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Black holes in the brane world: Time symmetric initial data
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We numerically construct time-symmetric initial data sets of a black hole in the Randall-Sundrum brane
world model, assuming that the black hole is spherical on the brane. We find that the apparent horizon is cigar
shaped in 5D spacetime.
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[. INTRODUCTION horizon is nontrivial in the bulk. We will determine the ap-
parent horizon on the brane and show that the black hole is
Motivated by the Horava-Witten modgl], the so called cigar-shaped as conjectured|[it0].
brane world model has been actively investigate.
Among several models, a simple, but very attractive model Il. FORMULATION AND RESULTS

was recently proposed by Randall and Sundia]. Ac- We consider time symmetric, spacelike hypersurfaces,

cording to their scenario, we are living in a 4D domain wall . ; o .
. . . >, in the brane world model assuming the vanishing extrin-
in 5D bulk spacetime. The noteworthy features of the|rSiC curvature: i.e

model are that in the linearized theory conventional gravity

can be recovered on the braf@-7] and that a homoge- H =@V t =0 2.1

neous, isotropic universe can be simply described if we con- mr wr

sider a 4D domain wall moving in the 5D Schwarzschild—wheret* is the unit normal timelike vector t8, and (4)V#

anti-de Sitter spacetimie]. is the covariant derivative with respect to the 4D metric on
One of the most nonlinear objects in the theory of gravitys, . In this case, the momentum constraint is satisfied trivi-

is a black hole, which should be also investigated to underally, and the equation of the Hamiltonian constraint becomes

stand the nature of the models in strong fields. However,

because of the complexity of the equations, any realistic, WR=16mGs(A+ )T, t41"), (2.2

exact solutions for black holes have not been discovered in

the brane world model, even with help of numerical compu-where (R is the Ricci scalar o, andGs(= &/8m), A

tation so far. We only know that the effective 4D gravita- and ®)T ,, denote the gravitational constant, negative cos-

tional equation on the brane is different from the Einsteinmological constant, and energy-momentum tensor in 5D

equation[9] (see Appendix A so that the static solution for spacetimdcf. Eq. (Al)]. We choose the line element &n

a nonrotating black hole should not be identical with the 4Din the form

Schwarzschild solution. Indeed, a linear perturbation analy-

sis [5,7] shows that a solution of gravitational field outside

self-gravitating bodies on the brane is slightly different from

the 4D Schwarzschild solution. Chambk al. [10] conjec-

ture that the topology of black hole event horizons would bg, 1 are |=J—xZA/6, z (=1) denotes the coordinate or-
spherical with the cigar-shaped surface in the 5D Spacetim‘?hogonal to the5brar'1e and(=0) is the radial coordinate on

Ho;lr\:t:}t\r/]?sf' r;Otgn%sthﬁtr)setesrledatg]x;rdsik;ﬁ‘t?::?\aslilgt.ent stu diethe brane. We assume that the brane is locatee-4t. Note
paper, P . that we simply choose this line element for convenience of
for black holes in the brane world, we numerically compute

a black hole space using a time symmetric initial value for-the analysis. In this paper, we focus on a black hole which is
o P 9 yn . : spherical on the brane, i.ey=(r,z). Then, the explicit
mulation; namely we solve the 5D Einstein equation only on

a spacelike 4D hypersurface. Thus, the black hole obtalne]:?r.m of_the Hamiltonian constraint in the buffor z>1) is
. . . . ._Written in the form
here is not static nor the exact solution for the 5D Einstein

equation, implying that we cannot identify the event horizon.

1
dI2=S[12dZ+ g (dr?+12dQ)], 23
Z

However, we can investigate the property of the horizon de- W E,/,r T i{(&%_ §(9 ¥ | y*+3(0 ,/,)2,7,,3}
.. . . . . r 2 4 z z z
termining the apparent horizon which could give us an in- 21
sight on the black hole in the brane world. We focus on the 2
Randall-Sundrum’s second modél], and assume that the _ ﬁ(s)T thty (2.4
black hole is spherical on the brane, but the shape of the 4 e '
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where '=d/dr, and )7, is the energy-momentum tensor I e
in the bulk, which is introduced for numerical convenience. r ]
Equation(2.4) is an elliptic type equation and should be 0.8 - 7
solved imposing boundary conditions a1, z>1, r=0, C ]
andr>|. The boundary condition a=1 is derived from e 0.6 - 7
Israel’s junction conditiorf11] as (see Appendix A for the ™~ C ]
derivation 04 7
¢~ ——-AH on the brane =

92hl2=1=0. (2.5 0.2 5;;“} ]

_\ 11 I 111 | - ‘ 111 ‘ Il \_

The boundary conditions at>1 andr>1| are obtained from 0 {1 12 14 16 18
the linear perturbation analysisee Appendix B Forr>1 ' L ’
andr>lz, it becomes

AVl

FIG. 1. Location of the apparent horizons on the bréilked
circle) and in the 4D spacésolid line). Artificial matter is confined
, (2.6) i the region shown by the dashed line.

2
+O((I1/r)%

1/R
1+—?

1+ MGs
y= 2

2r

=0.2R, and both apparent horizons on the brane and in the
"bulk exist. We note that the results are essentially the same
for 0.25=M/R=<0.5. In Fig. 1, we show the location of ap-
-312 parent horizons in the bulk and on the brane. The apparent
(2.7) horizon in the bulk is apparently cigar-shaped. Due to this
cigar-shape the circumferential radius of the apparent hori-
zon is different depending on the choice of the circumference
To determine the existence of a black hole, we search foj the bulk. In Fig. 2, we show that the profile ¢f- 1 on the
the apparent horizon. Here, we determine two horifd2%  prane. For>R, —1 behaves ad/2r, implying that the
One is defined to be the spherical two-surface on the brangolution approximately agrees with that in the 4D Einstein
on which the expansion of the null geodesic congruence conyravity, i.e., the bulk effect is small. However, the existence
fined on the brane is zefd3], i.e., of the bulk is significant for ~R as expected. Indeed
—1 deviates fromM/2r with decreasing. This effect is in
p Z—(Zlﬁ’ n llﬂ) —0 2.9 particular important for the location and area of the apparent
3 e r ' ' horizon on the brane: In the case of 4D gravity without bulk,
the apparent horizon is located ;= M/2 with the area
The other is the apparent horizon in full 4D space, which isAan= 16mMZ2. However, in the brane world model, they take
defined with respect to the null geodesic congruence in fulllifferent values in generdlin this exampler ,4=0.9M and
5D spacetime and satisfig€3] A,y=88.6M2, and the coefficients converge to well-know
. 4D values(0.5 and 16r) with increasingM, implying that
0,=“V;s'=0, (2.9  the effect of the existence of the bulk becomes less impor-

_ tant]
wheres' is a unit normal to the surface of the apparent ho-

rizon. Explicit equation for determining this apparent hori- . SUMMARY
zon is shown in Appendix C.

The procedure of numerical analysis is as follows. First, We numerically computed time symmetric initial data sets
we artificially put the matter otghz(5)7-wt#v>o in the of a black hole in the brane world model, assuming that the
bulk. This method is employed because we do not have to
consider the inner boundary condition of black holes with
this treatment. As long agy, is confined around the brane
and inside the horizon, it does not significantly affect the 1
geometry outside the horizon. Then, we solve ), and
try to find the apparent horizon both on the brane and in the

whereG,=Gs/l, M is the gravitational mass on the brane
andR=(2/3)"4. Forz>1,

2

g4 3CME LT
b= z 7°R?

10 T

r=M/2 ]
<«——r=AH(brane)]

,J

1

bulk. When the distribution ofy, is sufficiently compact, the T
apparent horizons exist. It should be noted that two horizons - Dust
do not coincidently appear. In some cases, the apparent ho- 0.01 &
rizon on the brane exists although that in the bulk does not. ]
Here, we show one example of numerical results. We set 0.001 bl bl 4yl
G,=1. In this example, an artificial matter is put for<® 0.01 01 1 10
<0.2R and 1=z=<1.2. Equation(2.4) is solved using a uni- r/R
form grid with grid size 12081200 forr andz directions, FIG. 2. Profile ofy— 1 on the branésolid line). Location of the

which covers a domain with€r/R<17.1 and k2z<18.1.  apparent horizon on the brane is shown. The dashed line denotes
In this case, the gravitational mass on the braneMis ¢—1=M/2r.
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black hole is spherical on the brane. As has been expected, From Eq.(A3), we find that the Minkowski spacetime is
the black holgapparent horizonis cigar-shaped in the bulk realized on the brane whéy,,=0 andA,=0. In this paper,
[10]. we setA ,= 0 to focus on asymptotically flat brane. Then, the

We remind that we only present time symmetric initial junction condition at =0 is rewritten to K,,
data of a black hole space. This implies that the black hole is=—(1/)q,,,. In the case when we choose the line element
not static and will evolve to other state with time evolution. as Eq.(2.3), the junction condition reduces to E@.5).
The quantitative features of the final fate could be different
from the present result. S_elf—consistent analysis for Stat?(APPENDIX B: ASYMPTOTIC BOUNDARY CONDITIONS
black holes should be carried out for future to obtain a defi-
nite answer with regard to black holes in the brane world. To specify the boundary condition at infinities, we inves-
However, we believe that the present result provides us tigate the linearized equation of E®.4):
guideline for such future works.
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¢2—2WG4|f d®x'dz’ G(x,z;x",z" ) pn(x',2"). (B2)

APPENDIX A: THE ESSENCE OE THE BRANE WORLD Assuming thap, is nonzero only in the small region around
) ) i i the brane, we can derive the relevant Green functiofbhs
We briefly review the covariant formalism of the brane

world [9]. For the matter source of the 5D Einstein equation, Pk
®G,,=«x5(®71,,-A®g,,), we choose the energy- G(x,z;x',2") = —f _eik (x)
momentum tensor as (27)
OT = 000[ =Ny, + T, 1+ Oy, (A N f gy Un(@ (1)
k2 Jo k24 m?

where y=11Inz \ is the tension of the braneg,, is the
induced metric on the brane, att¥T ,, is the energy mo- =Go+ Gy, (B3)
mentum tensor on the brane. Due to the singular source at

x=0 and theZ, symmetry, we can derive the Israel's junc- where u,,(z) is the mode function given from the Bessel

tion condition aty=0 as functionsJ, andN,, as
1 1 1
K== 5KENG,~ Ekg( O1,,- 39075, Ko (2)=7 [mR J;(MRIN,(MR2—N;(MR)J,(MR2
m - )
o 2l J[amRTP+[NyMR))?
whereK ,,=D,n,, andD, andn* are the covariant deriva- (B4)

tive with respect tay,,,, and the unit spacelike normal vector

to the brane. In the text, we consider the cases in whiclvhereR=(2/3)*4. G, and Gy, are the Green function of
)T,,=0. Using (4+1) formalism, the effective 4D equa- zero and KK modes, respectively. From E&2) we can
tion on the brane has the form derive the asymptotic boundary conditions shown in the text.

®G,,=-A4q,,—E,,, A3
wr 4ur™ Eur (A3) APPENDIX C: APPARENT HORIZON IN THE BULK

where *'G,,, is the 4D Einstein tensor on the brane, We derive the equation for the apparent horizon in the

bulk. After we perform the coordinate transformation from

1
A4=§K§ A+ gxé)\z and E,,=®C,,,,n"n’, (r,2) to (x,6) asz=1+x|cosd andr=Ix siné, the surface
(A4) of the apparent horizon is denoted ky-h(#). Then, the
nonzero components &f are written as
where®)C,,,,, is 5D Weyl tensor. In the above, for simplic-
ity, we set ®)7,,=0. Equation(A3) implies that we can sx=C and sy=—Ch,, (CY

considerk,, as the effective source term of the 4D Einstein .

equation on the brane, and as longEgsg, is not vanishing, where C[E¢//2C/_(1+x|cose|)] is a normalization constant
the geometry on the brane is different from that in the 4Dcalculated froms's;=1, andh ,=dh/dé. Then, the equation
gravity even in the vacuum case. Only for very special caséor h can be written to the following ordinary differential
such as for the black string soluti¢h0,14, E,,=0 holds.  equation of second order:
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d’h  h? At 3 y h,
R _rT - A H 4 _ Y A v
T p + h(1+hlcosdl) + = (smzeJm// cos 60— (1— y*)sin 6 cosd h )
L Aot hsiné ) . h,
1l 497 . 4 _ 4 v
+h (4 p +31+h|cosﬁ| +2cotd+D || (1—¢*)sind cosd— (cos 6+ i sir? 0) 5
+4¢P9,p(cog 9+h~tsing cosoh ;) +h~%(1—¢*)sindcosoh ,+h~1(1—y*)cog26) —4h~1sin 6 cosOy>a sy
h
+{(1— y*)sin(26) — 4 sir? 9¢3a9¢}h—'2"1, (C2)
where
D=—C?[(1—¢*{1—h"2n%}singcosd—h~}(1—y*)cog20)h 4+ 243 sh(cosd+h~sinbh 4)?]. (C3

Equation(C2) is solved imposing boundary conditionséat 0 and#/2. In the limit #— 0, we impose the following boundary
condition:

h=hy+h,6°+0(6°%), (CH
whereh, is evaluated ak=h, and #=0 from the following equation:

hg

276

8o 3
1 ho(1+hg)

+£+i(1— 4)} (C5)
& T |

At 0= /2, the boundary condition is imposed lag=0.
Note that in the limitd— /2 (i.e., on the brane Eq. (C2) is written in the form

d?h 12h? (4o, 2
=Nt — | —— ],
de W ¢ h

where we uséh ,2=0 and the relation?,y=D=3,C=0. Note that the equation which the apparent horizon on the brane

satisfies is 4,4/ y+2/h=0 [cf. Eq. (2.8)]. Thus, unlessi>h/d#?>=h at = /2, the apparent horizon on the brane cannot
coincide with that in 4D space. Note that the black string solufidh14 exceptionally satisfied?h/d¢?=h at 6= /2.

(C6)
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