- 1. Hairy black holes and solitons in global AdS_5 arXiv: 1112.4447
- 2. Scalar field condensation instability of Ads BHS arXiv: 1007.3745
- 3. Black holes with only one Killing field arXiv: 1105.4167

energie atomique · energies alternatives

Institut of Theoretical Physics (IPhT)

CEA - Saclay

Pau Figueras, Shiraz Minwalla, Prahar Mitra, Ricardo Monteiro, Jorge Santos Ricardo Monteiro, Harvey Reall, Jorge Santos Gary Horowitz, Jorge Santos Recent Advances in BH dynamics, NITP, Kyoto, Japan 2012

Hairy black holes and solitons in global Adss

arXiv: 1112.4447

OD, Pau Figueras, Shiraz Minwalla, Prahar Mitra, Ricardo Monteiro, Jorge Santos • AdS Abelian Higgs model: AdS Einstein Maxwell gravity interacting with a charged massless scalar field

$$S = \frac{1}{8\pi G_5} \int d^5 x \sqrt{-g} \left[\frac{1}{2} \left(\mathcal{R}[g] + 12 \right) - \frac{1}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} - |D_\mu \phi|^2 \right] \qquad \qquad D_\mu = \nabla_\mu - ieA_\mu$$
$$\ell \equiv 1.$$

- Field content: gravity, Maxwell field and a charged complex scalar.
- Static and spherically symmetric solutions: expect a three parameter family of solutions parametrized by {M,Q,e}.

$$\mathrm{d}s^2 = -f(r)\mathrm{d}t^2 + \frac{\mathrm{d}r^2}{g(r)} + r^2\mathrm{d}\Omega_3^2, \qquad \mathcal{A} = \mathcal{A}_t(r)\mathrm{d}t, \qquad \phi = \phi(r)$$

• AdS Reissner-Nordstrom BH: $E, Q = E, Q (R, \mu)$

$$\phi(r) = 0, \ f = g$$

$$f(r) = \left(\frac{r^2}{\ell^2} - \frac{R^2}{\ell^2}\right) \left(1 + \frac{R^2 + \ell^2}{r^2} - \frac{2}{3}\frac{R^2\ell^2\mu^2}{r^4}\right), \text{ and } \mathcal{A}_t = \mu \left(1 - \frac{R^2}{r^2}\right)$$

Regular extremal limit, with near horizon geometry $AdS_2 \times S^3$, with $Sext \neq 0$:

$$0 \le \mu \le \mu_{\text{ext}}$$
 with $\mu_{\text{ext}} = \sqrt{\frac{3}{2}}\sqrt{1 + \frac{2R^2}{\ell^2}}$

- AdS Reissner-Nordstrom BH has two instabilities:
- 1) Superradiant Instability:

If a wave e^{-i ω t scatters off a charged black hole with $0 < \omega \le e \mu$,}

it returns with a larger amplitude - superradiant scattering

In AdS, the outgoing wave reflects-off infinity, and the process repeats itself.

Multiple Superradiance / Reflection leads to instability.

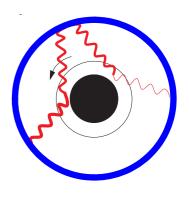
Can we estimate the instability onset?

The scalar modes that can propagate in the RN-AdS background, in the limit of very small R, are effectively the normal modes of global AdS: $\omega L_5 = 4 + 2p$. Lowest mode has p = 0. On the other hand, small extremal black holes require $\mu \leq \sqrt{\frac{3}{2}}$

Assuming that the instability first appears at extremality, we get superradiance condition:

$$4/L_5 < e\sqrt{\frac{3}{2}}$$

 \rightarrow Arbitrarily small extremal black holes suffer from the superradiant instability when $e^2 > \frac{32}{3}$



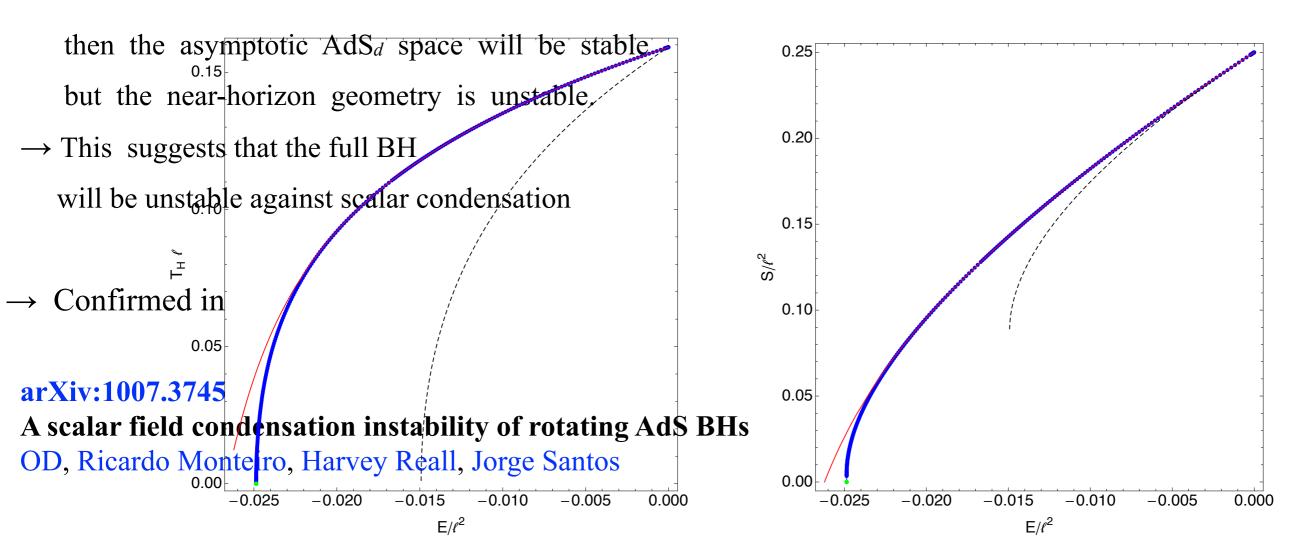
2) Near-Horizon scalar condensation instability:

• Consider charged massive scalar field: $\Box \phi - \mu^2 \phi = 0$ Normalizable modes \rightarrow scalar field must obey the Breitenlohner-Freedman (BF) bound: $(d-1)^2$

$$\mu^2 \ge \mu^2 |_{BF} \equiv -\frac{(d-1)^2}{4\ell^2}$$

• Take *any* extreme, asymptotically AdS_d BH whose near-horizon geometry contains an AdS₂ factor w/ radius *L*_{AdS₂}:

the BF bound associated to this AdS_2 , $\mu^2 |_{NHBF} = -1/4 L^2_{\operatorname{AdS}_2}$ is different from the BF of AdS_d . In particular if: $\mu^2 |_{NHBF} > \mu^2 \ge \mu^2 |_{BF}$



2) Near-Horizon scalar condensation instability:

• Return to the particular RN-AdS case where we start with massless scalar. linearized equation for charged ϕ on NH RN-AdS reduces to eq for a massive scalar with effective mass:

$$m_s^2 l_{AdS_2}^2 = -\frac{3e^2 R^2}{8} \frac{1+2R^2}{(1+3R^2)^2}$$

• AdS₂ is unstable whenever it violates the 2d BF bound: $m_s^2 l_{AdS_2}^2 < -\frac{1}{4}$

$$\rightarrow$$
 extremal RN-AdS is unstable whenever

$$e^2 \ge \frac{2(1+3R^2)^2}{3R^2(1+2R^2)}$$

• The RHS is a monotonically decreasing function of R. At large R, this reduces to

$$e^2 \ge \frac{2(1+3R^2)^2}{3R^2(1+2R^2)} \ge 3 + \mathcal{O}(1/R^2)$$

It follows that large extremal RN-AdS BHs are unstable when $e^2 > 3$.

The endpoint of the instability involves a condensate of the scalar field.

By the Hawking area increase theorem it also has a horizon.

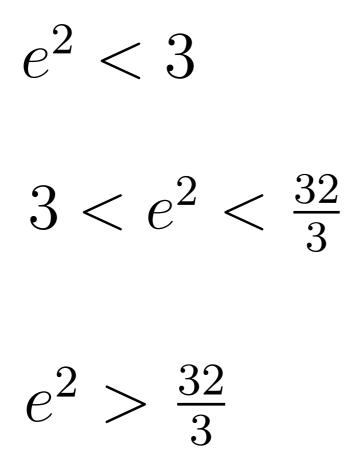
Consequently, the endpoint of this instability is a hairy black hole.

RN-AdS BHs (apparently) stable for $e^2 < 3$

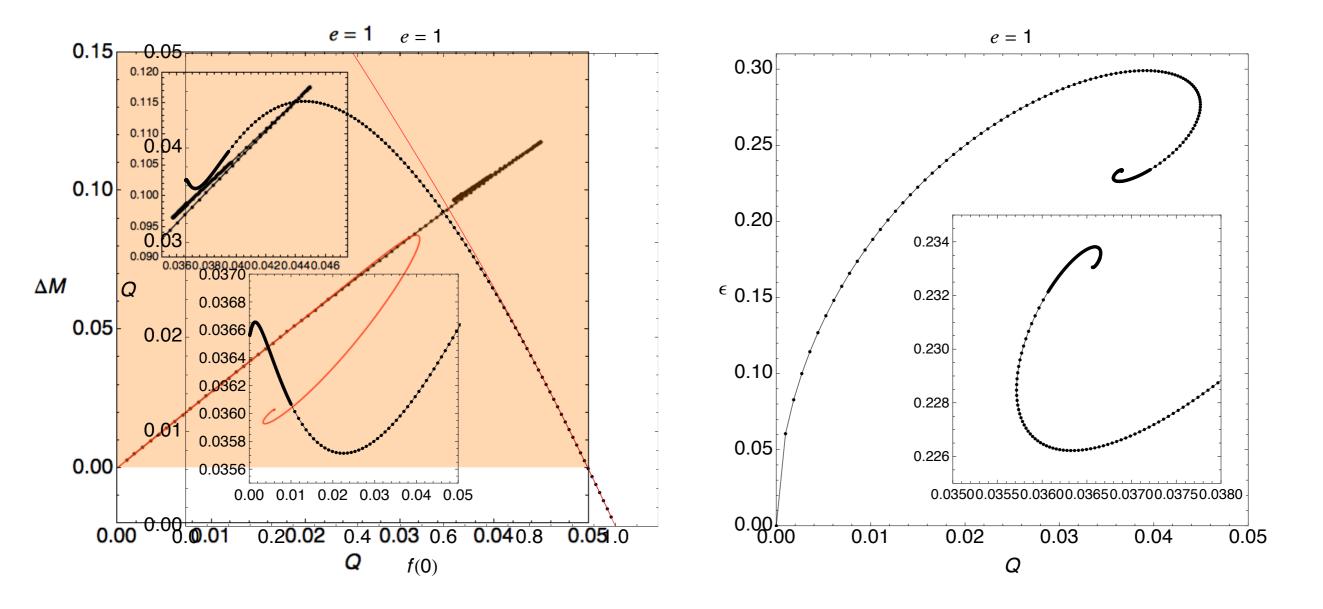
Very large extremal RN-AdS BHs are unstable when $e^2 > 3$.

Arbitrarily small extremal black holes suffer from the superradiant instability when $e^2 > 32/3$

 \rightarrow This suggests we should look into 3 regimes:

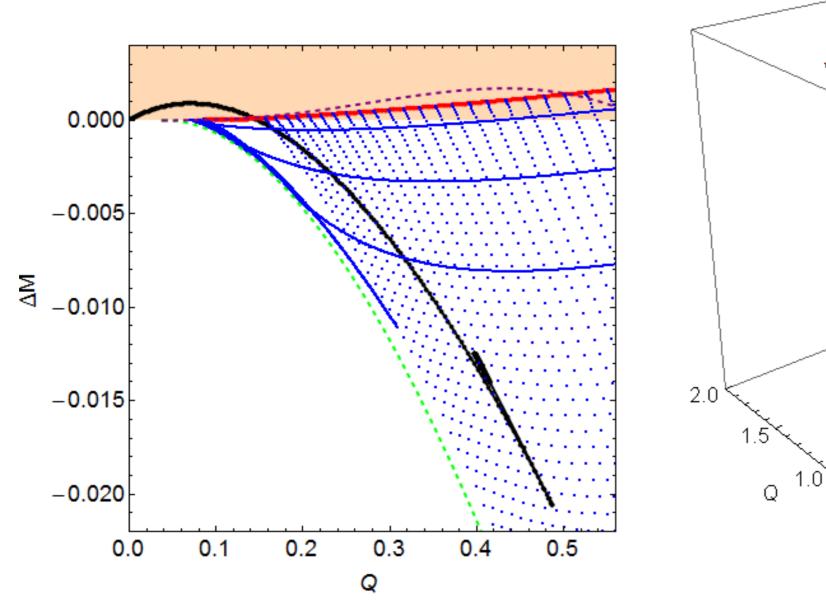


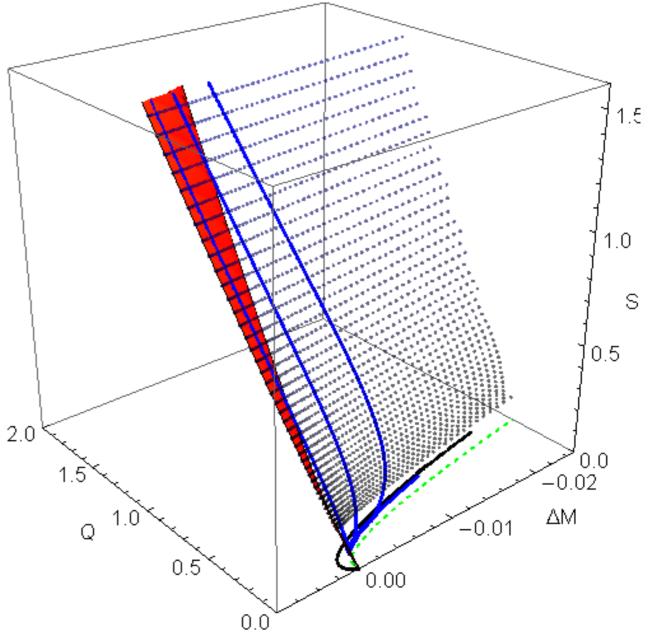
 $e^2 < 3$



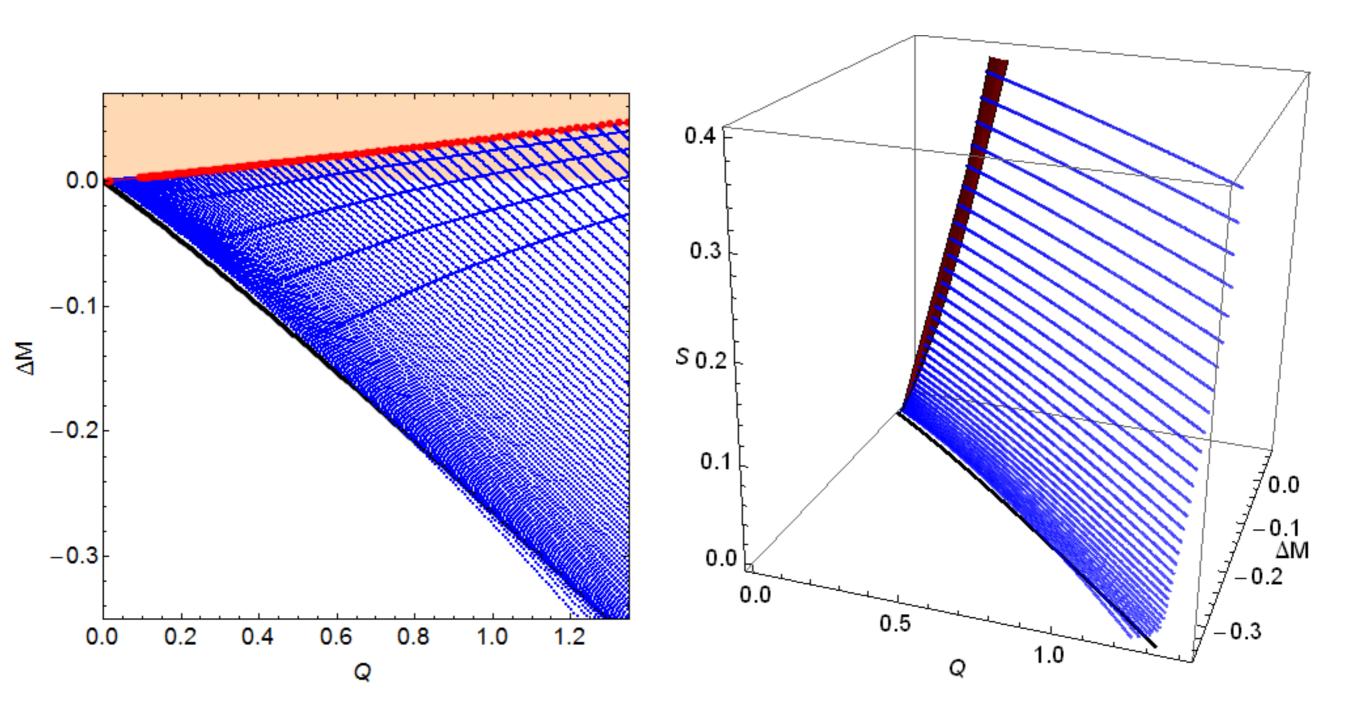
 $\Delta M = M - M_{ext}$, where M_{ext} is the mass of the extremal RN AdS BH with the same charge Q

 $3 < e^2 < \frac{32}{3}$





 $e^2 > \frac{32}{3}$



CONCLUSION:

- First non-linear construction of Hairy BHs that bifurcate from original unstable BH family at the superradiant / NH scalar condensation merger curve
- Complex but interesting BH / soliton phase diagram structure ... Universal?
- Study Time evolution of these instabilities to find their endpoint.

Black holes with only one Killing field

arXiv:1105.4167

OD, Gary Horowitz, Jorge Santos

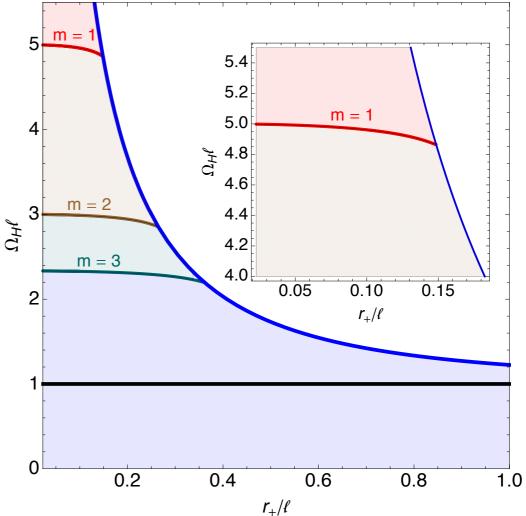
• d=5 AdS Einstein gravity minimally coupled to 2 complex massless scalar fields Π :

$$S = \frac{1}{16\pi} \int_{\mathcal{M}} d^5 x \sqrt{-g} \left[R + \frac{12}{\ell^2} - 2 \left| \nabla \vec{\Pi} \right|^2 \right] \qquad \qquad G_{ab} - 6\ell^{-2} g_{ab} = T_{ab}$$
$$\nabla^2 \vec{\Pi} = 0,$$

• Look for boson star and BH solutions of this theory whose gravitational and scalar fields obey the ansatz:

$$ds^{2} = -f g dt^{2} + \frac{dr^{2}}{f} + r^{2} \left[h \left(d\psi + \frac{\cos \theta}{2} d\phi - \Omega dt \right)^{2} + \frac{1}{4} \left(d\theta^{2} + \sin^{2} \theta d\phi^{2} \right) \right]$$
$$\vec{\Pi} = \Pi e^{-i\omega t + i\psi} \left[\begin{array}{c} \sin \left(\frac{\theta}{2} \right) e^{-i\frac{\phi}{2}} \\ \cos \left(\frac{\theta}{2} \right) e^{i\frac{\phi}{2}} \end{array} \right].$$

- MP-AdS with equal J is case Π=0, g = 1/h. Unstable to m-superradiant modes above m-line. Blue curve Extremal MP
- Boson stars are smooth horizonless solutions (with harmonic time dependence)

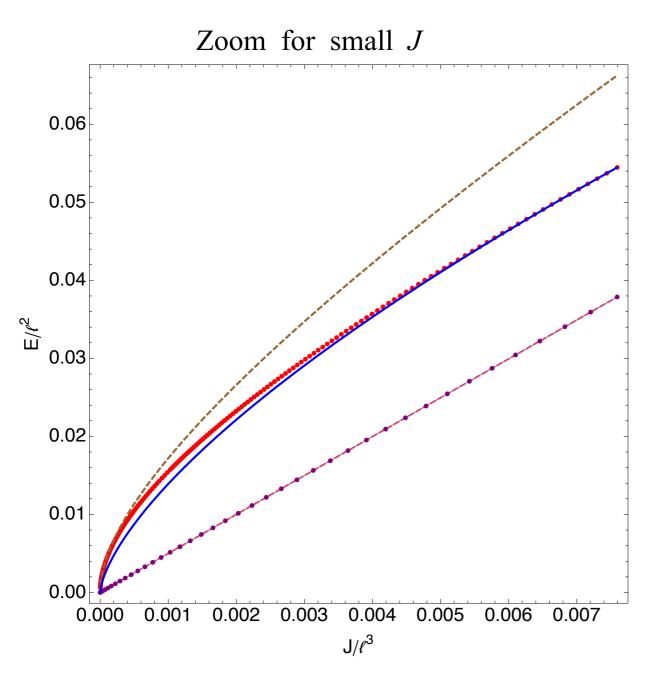


• Symmetry of the solution must leave both the metric and matter fields invariant: This metric has 5 linearly independent Killing vector fields, namely ∂_t , ∂_{ψ} and the three rotations of S². However, the only linear combination which leaves Π^{\rightarrow} invariant is: $K = \partial_t + \omega \partial_{\psi}$

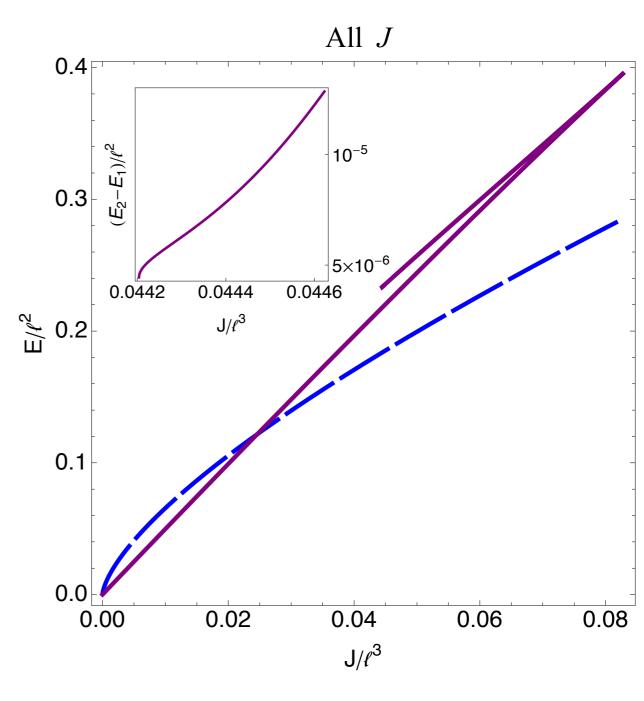
$$\mathcal{L}_K g = 0$$
 and $\mathcal{L}_K \Pi^{\alpha} = 0$ for $\alpha = 1, 2$

• Not usual to have solutions where matter fields have much less symmetry than the metric ! Doublet scalar field ansatz is special; it conspires in such a way that T_{ab} only depends on radial coord:

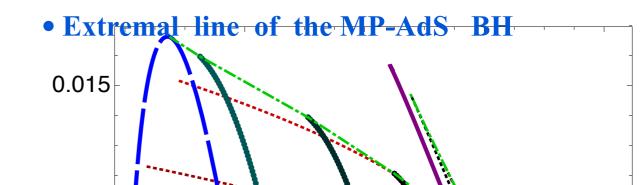
$$T_{ab} = \left(\partial_a \vec{\Pi}^* \partial_b \vec{\Pi} + \partial_a \vec{\Pi} \partial_b \vec{\Pi}^*\right) - g_{ab} \left(\partial_c \vec{\Pi} \partial^c \vec{\Pi}^*\right)$$

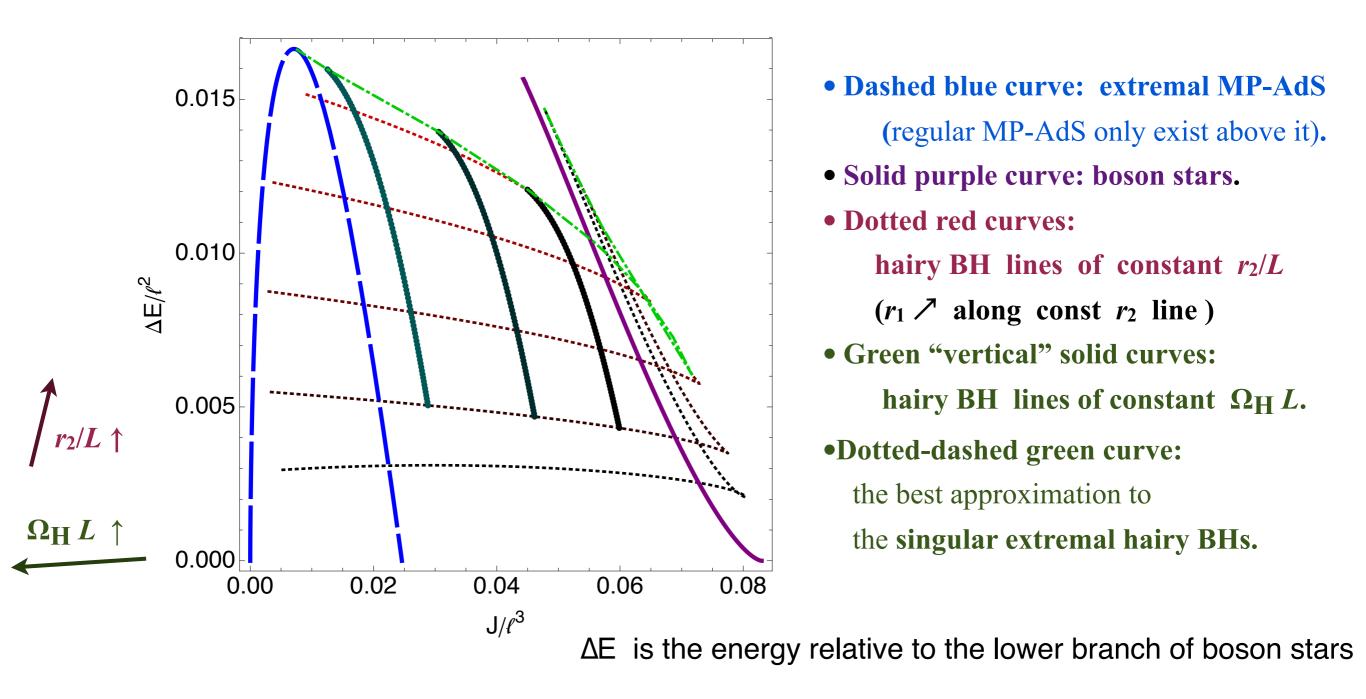


- Analytical estimate for the merger line, Exact merger line,
- Extremal line of the MP-AdS BHs,
- Analytical estimate for the bosons stars Exact data for the bosons stars (Dots).



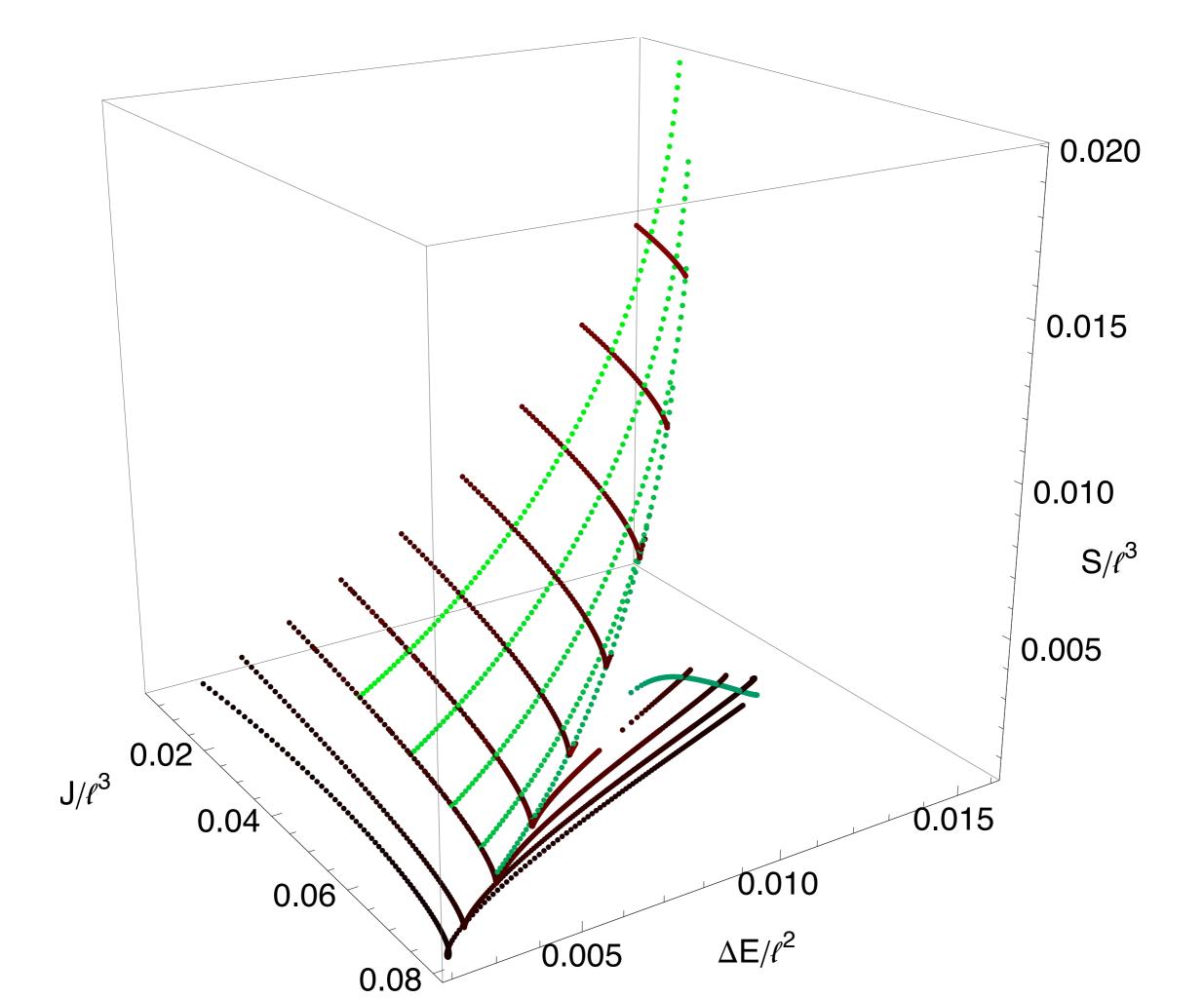
• Energy of the boson star as a function of its angular momentum





- Close to the merger, the $S_{MP} < S_{hairy BH}$. $S_{MP} = S_{hairy BH}$ at merger \rightarrow 2nd order phase transition.
- However, for sufficiently large J, the MP-AdS coexist with hairy BHs, and $S_{MP} > S_{hairy BH}$. Moreover, the transition is now 1st order, because these solutions never merge for this range of J.
- In sum, in a 3d plot of $\{S/l^3, \Delta E/l^2, J/l^3\}$:

 $J < J_{crit}$: the hairy BH family is a 2d surface bounded by the merger line and the boson star curve $J > J_{crit}$: Surface continues but is now bounded by the boson star line & extremal hairy BH curve. This 2d surface never intersects with itself and has a sequence of (regular) "cusp lines".



CONCLUSION:

- BHs with a scalar field condensate & orbitating around horizon.
- First example of stationary BH with single isometry:

it is stationary but not time symmetric nor axisymmetric

- This seems to contradict rigidity theorems [Hawking,'72; Hollands, Ishibashi, Wald, '06; Isenberg, Moncrief, '06] which show that stationary black holes must be axisymmetric...
 - (RT assumes \exists stationary KV ∂_t that is **not** normal to $H \dots \Rightarrow \exists \partial_{\psi}$)
 - Well, these theorems are not applicable to these BHs, since our (stationary) single KVF generates the horizon, ie it is normal to horizon

• What is the endpoint of the superradiant instability in this system ??????