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Abstract
We present our latest results of simulation for merger of black hole (BH)–
neutron star (NS) binaries in full general relativity which is performed preparing
a quasicircular state as the initial condition. The BH is modelled by a moving
puncture with no spin and the NS by the �-law equation of state with � = 2
and a corotating velocity field as a first step. The mass of the BH is chosen to be
≈3.2M� or 4.0M�, and the rest mass of the NS ≈1.4M� with a relatively large
radius of the NS ≈13–14 km. The NS is tidally disrupted near the innermost
stable orbit, but ∼80–90% of the material is swallowed into the BH and the
resulting disc mass is not very large as ∼0.3M� even for a small BH mass
∼3.2M�. The result indicates that the system composed of BH and a massive
disc of ∼M� is not formed from nonspinning BH–NS binaries irrespective
of the BH mass, although a disc of mass ∼0.1M� is a possible outcome for
this relatively small BH mass range as ∼3–4M�. Our results indicate that the
merger of low-mass BH and NS may form a central engine of short-gamma-ray
bursts.

PACS numbers: 04.25.Dm, 04.60.−w, 04.40.Dg

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Merger of black hole (BH)–neutron star (NS) binaries is one of the most likely sources for
kilometre size laser interferometric gravitational wave detectors. Although such a system has
not been observed yet in contrast to NS–NS binaries, statistical studies based on the stellar
evolution synthesis suggest that the merger will happen more than 10% as frequently as the
merger of binary NSs [1, 2]. Thus, the detection of such a system will be achieved by laser
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interferometers in the near future. This motivates theoretical studies for the merger of BH–NS
binaries.

According to a study based on the tidal approximation (which is referred to as a study
of the configuration of a Newtonian star in circular orbits around a BH in its relativistic
tidal field; see, e.g., [3–7]), the fate is classified into two cases, depending on the mass ratio
q ≡ MNS/MBH, where MBH and MNS denote the masses of BH and NS, respectively. For
q � qc, the NS of radius R will be swallowed into the BH horizon without tidal disruption
before the orbit reaches the innermost stable circular orbit (ISCO) [5, 6]. On the other hand, for
q � qc, the NS will be tidally disrupted before plunging into the BH. Here, the critical value
of qc depends on the BH spin and the equation of state (EOS) of the NS. For the nonspinning
case with stiff EOSs, qc ≈ 0.3–0.35(R/5MNS)

−3/2 and for the case that the spin of the BH
aligns with the orbital angular momentum, qc can be smaller [6]. (Throughout this paper, we
adopt the geometrical units c = G = 1.)

The tidal disruption has been studied with great interest for the following reasons.
(i) Gravitational waves at tidal disruption will bring information about the NS radius since the
tidal disruption limit depends sensitively on it [8]. The relation between the mass and the radius
of NSs may be used for determining the EOS of high density matter [9]. (ii) Tidally disrupted
NSs may form a massive disc of mass ∼0.1–1M� around BH if the tidal disruption occurs
outside the ISCO. Systems consisting of a rotating BH surrounded by a massive, hot disc have
been proposed as one of likely sources for the central engine of gamma-ray bursts (GRBs)
with a short duration [10] and, hence, the merger of low-mass BH and NS is a candidate.

However, the scenario based on the tidal approximation studies may be incorrect since
gravitational radiation reaction and self-gravitational effects of the NS in the orbital motion are
ignored. Radiation reaction shortens the time available for tidally disrupting NSs. The gravity
of the NS could increase the orbital radius of the ISCO and hence the critical value of the tidal
disruption, qc, may be larger in reality. Miller [11] estimates these ignored effects and suggests
that NSs of canonical mass and radius will be swallowed into BHs without tidal disruption.
Moreover, NSs are described by the Newtonian gravity in the tidal approximation. If we treat
it in general relativity, the self-gravity is stronger and hence tidal disruption is less likely.

Tidal disruption of NSs by BHs has been investigated in the Newtonian [12] and
approximately general relativistic (GR) simulation [7, 13]. However, the criterion of tidal
disruption will depend on GR effects as mentioned above and, hence, a simulation in full
general relativity is obviously required (see [14] for an effort). In [15], we present our
first numerical results for fully GR simulation, performed by our new code which has been
improved from the previous one [16, 17]; we handle an orbiting BH adopting the moving
puncture method, which has been recently developed by two groups [18] (see also [19] for a
detailed calibration of this method). As the initial condition, we prepare a quasicircular state
computed in a new formalism described in section 2. Focusing particularly on whether NSs
of realistic mass and radius are tidally disrupted to form a massive disc around nonspinning
BHs, we illustrate that a disc with mass ∼M� is an unlikely outcome for plausible values of
NS mass and radius and for BH mass greater than 3M�, although a disc of mass of O(0.1M�)

is possible.
In this paper, we extend a previous study; we perform a simulation for different BH

mass from that in [15] to find the dependence of the disc mass on the BH mass. In addition,
gravitational waveforms are computed. The paper is organized as follows. In section 2, we
describe a formulation for computing quasicircular states in the moving-puncture framework.
Section 3 presents some of numerical results for the quasicircular orbits. In section 4, we
report numerical results of simulations for the merger of BH–NS binaries. Section 5 is devoted
to a summary and discussion.
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2. Formalism for a quasicircular state

Three groups have worked in computing quasicircular states of BH–NS binaries [20–22].
However, this field is still in an early stage in contrast to computation for NS–NS binaries
(e.g., [23]). In [15], we proposed a new method for computing accurate quasicircular states
that can be used for numerical simulation in the moving-puncture framework [18, 24]. Here,
we briefly describe the formulation.

Even just before the merger, it is acceptable to assume that BH–NS binaries are in a
quasicircular orbit since the time scale of gravitational radiation reaction is a few times longer
than the orbital period. Thus, we assume the presence of a helical Killing vector around the
mass centre of the system, �µ = (∂t )

µ + �(∂ϕ)µ, where the orbital angular velocity � is
constant.

In the present work, we assume that the NS is corotating around the mass centre of the
system for simplicity (the definition of mass centre adopted in this formalism is given after
equation (5)). An irrotational velocity field is believed to be more realistic for BH–NS binaries
[25]. The work for the irrotational case will be reported in a future paper [26]. The assumption
of a corotating velocity field in the helical symmetric spacetime yields the first integral of the
Euler equation, h−1ut = const, where h is specific enthalpy defined by 1 + ε + P/ρ, and
ε, P and ρ are specific internal energy, pressure and rest-mass density, respectively. In the
present work, we adopt the �-law EOS with � = 2, P = ρε = κρ2 with κ an adiabatic
constant. uµ denotes the 4-velocity and ut its time component. Assumption of corotation
implies uµ = ut�µ and thus ur = uθ = 0.

For a solution of geometric variables of quasicircular orbits, we adopt the conformal
flatness formalism for 3-geometry. In this formalism, the solution is obtained by solving
Hamiltonian and momentum constraint equations, and an equation for the time slicing
condition which is derived from K k

k = 0 where Kij is the extrinsic curvature and K k
k its trace

[27]. Using the conformal factor ψ , the rescaled tracefree extrinsic curvature Â
j

i ≡ ψ6K
j

i ,
and weighted lapse � ≡ αψ where α is the lapse function, these equations are respectively
written as


ψ = −2πρHψ5 − 1

8
Â

j

i Â i
j ψ−7, (1)

Â
j

i,j = 8πJiψ
6, (2)


� = 2π�

[
ψ4(ρH + 2S) +

7

16π
ψ−8Â

j

i Â i
j

]
, (3)

where 
 denotes the flat Laplacian, ρH = ρh(αut )2 −P, Ji = ρhαutui and S = ρh[(αut )2 −
1] + 3P .

We solve these equations in the framework of the puncture BH [18, 24, 28]. Assuming
that the puncture is located at rP, we set ψ and �:

ψ = 1 +
MP

2rBH
+ φ and � = 1 − C

rBH
+ η, (4)

where MP and C are positive constants, and rBH = ∣∣xk
BH

∣∣ (
xk

BH = xk − xk
P

)
. Then elliptic

equations for functions φ and η are derived. The constant MP is arbitrarily given, while C is
determined from the virial relation (e.g., [29])∮

r→∞
∂i� dSi = −

∮
r→∞

∂iψ dSi = 2πM, (5)
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where M is the ADM mass. The mass centre is determined from the condition that the dipole
part of ψ at spatial infinity is zero. In this method, the region with α < 0 exists. However,
this does not cause any pathology in the initial value problem.

Equation (2) is rewritten setting

Âij

(=Â k
i δjk

) = Wi,j + Wj,i − 2
3δij δ

klWk,l + KP
ij , (6)

where KP
ij denotes the weighted extrinsic curvature associated with linear momentum of a

puncture BH,

KP
ij = 3

2r2
BH

(niPj + njPi + (ninj − δij )Pknk). (7)

Here, nk = nk = xk
BH

/
rBH. Pi denotes linear momentum of the BH, determined from the

condition that the total linear momentum of the system should be zero;

Pi = −
∫

Jiψ
6 d3x. (8)

The RHS of equation (8) denotes the total linear momentum of the companion NS. Then, the
total angular momentum of the system is derived from

J =
∫

Jϕψ6 d3x + εzjkr
j

PδklPl. (9)

The elliptic equation for Wi (=Wi) is


Wi + 1
3∂i∂kW

k = 8πJiψ
6. (10)

Denoting Wi = 7Bi − (χ,i + Bk,ix
k) where χ and Bi are auxiliary functions [30],

equation (10) is decomposed into two linear elliptic equations


Bi = πJiψ
6 and 
χ = −πJix

iψ6. (11)

Computing BH–NS binaries in a quasicircular orbit requires determination of the shift
vector even in the puncture framework. This is because ui has to be obtained (it is derived
from uk = δkiu

tψ4(vi + βi), where vi = �ϕi). The relation between βi and Âij is written

δjk∂iβ
k + δik∂jβ

k − 2

3
δij ∂kβ

k = 2α

ψ6
Âij . (12)

Operating δjl∂l , an elliptic equation is derived


βi + 1
3δik∂k∂jβ

j = 2∂j (αψ−6)Âij + 16παJjδ
ij . (13)

Here for Âij , we substitute the relation of equation (6) (not equation (12)). As a result, no
singular term appears on the RHS of equation (13), and equation (13) is solved in the same
manner as that for Wi .

We have computed several models of quasicircular states and found that the relation
between � and J approximately agrees with the third post-Newtonian relation [31]. This
confirms that this approach is a fair way to prepare quasicircular states. We also found that in
this method, the shift vector at r = rP automatically satisfies the condition βϕ = −� within
the error of a few per cent. This implies that the puncture is approximately guaranteed to be
in a corotating orbit in the solution.
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Table 1. Parameters of quasicircular states. Mass parameter of puncture, mass of BH, rest mass of
NS, mass, radius and normalized mass of NS in isolation, total mass of the system, nondimensional
angular momentum parameter, orbital period in units of M and compactness of the system defined
by Co = (M�)2/3. The mass of BH is computed from the area of the apparent horizon A as
(A/16π)1/2. The mass is shown in units of M�.

MP MBH M∗ M0NS R (km) M∗/κ1/2 M J/M2 P0/M Co

A 3.13 3.21 1.40 1.30 13.8 0.147 4.47 0.729 119 0.141
B 3.13 3.21 1.40 1.30 13.8 0.147 4.47 0.720 110 0.150
C 3.93 4.01 1.40 1.30 13.0 0.151 5.26 0.645 115 0.144

3. Numerical results for quasicircular states

BH–NS binaries in quasicircular orbits have been computed for a wide variety of models with
q = M∗/MBH ≈ 0.3–0.5, where M∗ denotes the baryon rest mass of the NS. In the present
work, the compactness of spherical NSs with the rest mass M∗ is chosen to be ≈0.14–0.15.
In the �-law EOSs, the mass and radius of NS are rescaled by changing the value of κ . In the
following, we fix the unit by setting that M∗ = 1.4M�.

In computation, we focus only on the orbit slightly outside the ISCO. In table 1, we
show the quantities for selected quasicircular states with q ≈ 0.4 and 0.33. For models A
and B shown in table 1, the radius of NS in isolation is R ≈ 13.8 km, the gravitational
mass in isolation is M0NS ≈ 1.30M� and M∗/κ1/2 = 0.147. For model C, R ≈ 13.0 km,
M0NS ≈ 1.3M� and M∗/κ1/2 = 0.151. According to theories for NSs based on realistic
nuclear EOSs [32], the radius of a NS of MNS ≈ 1.4M� is 11–13 km. Thus, the radius chosen
here is slightly larger than that of realistic NSs and is more subject to tidal disruption. Model
A is that used for the following numerical simulation and model B is very close to the tidal
disruption limit of approximately the same mass as that of model A, showing that the model
A has an orbit slightly outside the tidal disruption limit. This is also the case for model C.
As we show in the following section, tidal disruption sets in after a small decrease of orbital
separation for models A and C.

The tidal approximation studies suggest that for q � q∗, NSs could be tidally disrupted by
BHs [6]. Here, in the tidal approximation, the critical value q∗ for � = 2 and for nonspinning
BHs is approximately given by

q∗ ≡ 0.35

(
R

5MNS

)−3/2
(MBH�)−1

63/2
, (14)

and � = M−1
BH

/
63/2 is the angular velocity of the ISCO around nonspinning BHs. For

models A and B, q∗ ≈ 0.32 and, hence, q > q∗. According to the tidal approximation
studies [5, 6], such NS should be unstable against tidal disruption. Nevertheless, such
equilibrium exists, proving that the tidal disruption limit in the framework of the tidal
approximation does not give a correct answer. Our studies indicate that the critical value
q∗ is ≈0.43(R/5MNS)

−3/2[(MBH�)−1/63/2]; the tidal disruption of NS is much less likely
than in the prediction by the tidal approximation [5, 6]. For a typical NS of radius R ∼ 5MNS

and mass MNS ∼ 1.4M�,MBH � 3.3M� will be necessary for (MBH�)−2/3 � 6; this implies
that canonical NSs will not be tidally disrupted outside the ISCO by most of nonspinning BHs
of mass larger than ∼3M�. Tidal disruption occurs only for NSs of relatively large radius and
only for orbits very close to the ISCO.

In this work, the criterion for the tidal disruption is investigated only for � = 2 EOS and
for compactness 0.14–0.15. The criterion is likely to depend on the stiffness of the EOS [6]
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since the structure of NSs depends on it. The criterion should also depend strongly on the
compactness of NSs in general relativity which has a nonlinear nature. In the future paper, we
plan to determine the criterion for a wide variety of EOSs and compactness of NSs [26].

4. Simulation for merger

Even if tidal disruption of an NS occurs near the ISCO, a massive disc may be formed
around the companion BH. To investigate the outcome after merger and resulting gravitational
waveforms, we perform numerical simulation adopting models A and C.

For the simulation, we initially reset the lapse (i.e. �) since the relation α � 0 should
hold everywhere. In the present work, � at t = 0 is given by

� = η +
1 + 0.1X4

1 +
∑3

m=1 Xm + 1.1X4
, (15)

where X = C/rBH. Then, α = 0 only at puncture and otherwise α > 0. Furthermore, for
rBH > C, the values of � quickly approach those of the quasicircular states.

The numerical code for hydrodynamics is the same as that for performing merger of
NS–NS binaries (a high-resolution central scheme) [17, 33]. On the other hand, we change
equations for α, βi and ψ , and numerical scheme of handling the transport terms of evolution
equations for geometries. For α and βi , we solve

(∂t − βi∂i) ln α = −2K k
k , (16)

∂tβ
i = 0.75γ̃ ij (Fj + 
t∂tFj ), (17)

where γ̃ij is the conformal 3-metric and Fi = δjk∂j γ̃ik . 
t denotes the time step for the
simulation, and the second term on the RHS of equation (17) is introduced for stabilization.
The equation for the conformal factor is also changed to

∂tψ
−6 − ∂i(ψ

−6βi) = (
αK k

k − 2∂iβ
i
)
ψ−6, (18)

since ψ diverges at the puncture [18].
In addition, we have improved the numerical scheme for the transport term of geometric

variables (∂t − βi∂i)Q, where Q is one of the geometric variables: First, we rewrite this term
as ∂tQ − ∂i(Qβi) + Q∂iβ

i and then apply the same scheme as that in computing the transport
term of the hydrodynamic equations to the second term (third-order piece-wise parabolic
interpolation scheme [16]). We have found that for evolving BHs, such a high-resolution
scheme for the transport term in the geometric variables is crucial. This is probably because
of the fact that near punctures, some of geometric variables steeply vary and so does the term
βi∂iQ. For other terms in Einstein’s equation, we use the second-order finite differencing as in
[16, 17]. (Note that in the case of a nonuniform grid, 4-point finite differencing is adopted for
Q,ii since the 3-point one is first order.) After we performed most of runs, we iterated some of
the computations with a third-order scheme (5-point finite differencing for Q,ii) which is used
in [18, 19]. We find that with such a scheme, convergent results are obtained with a relatively
large grid spacing. However, the results are qualitatively unchanged and the extrapolated
results (which are obtained in the limit of zero grid spacing; see below) are approximately
identical.

In the simulation, the cell-centred Cartesian, (x, y, z), grid is adopted to avoid the situation
that the location of punctures (which always stay in the z = 0 plane) coincides with the grid
location. The equatorial plane symmetry is assumed and the grid size is (2N, 2N,N) for
x–y–z, where N is a constant. Following [34], we adopt a nonuniform grid; in the present
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Figure 1. Numerical results for merger of binary BHs performed with the initial data of [18].
Left: the open-thick circles denote the locations of the apparent horizon of two BHs for t/M = 0,
5, 10, 15 and 20, where M is the total ADM mass at t = 0. The open-wide circle at t = 20M is
the common apparent horizon. The small-solid dots denote the locations of the maximum of the
conformal factor. The grid setting is (N, N0, 
i, ξ, 
x/Mp, L/λ) = (200, 105, 30, 7, 1/16, 1.20)
for this result (note that λ ≈ 37M). Right: + and × modes of gravitational waveforms extracted at
r ≈ λ for (N, N0, 
i, ξ, 
x/Mp, L/λ) = (200, 105, 30, 9, 0.05, 1.20) (solid curves), (200, 105,
30, 7, 0.064, 1.23) (dashed curves) and (200, 105, 30, 5, 0.08, 1.23) (dotted curves).

approach, a domain of (2N0, 2N0, N0) grid zone is covered with a uniform grid of spacing 
x

and outside the domain, the grid spacing is increased according to ξ tanh[(i − N0)/
i]
x,
where i denotes the ith grid point in each direction. N0,
i and ξ are constants. For model
A, 
x/MP is chosen to be 10/80, 9/80, 8/80, 7/80 and 6/80, and for model C, it is 7/120,
8/120, 9/120 and 10/120. Campanelli et al [18] suggest that such grid spacing can resolve
moving punctures. For model A, (N,N0,
i, ξ,
x/Mp,L/λ) is chosen to be (160, 105, 30,
4.5, 10/80, 0.46), (200, 105, 30, 4.5, 10/80, 0.78), (200, 105, 30, 5, 10/80, 0.83), (220, 125,
30, 5, 9/80, 0.78), (220, 125, 30, 6, 8/80, 0.78), (220, 140, 30, 7, 7/80, 0.65) and (220, 150,
9, 6/80, 0.59). Here, L and λ denote the location of the outer boundaries along each axis and
the wavelength of gravitational waves at t = 0. For model A with 
x = MP/8 and N = 160,
we chose other values of N0 and 
i, and found that the results very weakly depend on them
as well as on L as far as L � λ/2. For model C, the chosen parameters are (200, 120, 30, 6,
1/12, 0.53), (220, 125, 30, 6, 9/120, 0.58), (220, 125, 30, 7, 8/120, 0.58) and (220, 140, 30,
8, 7/120, 0.48). For all cases, numerical computations were performed throughout the merger
until the accretion rate of the matter onto BH relaxes to approximately constant.

For a test, we performed simulations for the merger of two nonspinning BHs adopting
the same initial condition as used in [18]. We focused particularly on the merger time, which
is referred to as the time at which a common apparent horizon is first formed and found that
it varies with improving grid resolution approximately at first order. The likely reason is
that geometric variables vary steeply around the BH where they are evolved with first-order
accuracy in our scheme, although other regions are resolved with second-order accuracy. By
extrapolation, an exact merger time is estimated to be ≈19M . This result agrees approximately
with that of [18]. This indicates that our code can follow moving punctures (see the left panel
of figure 1 for evolution of the location of apparent horizons for the initial condition of [18]).

Gravitational waves are also computed using a gauge-invariant extraction method used
in [16, 17, 34]. In the right panel of figure 1, we display the results for three different
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Figure 2. Snapshots of the density contour curves for ρ in the equatorial plane for model A with
(N, N0,
i, ξ, 
x/Mp, L/λ) = (220, 150, 9, 3/40, 0.59). The solid contour curves are drawn for
ρ = (1 + 2i) × 1014 g cm−3 (i = 1, 2, 3) and for 1014−0.5i g cm−3 (i = 1–8). The maximum
density at t = 0 is ≈7.2 × 1014 g cm−3. (In the Web version, the blue, cyan, magenta and green
curves denote 1014, 1012, 1011 and 1010 g cm−3, respectively). The vectors indicate the velocity
field (vx, vy), and the scale is shown in the upper right-hand corner. The thick (red) circles are
apparent horizons. Time is shown in units of total mass of the system M.

grid resolutions. The figure shows that after merger, gravitational waves are determined by
the quasinormal mode ringing and that the waveforms depend very weakly for chosen grid
resolutions. The wavelength of the quasinormal mode is ≈11–12M, which agrees with the
result of [18].

Next, we present the results for model A. Figure 2 shows the evolution of contour
curves for ρ and velocity vectors for vi in the equatorial plane together with the location of
apparent horizons at selected time slices for (N,N0,
i, ξ,
x/Mp,L/λ) = (220, 150, 9,
3/40, 0.59). Due to the gravitational radiation reaction, the orbital radius decreases and then
the NS is elongated (second panel). Because of the elongation, the quadrupole moment of
the NS is amplified and the attractive force between two objects is strengthened [35]. This
effect accelerates an inward motion, and consequently the NS starts plunging into the BH at
t ∼ 90M . Soon after this time, the NS is tidally disrupted, but the tidal disruption occurs near
the ISCO and hence the material in the inner part is quickly swallowed into the BH (third and
fourth panels). On the other hand, because of the outward angular momentum transfer, the
material in the outer part of the NS forms a disc with the maximum density ∼1012 g cm−3

(fifth and sixth panels).
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(a) (b)

Figure 3. (a) Results for model A for various grid resolutions. The upper panel shows evolution of
baryon rest mass located outside the apparent horizon. The plots for 
x = MP/8 almost coincide
and show that the results depend weakly on the values of L and ξ . On the other hand, the results
depend systematically on 
x (see the text). The lower panel shows evolution of area of apparent
horizon in units of 16πM2. (b) The same as (a) but for model C.

The mass of the disc surrounding the BH formed after the merger is not large. Figure 3(a)
shows the evolution of baryon rest mass located outside apparent horizons Mr>rAH . We find
that ∼80% and ∼90% of the mass are swallowed into the BH in t ∼ 130M ∼ 2 ms for models
A and C, respectively, for the best grid-resolution simulations. The swallowing continues after
this time. Note that since Mr>rAH is rest mass outside apparent horizons, the disc mass which
should be defined for the mass located outside an ISCO around the formed BH is slightly
smaller. We follow the evolution of the rest mass of material located for r > 3M and
r > 4.5M , where r = 3M–4.5M are approximate locations of the ISCO around the formed
BH, and find that their values are smaller than Mr>rAH by ∼10% and 20%, respectively. Thus,
the disc mass would be 0.8–0.9Mr>rAH in reality.

The value of Mr>rAH depends systematically on 
x; we find that the results for
good resolutions (
x/Mp = 3/40, 7/80 and 1/10 for model A and 7/120, 8/120 and
9/120 for model C) at late times approximately obey a relation of convergence, i.e.
Mr>rAH(t) = a(t) + b(t)
xn, where a(t) and b(t) are functions of time. The order of
convergence, denoted by n, is between first and second orders (i.e. 1 < n < 2). For model A,
least-square fitting gives a(t) at t = 180M as ≈0.19M∗ if we set n = 2 and as 0.28M∗ for
n = 1 (see the solid circles in figure 3(a)). For model C, they are 0.11M∗ and 0.15M∗ (the
solid circles in figure 3(b)), respectively. Thus, the true result should be between 0.19M∗ and
0.28M∗ for model A and between 0.11M∗ and 0.15M∗ for model C.

It is reasonable that the disc mass for model C is smaller than for model A since the mass
ratio of NS to BH is smaller for model C while the compactness of NS is nearly identical. A
remarkable point is that with a small increase of the BH mass from 3.2M� to 4.0M�, the disc
mass decreases by a factor of 2. This suggests that the disc mass depends sensitively on the
BH mass.

Note that the adopted NS has a corotating velocity field initially, and furthermore its
radius is larger than that of canonical NSs. For an irrotational velocity field with a realistic
value of radius, the disc mass would be smaller than this value. It is reasonable to consider
that our results for the disc mass provide an upper limit of the disc mass for a given mass and
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spin of BH. Hence it is unlikely that a massive disc with ∼M� is formed after the merger
of a nonspinning BH of mass M > 3M� and a canonical NS of mass ≈1.4M� and radius
≈11–13 km, although a disc of mass of ∼0.2–0.3M� may be formed for a small BH mass
(�4M�). This value of the disc mass is large enough to explain short GRBs of relatively low
total energy ∼1049 ergs (see, e.g., [36] for an estimate).

The lower panels of figure 3 show the evolution of the area of apparent horizons in units
of 16πM2. These illustrate that the area of BHs quickly increases on swallowing material,
and then the area settles down to an approximate constant. We, again, evaluate the true final
area by extrapolation for results with different grid resolutions. For model A, the area in
units of 16πM2 at t = 180M is 0.74 and 0.80 in the assumption of the first- (n = 1) and
second-order (n = 2) convergences, respectively (see the solid circles in figure 3(a)). For
model C, A/16πM2 at t = 200M is 0.84 and 0.88 for n = 1 and n = 2, respectively (see
the solid circles in figure 3(b)). From these values the spin parameter of formed BHs, a, is
approximately derived from

A

16πM2
BHf

= 1 +
√

1 − a2

2
, (19)

where MBHf denotes the mass of the formed BH. To approximately estimate it, we simply use

MBHf = M − Mr>rAH − EGW, (20)

where EGW is energy radiated by gravitational waves. We find that EGW is about 1% of M and
simply use relation EGW = 0.01M . Then we obtain a = 0.57 and 0.52 for n = 1 and n = 2
for model A and a = 0.52 and 0.42 for n = 1 and n = 2 for model C, respectively. Thus,
spinning BHs of moderate rotation are outcomes.

The spin parameter of the formed BHs is much smaller than the initial value of J/M2 of
the system. One of the reasons is that the disc has large angular momentum approximately
written as 3MBHfMdisc, where Mdisc denotes the disc mass ∼0.8–0.9Mr>rAH . Here, the factor
3MBHf denotes a value of typical specific angular momentum around the formed BH. Denoting
the initial angular momentum by a0M

2 where a0 ≈ 0.73 and 0.65 for models A and C (see
table 1), the fraction of angular momentum that the disc has is ∼3a−1

0 MdiscMBHf/M
2. Thus,

for model A, the fraction is ∼20–30% and for model C, it is 10–15%. In addition, gravitational
waves carry away the angular momentum by ∼10% of a0M

2. Thus, the angular momentum
of the formed BH should be smaller than the initial total angular momentum of the system by
30–40% for model A and by 20–25% for model C. Therefore, the values for a derived above
are reasonable magnitudes.

In figure 4, gravitational waveforms for model C are shown. Gravitational waves are
extracted from the metric near the outer boundaries using a gauge-invariant wave extraction
method (see [16, 34] for details). From the values of R+ and R×, the maximum amplitude of
gravitational waves at a distance D is evaluated

hgw ≈ 10−22




√
R2

+ + R2×
0.31 km




(
100 Mpc

D

)
. (21)

Here, the maximum amplitude can be observed if the observer is located along the z-axis.
Figure 4 implies that the maximum amplitude at a distance of D = 100 Mpc is ≈5 × 10−22

since M = 5.26M�.
For tret ≡ t − robs � 120M (robs is the radius of extracting gravitational waves), inspiral

waveforms are seen. The amplitude increases and characteristic wavelength decreases with
time. The wavelength at the final phase of the inspiral is ∼25M indicating that the orbital
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Figure 4. + and × modes of gravitational waveforms for model C. tret and M denote the retarded
time and the ADM mass of the system, respectively. The amplitude at a distance of an observer
can be found from (21).

Figure 5. Evolution of averaged violation of the Hamiltonian constraint (a) for model A and
(b) for model C.

period of the ISCO is ∼50M (i.e. � ∼ 0.12M−1). This is in approximate agreement with the
third post-Newtonian results [31].

For 120M � tret � 150M , ring-down waveforms are seen. The characteristic wavelength
is ∼15MBHf, which is in approximate agreement with the wavelength of the quasinormal
mode. For tret � 130M , the amplitude of gravitational waves damps quickly even during
the dynamical formation of a massive disc. This is due to the fact that the degree of
nonaxisymmetry of the disc decreases on a very short time scale (∼20–30M). This indicates
that in the frequency domain, the amplitude of the Fourier power spectrum steeply decreases
in the high-frequency region.

Figure 5 shows the evolution of averaged violation of the Hamiltonian constraint. For
the average, rest-mass density is used as a weight (see [37] for definition) and the integral is
performed for the region outside apparent horizons. The figure shows that the Hamiltonian
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constraint converges approximately at second order. This result is consistent with the fact
that the region except for the vicinity of the BH is followed with second-order accuracy. As
mentioned before, on the other hand, the vicinity of the BH is evolved with first-order accuracy
in the present code.

5. Discussion

In this paper, we have presented our latest numerical results of fully GR simulation for merger
of BH–NS binaries, focusing on the case that the BH is not spinning initially and the mass ratio
of NS to BH is fairly large at 0.3–0.4. It is found that even with such high values of the mass
ratio, the NS is tidally disrupted only for an orbit very close to the ISCO and 80–90% of the
mass element is quickly swallowed into the BH without forming massive discs. The results do
not agree quantitatively with the prediction by the tidal approximation study. The reasons are
as follows. (1) In the tidal approximation, one describes NSs by Newtonian gravity. In general
relativity, gravity is stronger and tidal disruption is less likely. (2) The time scale for angular
momentum transfer during tidal disruption near the ISCO is nearly as long as the plunging
time scale determined by the gravitational radiation reaction and attractive force between two
objects. Hence before the tidal disruption is completed, most of the material is swallowed.

If the BH has a large spin, the final fate may be largely changed because of the presence of
the spin–orbit repulsive force. This force can weaken the attractive force between the BH and
the NS and slow down the orbital velocity, resulting in smaller gravitational wave luminosity
and longer radiation reaction time scale [38]. This effect may help massive disc formation.
The study of spinning BH binaries is one of the next issues. The fate will also depend on
the EOS of the NS [6] and the mass of the BH as well as on the velocity field of the NS.
Simulations with various EOSs and BH mass and with an irrotational velocity field are also
next issues.

In this paper, a small number of results for quasicircular states of BH–NS binaries are
presented. Currently, we are working on the computation of quasicircular states for a wide
variety of masses of BH and NS in the framework described in section 2. The numerical
results will be reported in the near future [26].
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[19] Brügmann B, Conzalez J A, Hannam M, Husa S and Sperhake U 2006 Preprint gr-qc/0610128
[20] Miller M 2001 Preprint gr-qc/0106017
[21] Taniguchi K, Baumgarte T W, Faber J A and Shapiro S L 2006 Phys. Rev. D 72 044008
[22] Grandclement P 2006 Preprint gr-qc/0609044
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