ 0Þ
(9)

jISCO=M
(10)

2/3.............. 0.730 0.184 0.158 0.248 0.791 0.670 0.117 0.329 2.64

4/5.............. 0.520 0.190 0.168 0.212 0.572 0.626 0.102 0.382 2.71

1.................. 0.296 0.206 0.188 0.175 0.392 0.561 0.0809 0.442 2.82

3/2.............. 0.0570 0.304 0.290 0.106 0.117 0.450 0.0465 0.607 2.97

2.................. 0.00523 0.559 0.549 0.0643 0.0242 0.388 0.0268 0.750 3.05

Note.—The central density �c, baryon rest massM�, ADMmassM, compactnessM=R, angular velocity, angular
momentum J in units of M2, ratio of the kinetic energy to the gravitational binding energy, and central value of the
lapse function. Here, R denotes the circumference radius at the equatorial surface. Column (10) shows the specific
angular momentum of a test particle orbiting a Kerr black hole of massM and angular momentum J. All the quantities
are shown in units of c ¼ G ¼ K ¼ 1.
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I define the rest-mass distribution as a function of the
specific angular momentum according to Stark & Piran
(1987),

M�ðj0Þ ¼
Z

j�j0

d3x�� ; ð9Þ

where j is a value of the specific angular momentum com-
puted as xûuyð¼ hu’Þ and j0 denotes a particular value for j.
In Figure 1, we show the rest-mass distribution as a function
of the specific angular momentum M�ð jÞ as a function of
j=M.

To predict the final state of the collapse, we assume that
(1) a black hole is formed after the collapse, (2) most of the
mass elements fall into the black hole, and (3) the value of
the nondimensional angular momentum parameter
q � J=M2 of a formed black hole is nearly equal to the value
of the system.

Since the value of q of all the stars that we picked up here
is smaller than unity, and no heat source exists in the col-
lapsing star, assumption (1) is quite reasonable. The second
and third assumptions are also reasonable because the pro-
genitor of the collapse is uniformly rotating, so that the
effect of centrifugal force that prevents a fluid element fall-
ing into a black hole is important only around the low-den-
sity outer region of the collapsing stars.

According to assumptions 1–3 above, we assume that the
ADM mass and the Kerr parameter of the formed black
hole are
M and
Mq. Around the Kerr black hole, there is
the innermost stable circular orbit (ISCO). All the mass ele-
ments of circular orbits inside the ISCO have to fall into the
black hole. This implies that a mass element of the specific
angular momentum that is smaller than the value at the
ISCO, jISCO, has to fall into the black hole.

Assuming that the ADMmass and the Kerr parameter of
the formed Kerr black holes are M and Mq, we computed
jISCO for the models listed in Table 1 using the formula
derived by Bardeen, Press, & Teukolsky (1972). The numer-

ical results are described at the last column of Table 1. In all
the models, jISCO is larger than 2:5M. (Note that it is 2

ffiffiffi

3
p

M
for q ¼ 0.) From Figure 1, we find that the fraction of the
mass with jISCO > 2:5M is approximately zero (less than
10�3), irrespective of n. Therefore, the final state is predicted
to be a Kerr black hole, and the baryon rest mass of disks is
very small (<10�3 of the initial stellar mass) for any value of
n between 2

3 and 2.

3.2. Formation and Evolution of Black Holes

We performed simulations varying N for a wide range as
180–480. This grid number is several times larger than that
in a previous study (Shibata et al. 2000a) and enables us to
check the convergence of the numerical solutions in detail.
For n � 3

2, the equatorial radius of marginally stable
rotating stars are initially covered by N=2 grid points. The
polar radius is covered by 
0.3N in this case. For n ¼ 2,
equilibrium stars have a more centrally concentrated den-
sity configuration than that for stiffer equations of state. To
resolve the central region with a better accuracy, we chose a
grid spacing with which the equatorial radius is covered by
5N=6 grid points initially. In this case, the polar radius is
covered by
N=2 grid points.

Numerical computation was in part performed on
FACOM VPP5000 in the data processing center of the
National Astronomical Observatory of Japan (NAOJ), but
most of the simulations were carried out using personal
computers with Pentium 4 processors, each of which has 2
Gbytes memory and a 2.8 GHz clock. Even for N ¼ 480, it
takes only about 5 days to finish a job of	40,000 time steps
on one of these computers.

As a result of the simulations, we found that irrespective
of the value of n, the collapse proceeds monotonically to be
a Kerr black hole. During the collapse, shock heating is
negligible in the central region. Namely, P=�� remains
approximately constant.

Fig. 1.—(a) Rest-mass distribution as a function of the specific angular momentum for n ¼ 2
3–2 at t ¼ 0. (b) Same as (a) but at t ¼ 0 (solid curves) and at the

formation of the apparent horizon ( filled circles) for n ¼ 2. This is the result for a simulation withN ¼ 480.
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In all the simulations, the apparent horizons were deter-
mined in the late phase of the collapse. As reported in a pre-
vious paper (Shibata 2003), accuracy of numerical results,
measured by the violation of the Hamiltonian constraint,
deteriorates monotonically with time, and the computations
eventually crashed due to the grid stretching around the
black holes. However, the grid number inside the surface of
the apparent horizons in this work is large enough to resolve
the formation and the evolution of the black hole for a dura-
tion 	20M, even without black hole excision techniques
(W. Unruh 1984, unpublished; Seidel & Suen 1992). The
duration is, in general, longer with the better grid resolu-
tions and, with the largest grid number, we could determine
the final state of the collapse approximately. However,
to carry out a simulation for more than 20M after the for-
mation of black holes, excision techniques are absolutely
necessary.

We have also checked that the rest-mass distribution as a
function of the specific angular momentum is conserved
accurately. In Figure 1b, we compare the rest-mass distribu-
tion at t ¼ 0 and at the formation of apparent horizon for
n ¼ 2 as an example. The figure shows a good conservation
of it.

In Figure 2, we show the square of the mass of the appa-
rent horizons MAH as a function of time. Here MAH is
defined as

MAH �
ffiffiffiffiffiffiffiffi

A

16�

r

; ð10Þ

where A denotes the area of the apparent horizon (Cook &
York 1990). Figure 2 shows that MAH approaches an
asymptotic value. It is also evident that the numerical results
are convergent with the increase ofN.

Together with the evolution of M2
AH, in Figure 2, we plot

the square of the irreducible mass of the event horizon M2
irr

for a Kerr black hole ofM and J (dotted horizontal lines) as

M2
irr ¼ 1

2

�

M2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M4 � J2
p

�

: ð11Þ

Here, as M and J, we adopt the total values of the system
computed from the initial data sets. If the final state of the
gravitational collapse is a Kerr black hole with negligible
disk mass, the mass of the apparent horizon should
approachMirr. Figure 2 clearly shows thatMAH asymptoti-
cally approaches Mirr. Small deviation of the asymptotic
value of MAH from Mirr is likely to be a numerical error.
Indeed, with the better grid resolution, the final value of
MAH appears to converge to 	Mirr. Using the numerical
results in the best- and second-best resolved simulations and
assuming thatMAH is convergent at second order, we deter-
mined the extrapolated values of M2

AH=M
2 as 
0.881,

0.893, 0.947, and 0.953 for n ¼ 2
3,

4
5,

3
2, and 2, respectively.

(Unfortunately, AAH does not appear to approach a con-
stant in the simulations with the low resolutions for n ¼ 1,
so that we were not able to obtain the extrapolated value.)
On the other hand, M2

irr=M
2 ¼ 0:873, 0.891, 0.947, and

0.960 for n ¼ 2
3,

4
5,

3
2, and 2. This implies that the final state of

the collapse is the Kerr black hole, and the fraction of the
rest mass of the disk is less than 	0.5%. (We consider the
difference between MAH and Mirr as due to numerical error
and, thus, the magnitude of the numerical error in
estimation ofMAH is less than 0.5%.)

To reconfirm this fact, we display the evolution of the
fraction of the baryon rest mass located outside a coordi-

nate radius r0, M�ðr > r0Þ=M�, for n ¼ 2 (solid curve), 3
2

(dotted curve), 1 (dashed curve), and 2
3 (long-dashed curve)

in Figure 3. The result for n ¼ 4
5 is essentially the same, so

we omit it. Here r0 is chosen as 
0.6M, which is approxi-
mately equal to the asymptotic value of the coordinate polar
radius of the apparent horizon in the present computations.
We found that in our gauge, the coordinate equatorial
radius is slightly larger than the polar radius, so the fraction
of the baryon rest mass outside the apparent horizon is
slightly smaller than M�ðr > r0Þ=M�. Figure 3 shows that
before the collapse, most of the fluid elements are located
outside r ¼ r0, but during the collapse, M�ðr > r0Þ=M�
monotonically decreases and approaches zero. This con-
firms the results in Figure 2. The present results also recon-
firm the same conclusion reached previously in less-resolved
simulations for n ¼ 1 (Shibata et al. 2000a).

We note that for n ¼ 2, a small number of mass elements
appear to be outside the black hole at the termination of the
simulations. We infer that they will be eventually swallowed
into the black hole because the specific angular momentum
for the fluid element is not large enough to form disks
around the black hole.

Recall that we study the collapse of uniformly rotating
stars of maximum angular velocity, implying that the effect
of rotation is taken into account most efficiently. Therefore,
we conclude that the final state after the collapse of all the
marginally stable and uniformly rotating polytropic stars
with 2

3 � n � 2 is a Kerr black hole, and the disk mass is less
than 10�3M�.

It should be noted that for the smaller value of n, MAH

reaches Mirr more quickly. For n ¼ 2
3, the growth timescale

ofMAH from 0 to 
Mirr is 	6M, while for n ¼ 2, it is larger
than 30M. This reflects that the nature of the collapse
depends strongly on the initial density configuration, which
is determined by the stiffness of the equations of state. For
stiffer equations of state, the density of the initial condition
distributes rather uniformly. Thus, the collapse proceeds
coherently. For softer equations of state, on the other hand,
the initial condition has a more centrally concentrated den-
sity distribution with low-density outer envelopes. Thus, the
central region collapses to a black hole earlier, and then the
outer region falls into the black hole, spending a longer
timescale than that for stiffer equations of state.

To illustrate that the identical numerical results were
obtained in two different spatial gauge conditions, in
Figure 4, I show the evolution of � and �� at r ¼ 0 as well as
M2

AH for n ¼ 3
2 with N ¼ 360. The solid and dotted curves

denote the numerical results in the dynamical and AMD
gauge conditions, respectively. Both results are in good
agreement.

Finally, we address the following point: the collapse of
compact stars to black holes is among the most interesting
processes leading to the production of gravitational waves.
As pointed out by Stark & Piran (1985), quasi-normal
modes of a black hole would be excited after the formation
and, as a result, gravitational waves associated with such
quasi-normal–mode oscillations may be emitted. It is an
interesting subject to clarify how large the amplitude of
gravitational waves is. Thus motivated, we tried to extract
gravitational waves in the simulation, but we were not able
to do so because the amplitude is likely much smaller than
the typical size of numerical noise of our present simulation.
The reasons that the amplitude is very small are as follows:
(1) the collapse coherently proceeds, i.e., almost all the fluid
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Fig. 2.—Evolution of the area of the apparent horizon in units of 16�M2 (i.e., the square of the apparent horizon mass) for (a) n ¼ 2
5, (b)

4
5, (c) 1,

(d ) 3
2, and (e) 2. (a)–(d )Solid, dashed, and dotted-dashed curves: Results for N ¼ 360, 240, and 180. (e) Solid, dashed, and dotted-dashed curves: Results for

N ¼ 480, 360, and 240.Dotted horizontal lines: Area of the event horizon for a Kerr black hole of a given set of J andM determined from the initial conditions.



elements collapse to form a black hole simultaneously. In
such a case, the excitation of the quasi-normal modes of a
black hole is likely to be weak because the quasi-normal
modes are excited by perturbations struck after the forma-
tion of a black hole. (2) The nondimensional angular
momentum parameter q is not very large (<0.7). Stark &
Piran showed that a large number of gravitational waves are
emitted at q close to 1.

4. SUMMARY AND DISCUSSION

We have reported new numerical results of axisymmetric
simulations for the gravitational collapse of rapidly and uni-
formly rotating supramassive neutron stars to black holes in
full general relativity. The initial conditions for the neutron
stars are given using polytropic equations of state for a wide
range of the polytropic index as n ¼ 2

3,
4
5, 1,

3
2, and 2. The

initial state of the rotating stars is marginally stable against
the quasi-radial gravitational collapse and at the mass-
shedding limit. The hydrodynamic simulations were carried
out using a high-resolution shock-capturing scheme with
the C-law equations of state. We have demonstrated that
irrespective of the value of n ð23 � n � 2Þ, the collapse
monotonically proceeds with negligible shock heating, and
the final state is a Kerr black hole with a small fraction of
the disk mass.

As mentioned in x 3.1, the results obtained in this paper
can be predicted from the initial conditions. In the same
manner, we can predict the final states of the gravitational
collapse for softer equations of state with n > 2. With a large
value of n 	 3, wemaymodel an unstablemassive stellar core
at the final stage of stellar evolution and a supermassive star
ofMe105 M�. In Figure 5, we show the rest-mass distribu-
tion as a function of the specific angular momentum of the
marginally stable and uniformly rotating stars at mass-
shedding limits for n ¼ 2:5, 2.9, and 3. The marginally stable
stars for these polytropic indices have been already deter-
mined by Cook et al. (1994) for n ¼ 2:5 and 2.9 and
Baumgarte & Shapiro (1999) for n ¼ 3. The nondimensional
angular momentum parameter q is 
0.39, 0.57, and 0.96 for
n ¼ 2:5, 2.9, and 3, so that jISCO=M for a black hole of mass
M and angular momentum J is 
3.0, 2.8, and 1.8, respec-
tively. From Figure 5, we can predict that the final state after
the collapse for n ¼ 2:5 is a Kerr black hole and only a small
fraction of the initial stellar elements (	10�3M�) forms the
disks. On the other hand, disks of the rest mass ofe0.01 and
e0.1M� are likely to be formed for n ¼ 2:9 and 3,

Fig. 3.—Evolution of the total baryon rest mass outside a coordinate
radius r0 for n ¼ 2 (solid curve), 3

2 (dotted curve), 1 (dashed curve), and 2
3

(long-dashed curve). r0 is chosen as	0.6M, which is approximately equal to
the asymptotic value of the coordinate polar radius of the apparent horizon
in the present computations. To plot the curves, we chose the numerical
results withN ¼ 360. Time is shown in units ofM.

Fig. 4.—Evolution of � and �� at r ¼ 0 as well as M2
AH for n ¼ 3

2 with
N ¼ 360. Solid and dotted curves: Results with the dynamical and AMD
gauge conditions, respectively.

Fig. 5.—Rest-mass distribution as a function of the specific angular
momentum for n ¼ 2:5, 2.9, and 3.
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respectively. (If the ADM mass of the black holes is smaller
than M, jISCO is also smaller and, hence, the disk mass could
be larger. This implies that the fraction of diskmass predicted
here is the minimum value.) The same conclusion for n ¼ 3
has been already drawn by Shibata & Shapiro (2002) and
Shapiro & Shibata (2002) in amore careful analysis.

For 2 � n � 2:5, the compactness of marginally stable
and rigidly rotating supramassive neutron stars is in the
range between 0.0643 and 0.0233 (Cook et al. 1994). Thus,
these polytropic stars may be adequate models for margin-
ally stable, hot, supramassive proto–neutron stars of fairly
large compactness likely formed after massive stellar core
collapses (Buras et al. 2003 and references therein). Such
marginally stable stars will collapse to a black hole, and the
above simple analysis suggests that disk mass around the
formed black hole is very small as in the case of n � 2.

If the compactness of marginally stable proto–neutron
stars is smaller than 	0.02, the final product after the col-
lapse may be a black hole surrounded by disks of a fraction

of mass. Such system of a black hole and disks has been pro-
posed as a candidate for the central engine of gamma-ray
bursts (Vietri & Stella 1998).

The reason disks are formed for ne2:9 is simply that the
marginally stable stars with polytropic equations of state of
such large value of n have a large equatorial radius with
R=Me200 and, hence, the specific angular momentum for
a certain fraction of the fluid elements is large enough to
escape from swallowing into a black hole. The present
study, together with the previous one (Shibata & Shapiro
2002), shows that nature of the collapse of rapidly rotating
stars to a black hole depends strongly on the equations of
state, in particular, for n 	 3.

Numerical computation was in part performed on
FACOM VPP5000 in the data processing center of the
National Astronomical Observatory of Japan. This work
was supported by Japanese Monbukagakusho grants
13740143, 14047207, 15037204, and 15740142.
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