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Cimvilational waves from binary peuton stacs in guasicquilibivm circolar orbils are compulcd vsing an
approximale melbod which we propose in thiz paper. In the Arsl slep of this method, we prepare generml
relativistic imolational binary newiron stars in a quasicquilibriom circular orbit, neglecling grmvilational waves.
We adopt the so-called conformal flatness approximation for o three-meine 1o oblain the quasiequilibrium
slales in this paper. [n the second slep. we compube gravialional waves, solving linear perurbation eqoations
in the backpground spacelime of the queziequilibriom siates. Comparing nomerical resulis with posi-Mewlonian
wavelorms and luminasity of grovilabonal waves from iwo point masses io circular orbils, we demonsirale that
this method can produce sccurmte woveforme and luminosity of grvilalional waves, It i< shown that the effectz
oof tidal defarmation of meotron siars and wrong pgeneral relativistic gravily modify the posi-Mewbanian resulis
for compact hinary peotron stars in close orbils. We indicate that the magnitode of o syslematic emor in
quasicquilibriom siales aswociated with tbe confiormal Aatness approximation is fairdy large for close and
compact hinary neutrom stars. Severn] formolations for improving the accomey of gqoasicgoilibrinm slales are

o,
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L INTROCTION

The lazi stage of inspiraling binary neutron stars toward
meTger, which emits Er.nrilu.ljunu.] witves of |-|1:\'.]|.|.-|.'n|:3,r be-
taween ~ 10 and - 1000 Hz, is one of the most promising
sources of kilomeler-size inlerferometric gravitational wave
delectors such as the Laser Inberfemmetric Cravitational
Wave Observatory (LIGO) [1]. The detection of graviiztional
waves from the inspiraling binaries will ke achieved vsing =
matched flte ri.n.g. I.-|.'|:]1ni|:|U|: in the daia :Ln:||3.r5i:, For which it
is necessaTy Lo prepare thearetical te rnp]u.ll:s al Er.n']luli.-::-nu]
warees. |his Fact has wrged the community of general relativ-
islic astrophysics 1o derive highly sccumile wavelorms and
luminu:]l_'p' al’ Eluviluljunul waves rom compacl binarie=.

For an i:u.rl_'.' inspi:r.:linE slape in which the cabital SEpar-
Lican . i= =4 R where B denoles noutron star radivs and in
which the cobital velocilty v is much smaller than the speed
al light o, tidal effecis from companion stars and geneml
relativistic elfects betwesn bwo stars are weak enough Lo ne-
glect the finile-size effoct of newimon stars as well as o allow
us o adopt a posi-Mewionian approzimation. For this reason,
post-Mewilonian studies joinily wzing point paricle approxi-
maticns for compacl |.1|.'l_-h.'|:l.". have been carried oul l'l}' soveral
groupe, producing a wide variety of successful resulls (e.g.,
[2-T]). Howewver, for closer orbits such as For v, =48 and
v=cf3, the tidal effect is likely o become imporant, resuli-
ing in deformation of newlron stars and in the modification of
the amplitude and lumincsity of graviiational waves. Further-
mee, genenal relativistic effects bebween bwo stars ame so
significant that convergence of post-Mewlonian expansion
hecomes very slow [B]. These facts imply that, for preparing
thearetical templates for close cobits, fully general relativis-
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tic and hydredynamic ireaimenis for the computation of bi-
nary crhils and Er.w]luli.unu] waves ermission ans Tl HE o

[Ising the qL1ud.n1pc:-|t formula uJ-Er.Jv]luli.-::-nu] wive lumi-
nosity dEdE and the Mewionian formula for the binding
energy bebween two point masses, E,, the mtio of coales-
cence tme scale dus to emission of gravilational waves
E NAdEfr) [9] to the orbital period for binaries of equal
mass in circular orbits is approximately wrilten as

(r_ et R i o2 ,I:.'J
»J_l|mh_1_ ~til = . (1)

where H.. i= the total mass and & Er.nrilu.ljunuJ constanl. The
cllects of ECI'IL':I'U] r|.'|:|Li1.']l_'r and lidal deformation can shorten
the coalescence time scale by a factor of several (see Sec. V),
Ful For most of clome orbite, the emiz=ion time scale iz still
longer than the orhifal period. This implics that binary cobils
may be approsimaled by a gquasiequilibriom circular orkit,
which ww here define as the orhil for which the coalescence
time =cale i= longer than the orbital pericd.

Several approximate methods with regard 1o the compu-
falion of the quasiequilibium stales and asociated gravila-
tional waves have been recently presenied by several groups
[L0-12]. All these methods require one to solve the Einstein
i:quuli.-::-n l'l}' direct time inll:E,IT.ll]lJl'l and hence L'ch1i.|1: Loy ez
form a large-scale numerical simulation. In [10.11], mew for
malisms have been proposed to compule the lale inspimling
stage of binary black holes, For which it is likely & be nec-
essary o perform numerical time inlegration for obtaining a
realistic quasiccuilibrivm sequence. On the olher hand, the
purpose for the authors of [12] is o compute gravitational
waves from a fxed hackground specetime of a compuiable
quasicquilibrivm stale such as thal of binary peutron stars,

2001 The American Physical Society



MASARL SHIBATA AND KOIT URYLI

Howewer, so far, the bwo fomalisms have nol been applisd
vel [10.11]. and the other method has not succeeded in an
accurabe compulation of gravitatiocnal wavefcoms becavse of
restricted computational rescurnces [12]. To adopt these meth-
ods in accumtely computing gravilational waves, it is neces-
sary to develop mbust compuiational techniques as well as o
prepare sufficient compuiational esownces for a large-scale
simulation.

The puwrpose of this paper iz Io compute gravitaticrsml
warees [om binary peutron stars in quasiequilibriom siabes, &
guasicquilibrivm sequence of binary neubon stars can ko
construcked charictberizing the sequence in berms of con-
served guantitics such as baryon rest mass and vorlicity. In
addition, some approximate formulations and numerical
techniques have been already developed for the computation
of such quasiequilibrium solutions [13-17]. These Facis im-
ply that we may avoid performing direcl time evolution of
the Einstein and hydl.‘-::-d:,rnamii: L'quali-::-ns For cnhlaining hi-
nary aeubton stars in quasiequilibrium. Chly in compuling
gravilaticnal wawes do we need to integrate the Einslein
equation wsing the quasiequilibrivm solution as a source.
From these remsons, we follow an idea of [12], butl we pro-
pose a more syslematic approsimate foomalism in which it s
possible to compute wavelforms and luminosity of gravita-
ticnal warves with better accumcy vzing well-known compu-
taticinal technicues and cheap compuiational costs,

Our method is in a sense similar to the standard posi-
Mewionian method for the computation of grmviiational
warwes Trom binaries of lwu-]:u]nl masses in circular orkils
[3.4]. Thus, before proceeding, let us briely review an oui-
line of the post-Mewbonian method. [n the posi-Mewlonian
calculation, the procedure is divided into two steps: In the
first step, the quasiequilibrium circular orbils of binaries ane
delermined wsing post-Mewbonian equations of motion for
bwo poinl masses, neglecting mdiation waction lerms of
gravilalicnal woves, Meglect of the radiation reaction is jus-
tified for most of obits for which the rdiation reaction time
scale is longer than the orbiial pericd as shown in Fg. (1-1).
Adler the hinal.'_l.' cabils are determined, Er.w]luli.unu] WRAYES
are calculated in a puxl—plurﬂ.‘:xi.ng.; one ]nl.-l.'g:rull.': the prsl-
Mewlonian wave =] uaticns For E:ruv]luli.-::-nul wuves, subatitul-
ing the matter feld and azssociated gmvitational Geld of qua-
sigquilibrium  simtes as  the sowce  foms. Afber  the
computation of the grvitational wave luminosity, one can
compute the mdiation reaction o a quasieguilibivm circular
orkit 1o debermine a new orbit. By repeating this procedure,
one can determing an evolulion of a binary orbit due to -
diation reaction of gravitational waves and assecinled gravi-
taticnal wave train.

As in the post-Mewicnian method, in our foomalism, gua-
xi.-l.'qui.li]‘.-ri um stale= ars -:|.1rr.||:||.|.l.cl:| in the firsl Fu'\-::-cL'd.un.' A%
m.1rr.|inE that Er.nr]luli.unu] warves are absent. As a frsl step af
the development of cur new scheme, we adopt the so-called
conformal Halpess approximation for computation of the
gquasicgquilibria in this paper. After computation of the quasi-
equilibrinm siabes, we integrate the wave equalion for gravi-
taticnal waves (derived from the Einstein equation in Sec.
W), inpuiting the gravilational and matier felds of the gua-
sicquilibrium states as the sounce terms. The diffeence be-
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twcen the posl-Newlonian method and ours is that we Tully
fake inlo account general melativistic effects (wnder the
adopled approximate formulation) and hydmodynamic, tidal
deformation effects. As is shown later, these bao effects play
imporiant roles for compact bipary noubon stars in close
crbils

Aoword of cawtion is appropriale here: We choose the
conformal fainess approximation for the quasiequilibrivm
soluticns simply becavse ol a pragmalic meason that we cur-
r|.'|.'|l|._',' u.dupl this appl.'-::q:l:]muli.-::-n in numerical cumpnluli-::-n. I
wonnld be possible to extend this work, modilving the Formal-
ism for the gravitational feld of the quasiequilibrium back-
ground solulions (see discussion in Sec. W), The purpose in
this paper is to illustmle the robustness of our new frame-
wok.

The crganization of this paper is as follows. In Sec. I, we
describe the Einstein equalion in the presence of a helical
(helicoidal) Killing wecior [of. Eq. (2.1)]. In deriving the
cguaticns, we do pol consider any approximation and as-
sumption excepl For the helical symmetry. We will clacily the
structure of the Einstein cqu:ll]un in the Fresonce al the he-
lical symmetry. In Sec. I, we bricflly describe the gauge
conditions which are svited for computing gravitalional
waves from hinary neutron stars In quasiequilibrivm orbils,
In Sec. IV, after briel wview of the conformal fainess ap-
proximation and hydresialic equalions for a solution of qua-
sioquilibrivm stales, we introduce a linear approsimation and
derive the equations for computation of gmaviiational waves
from the quasicquilibriom siates. In Sec. W, we numerically
compule gravitational waves from inotational binacy neutron
stars in guasiequilibrivm circular cobiis. First, we calibruis
cur method l'l:.' n:-::-mpal.'ing the numerical resulis with post-
MNewtonian formulas For gmvilaliun:ﬂ waves from lwo |:l-::-in|
mames [1R], sdopting weakly pravitating binary nevbron
stars. We will demonstrate that our mesults agree well with
post-Newtonian analytic formulas [3]. Then, gravitational
waves [rom more compact binares are compuled to point ool
the importance of tidal deformation and strong genoal rela-
livistic effects on gravitational waves for close binares. Sec-
tion W1 is devoted oo summary and discussion.

In the following, we wse goomebdical vnits in which &

e= 1. We adopt spherical polar coordinates; Latin indices
ik o and Oreek indices g, oo tske ro# @ and
for b, respectively. We use the follewwing symbols for a
5:,'mmn|.'l|.'i|.' ten=or A [.-*I-j | ﬂjj:lﬂ and the Krmonecker's
delia &;.

(EFT]

L. BASIC EQUATIONS

We are going to compule gravilaticnal waves from binary
neutron stars in guasiequilibriom circalar cobits wsing an ap-
proximate Framework of the Einstein equation. Before deriv-
ing the basic equaticns for the approximation, we describe
the full sei= of the Einstein i:quu.l]un in the presenoe al a
helical Ki]linE weclor as

II a |Ii“ | g™ .
| — — | - i
£ ral ool =L,

|t (2.1
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COMPLUTATION OF GRAVITATIONAL WAVES FROM .. .

where {1 demcles the orbital angular welocity and I
a'de)'. The purpose in thiz section is o clanfy the
stuciure of the Einstein equation in the helical symmeiric
spacetimes,
A A+ 1 Formalism For fhe Eirdein equaiion

We adopt the 3+ 1 formalism for the Einstein equaticon
[18] in which the specelime metric is writlen as

dx? 8 ppdr®de®
[ —a’+ BB d A+ 28 de de by de ded,
i2.2)

where g, o, B (8= ;8. and ¥; are the 41) metric,
I.UF\II.' funclion, shift veckor, and 313 xpuli.u] mustric, rospec-
tively. Using the unit normal o the 3D spatial bypersurface
X,

eiel— o= apd a-(-a0Dp) (23

¥;; and the exirinsic curvaiure K;; are wrilten as
Yi—gutem;, (2.4

LR ¥V i, (2.5)

where ¥, is the covariant derivative with respect to g, -
For the following caloulation, we define the quantities as

o odet] w0, (2.6

il_l ﬁ' *?ll.j:'| :ET:'
| 1 1

..'TU i 4-|IF:U E}-_;_Iﬁ':l, (2.8

where & is 4 conformal Fector and K=K 4", In contrast to
the formalism which we wse in 3+ | nomerical simulaticns
[19]. we do not @ priori impose the condition p=det] y;;)

dedl o)1= i where a;; s the metric in the Hal space and
p=¢*sin® @ In the following, the indices of variables with a
tilde =uch :IE.-'TU . .rT”, E and E'.[ ﬁ::l are raised and low-
ered in terms of ¥; and Y. Here D;, O;, and o D; are
defined as the covariant derivative with respect oy, . '._"'n'f~
and Tipw rt:pl.'i:li'.n:h,r.

The Einzizin equation is split inlo the constrainl and evo-
lution equaticns. The Hamilicmian sand momenivm constmint
equations are

7

R—K R K~ L6k, i2.9)
DR —DK= 5=l (2,100
oar
. R R
Ayg— =R AnEg E|A,J.-‘|” TR 2

PIIYSICAL REVIEW D 64 104017

T

O (A7) — "D K = Bl ", (2.12)
where E and f, are defined from the energy-moementum len-
=0T TF" s

E=T, n"n" (2.13)

= =T ™y i2.14)
£ and K are the scalar curvatures with respec oy, and ;_;f .
and &= 0,0% The elliptic-type equation (2111 will be used
for determining o

The evoluiion equations for the goometry are

ay,~ 2ok, +D A +D8, i2.15)
Ak —al;— DD ot ol KK ;- 2K K 5
DB K+ (D K+ (DK B
Bara| 54 i—l}-u[f 25, (216
where K;; is the Ricel tensor with respect to y;; and
Si= 79Tt (2.17)

By operating 3 in Egs. (2.15) and (2. 16), we alss have

o

il E': ak + D8 —

L
v (2.18)
12 ¥
K = ak K- Aatdwa(E+ 55+ Blak,

i2.19)

where A =D,D*, To write the evolution equation of K in the
form of Eq. (2,197, we use the Hamiltonian constmint equa-

tion (2.9). Uszing Fgs (2.153) and (2.18), the evoluticn equa-
fion for ¥;; is described as

- l A R S
&.'l:'ll.j: ﬁi&""] -.fl.lr 2‘“""1'” i ﬂlﬂr I Drlﬂl ETI‘_IDJ:IS*'
(2.20)

B Einslein equuolion in helical symmetric spacetime
In the presence of the helical Killing wecior £7, Yij» and
K satisfy £,y;—0—£K;; where £; denotes the Lie de-
rivative with respect to £7. In spherical polar coordinabes, the
relalions an c::p]i.-:]lh,r writben as

& ¥ fﬂ'r.'l}]',-J .

3K, -~ g K (2.21)

i
Using Fqe. (2.21), Fgs. (2.15), (2.16), (2.18), and (2.19) are

rewrillen as

Eﬂ":_:l: ﬂl'lhll: | ﬂ_l-l.l.l'_; - I:E.ll:l
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O aly;— DD atalKK;—2K,K5)
I RAFTTAT AT Y R

1
Rwa| 5+ 3y E— 55 {2.23)
ok = Do, i2.24)
wha k= ok KV - Aatdmal E+ 55, i2.25)
where
o B 4 JE (2.26)

Equation [2.201) i= also rewrilten in the foom

Eﬂ'.lq_:f ﬂ,ﬁr } ﬂ.l-l.l_.l'_; -ﬁTn;ﬂk“
2_ L
li|:.l'.IE._l I'DJ.IE i}'ﬁjﬂﬁ'lﬁk ti '-J.HTU
1 -
— (3 y) ¥ (2271
Ay

where ;= ¥ w0’ ('

r“'l;l‘_l 'I*"'-'ﬂ';'l'f'
Euhﬁljlul:ing J_'.q: [E.ET:I into r'.'q. I:E. 12}, we obtuin =T
ticns for w' and &' as

w'), and we have uvzed relaticn

_ _ _ |¥F‘|
ﬁml:l ﬂ ﬁ*u‘kl R g.u.lk| il |n| |

La| b
B

i — i I —
¥ e | sl K- l6wal,
(2.28)

u.rld.
X0 Ty o gk _I_.': J_.':__: nk .|.
. f |||!rﬁ| 2 _ N
O | — || 0,8+ 08— S5, 0,8+ a5
1 LF A

1
—u ¥ T lGmrad ;. (2.29)

iy

4
:-ﬁ'ﬂjx
=

Equation (2.29) is solved 1o determine &, afler we appropri-
alely specify the spatial gavge condition for w;;. In handling
Eq. (229, the folloawing relation i wseful 1o evaluate the
sum of the fourth and sixth ferms in Eqo (2.29):

Llwm B B a0 ) 7. {2,300

Here, | 7 15 the Christoffel symbol with respect 1o }-_,_,

The L'-'.]uull.-::-n for ¥, is derived from Eg. (2.23). For tho
derivation, we first rewrite K;; as

PHYSLCAL REVIEW I 64 104017

R,=R. +RY (2.31)
where K is the Ricei tensor with respect to y;; and
e Eﬂ 0 - i o LD 5 b, ¢
""l'j Illl.l' I f& Iﬁ_-.fl.:f 'I‘I'r ! -I||:': ||||I'r _Illﬂr &!TI‘_I .l:llir "I':I
(232

s wrillen as

[.fr.ing IIZII-DJ: - 'ﬁ-:f

"q.:f 5' j'|1:|"._.| ljl:llﬂ_lll:llﬂkhﬁl -'lill"l::I |I||ﬂ 'k
DD 2 P 20 O 2O,
i2.33)
where Agy= 00 DF, and we split 3 and ¥ @ gy

Fle;; and 5+ 7 respectively. e e and O pare defined as

wF
C; '—I:mD-rf.'l ol il oD i)

l
Cy ™ sl Dbt o Dby,

7 Il:lI'D.lhl_l:l'

(2.34)

- = : e i
We note that 17— d4ln(v y1} and 7 &J{ln['-.'l'_r'n":q'l]. It is
alss worthy 10 note thal in the liner approximation in

I’.‘j* L, i-l;f." recduces o

] I' 1
Li= 1) 0D 30, thun™) |+ Olthy)). 235)

The second line in r‘-.:_]. [2.11] is wrillen as
(D e WK+ (Do Kt e DK
(BN K+ (P BN K+ DK

[ -gm*aﬁ,ru vl K Ay gt A (2.36)

Substituting Eq. (2.27) inlo the last berm, we And the pres-
ence ol a lem s

—I*ﬂ,,[ — {’a.h,,] (2.37)

Recalling the presence of a term —Agh 2 in K. it s
found thal Eg. (2.23) constitules a Helmholiz-iype eguation
for the nonaxisymmetric wave parts af b as

if { source :l-:f' (2.38)

Illl."-i
la_!.“,, (a0 —(a,) |k
(23

In the axisymmetric case, the eguation for by, changes to
an elliptic-type equation. This is natuml becavse in station-
ary. axisymmetric spacetime, there do pol exist gravilational
waves, In the nonaxizymmetric case, also, the axisymmetric
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part of fr;; obeys an elliptic-type equation, and hence it is
regarded @5 a nomwave component [20].

As a consequence of the calculations in this seclion, it
appears that o and 87 obey elliplic-type equations and hence
they scem o be nomwave components. Howewer, 11 is not
always true, IF we would not carefully choose gauge condi-
ticns, these varables could contain o wave component even
in the wave zone. To extract grvitational waves simply from
nonaxisymmetric parts of j;;, it is prelemable o suppress
wave components in these varables with an appropriale
choice -::-l'g.uugl: conditions. In the next seclion, we propose i
gauge condition which meels the above demand.

HL GATGE CONDITIONS

In this =ection, we propose gange condilions which ans
suiled for the i:umpu.l.ali-::-n af Er.w]luli.-::-nu] warves emitled
From guasiequilibrivm siabes.

As the time slicing. we adopt the maximal slicing condi-
ticn as

K=

a k. (313

Then, an elliptic-type egualion for o is oblained;

Aa=dmalE+ 55+ ad A7 (3.2
This equaticn may be wrilten as
7 .
Ao =2 mad (E4 25,514 Ea.,er‘,i,.ﬁ*w %pﬂ.
(3.3)

Mote that in the case &
the condition

0, it is found From Eq. (2.24) that

D=0 i34
must be guaranteed in solving Eq. (2.28) [or (2.29)]. Mamely,
the wolulion of ]_'.q. [E.EF:I in the condition K= 0 has to r.'lli:.l'g,r
the relaticn ﬂku"‘ 0. Itis casy Lo show thal the condition is
really guarntesd if Eq. (2.19). the Hamilionian constrint,
and the Bianchi identity are satisfied.

We propose spatial gauge conditions for &, in which

7 hi= 0L ),

1 ot .y
LY ;H"ﬂﬂ:i!"ﬁ,]lk_:r- 2] e P l”|. :.| Il

Y — ot Pl C ) — CCht O+ R}

2_ Yis -
3 -.f'.ifﬂ nEr —IIrr'-'n-.l"
E iy

*l
I iﬂﬂl{i | 0.g,+08;

] Ra| 25+ vl E— 551,
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&

| o)
||]|D}I|Ik_: | [ |[|.D"| |I.'I|I ?I

b= O[h ) 135

where on the right-hand side of these squations, we allow
adding certain ponlinear ferms of &;;. For simplicity, we
consider here the case in which they are vanishing. Mamely,
we udupl a lmnsverse and trucefree condition for |||',|J".|-|”_|'.:_ In
this case,
el L+ (k7] (3.6)
There are bwo merits in choosing this gauge condition.
The firsl ope i= that using Eq. (2.35), we can derive a melalion
in this gouge as

ol |n|:%:|] FO[ R
(3.7)

[ g _
L0 :I”'k&*'_r'_; ;= —1a,

Thus, the equation for determining B [Eq. (2.29)] does oot
contain linear berms of f;; excepl For coupling terms between
A and h;; and between @[ 4 In(fa)] and k. Since the
magnitude of these coupling terms and nonlinear terms of J;
is much smaller than that of leading order terms such as
AgH; and 16wad;, we can consider that effects due o &y,
are insignificant in the solution of ,E'.. It information on
pravitational waves is mainly canded by &, oot by other
metric componenis, the solufion of the equation For ' is oot
contaminabed much by the wave components and if is mainly
composed of a nonwave component in the wave zone. As a
result of this Fact, it is allowed bo rl.'E:lI'I:' IH"‘ in the wave wone
as 4 ponwave component.

In the maximal slicing condition & =101, the following ne-
lation helds:

1 —
U5 ENa I = —a [Vt E] (3R

VY

Since the :riE]1I-]1=n|:| side of this -L'qu:lliun is wn:uk]}' -ﬂ-l.'pl:n-
dent on k;; and mainly composed of nonwave components,
we may also regand 4 in the wave zone as a nonwave com-
ponent.

The second merit appears in the equation for &, , which is
writlen s

2 DiD 0 AR {2 R B B BB ()

(3.9)
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whire we v=ze the condition K =0. On the lefi-hand =ide.
only linear terms in ;o are collected, and on the cight-hand
gside, the nonlinear termzs are lecaled. (Mote that I'_-‘:'_,

€(h;;) and O = 0] l:'.k_:f'I: |-} In the linemr order inh;; . Eq.
(3.9) is regarded as a Helmhaltz-type equation in a corved
spacetime for nonaxisymmetric parts of b;;. As @ resull, we
can clarily that the nonaxisymmetric parts of fy; are wave
componenis in the wave zone. This Fact Is helplul in speci-
f¥ing the boundary condition in the wave sone.

Since both wave and nonwave components are included,
it iz nod trivial how o impose ouler boundary condilions for
;i A solution 1o this problem is to use a spectrum decom-
position methed in which we expand kj; as

hij= 2, ™ explime),

(3100

and solve each m mode separately. As already clarified, kE:;]'
is @ nonwave component and h::"'

(=1} is & wave com-
ponenl. Thus, we can impese the cuter boundary condition
for both componenis cormectly.

Befcae closing this seciion, the following fact should be
pui.nl.cd out. For rhc:-mpul:lliun = qu:l:iL'\'.]uil]l'll.'ium stales in
the presencs af the helical ]":i.“]ng veclorn, the minimal distor-
ticn gavge [21] in which

Dt a3 -0 i3.11)
is novl available. In this gauge, we iz the gavge condition for
r]jl-_l . but do not specify any gange condition for ;@ e, an
initial gouge condition at #= 0 is not specified. To obtain a
gquasicgquilibrivm siate, on the other hand, we have o Gx the
gauge condilion initially, and as a vesull, throwghout the
whole evolution, the gavge condition is fixed because of the
presence of the helical Killing vecior. This is the mason that
we cannol use the minimal distortion gauge in the belical
symmetric spacelimes.

IV. FORMULATION FOR COMPUTATION OF
GRAVITATIOMAL WAVES

As Equations for background guesieguilibrivm neotron stars

Instead of =olving the full equations derived above, in this
paper. we slopl an approximale methoed for the computation
ol gravitalional waves from binary nevtron slars in quasi-
equilibrivm stales. First, we compuic the guasisquilibriom
slates of ]‘.-in:l.r}' noubtron stars in lhe fnmewordk of the so-
called conformal Aatness um‘tuimul]un nug]l.'i:linE hu
[22,16.17]. Then the basic equaiions [or the gravittionzl
Aeld wre

7 .
Mgl ah) = 2mad’ (£4+25,5)4 3 af A A0, 41)
Agatb= —2=Ed’ %_.-Ji':". (4.2
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o L (e
Ayt 500 DB oD e — | (L8~ L6wat;.

(4.3)
'“-'I'.“.'l.t
- - 2 -
[I'IB:II._I |D"ﬂ.;lﬂ_l t l:']lﬂ_llﬂll 5 J:r_;|:||||n“|3k.. l:M:I
- l
A= 5 LAY, (45)

and wo sot K =0 The spatial gavge condition (3.5) is awio-
matically satished since we assome Fr =0,

In the far zone, these gravitational felds behave as

a=1-—1 2 eV, i4.6)
A
b1ttt 2 () Vi, (47)
F o Ja=lm
B 3 L)Y 00)
TS TUNEEI R
Foalrl(08 Y, fsin#,—d ¥ siné)], (4.8

where M dencies the Arnowiit-Deser-Misner (ADM) mass of
this system, and ¥ i #,4) is the spherical harmonic function.
We implicitly assome that the real part of ¥, is taken. The
asymplotic behaviors of oy, Wy . Ojg. B, . and oy, at
F— ane

Kl —+F

t—r !

dp—r (4.5
by,—r 71

[ e

The coelficient of the mooopole part of a should ke — M for
quasieguilibrium states in the conformal Hatness approxima-
tion [23]. This relation is equivalent o the scalar virial rela-
lion =c that il can be used For checking numerical accurmcy
[see Eg. (5.7)].

We adopl the energy-momentum tensor For the perfeci
Auid in the form

Tow=lptpst Pl tPey., (4100

1CE17T-6
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where p, =, P, and &¥ dencie the rest moss densily, spe-
cific inlemal energy, pressure, and four-velocily, respectively.
We adopt polytropic equations of slabe s

Pewp'. i4.11)

where & i= a polylmpic constant, 1= | + U, and r a poly-
tropic index. Using the first law of thermodynamics with Eq.
(4.11). £ is writlen as s P{p. The ssumption thal & i= con-
stant during the lale inspiraling phase is reasonable because
the fime scale of orbital evolution for binary peutron slars
due b the mdiation reaction of grvilational waves is much
shorter than the healing and cocling time scales of neubon
stars, In this paper, we adopt n= 1 as a reasonable qualitative
approximation o a modertely still, nuclear equation of
stabe.

Since the time scale of viscous angular momentum trns-
fer in the neutron star is much longer than the evalution time
scale asscciated with gl.avi.lali-::-na| radiaticn, the vu:rl]:il}- af
the syslem comserves in the labe inspimling phase of binary
neutron stars [24]. Furthermore, the orbital period just belfone
the merger is about 2 ms, which is much shorier than the spin
pericd of most of neatron slars. These imply that even if the
spin of meutron stars would exist at a distant orbit and wouold
conzzive lhroughoul the subsequent evolulion, it is negli-
gible al close orhils for most of peaton siars of the spin
rodational period longer than —~ 10 m=. Thus, it is reasonable
br assume that the welocity feld of newiron stars in binary
.-Iu.sl bafooe the METEEr i= imolalional

In the irmstaticnal fluid, the spuli.u] component al oy is
wrilten as

1
up= g D, (4.12)

wheme #= | + e+ Plp and P denotes the velocity potential.
Then, the conlinoily equation is rewritben o0 an elliptic-lyps
equation for 4 as

D pak "D - D] paa' (B0, (4.13)

In the presence of the helical Killing weclor, the relativistic
Euler equation for inotational Quids can be inlegrated 1o give
a first integral of the Euler equation as [25]

(4.14)

— + Jeae, V= const,
i

4
—r(*a,)°
¥y

.IlﬂrE.
hu t 2||]Iﬂll.{ k.l'*'"'n# Inl' :nll}
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where V= u®'u'— 1*. Thus, Eqs. (4.13) and (4.14) constitute
thi basic equations for hydmsiatics.

I Equation for &

Alter we obain the quasiequilibrium states solving the
coupled equations of Egs. (4. 13-(4.3), (4,13}, and (4.14), the
wave equation for k;; [Eg. (3.91] is solved up to linear order
in hj; in the background spacetime of the quasiequilibrium
stales, Without linearization, noolinear terms of ky; cawse a
problem in inlegrating the equation for b in the wave zone
because standing gravitational waves exisl in the wave xone
in the helical symmetric spacetimes and as o result the pon-
lingar terms of kj; fall off slowly as ¢ *_In a real spacetime,
the helical symmetry is violated because of the exisbence of a
radialion meacticn b the orbils. This implics that the exis-
epce of the standing wave and the asscciated problem ane
unphy=ical. Thus, we could mention that lincarization is a
preseriplion 1o exclude an wnphy=ical pathology associated
with the existence of the standing wave,

In the absence of nonlinear lerms of gravitational waves,
we canncl lake inio account the ponlinear memory effect
[26]. However, as shown in [26], this effect builds up over a
long-lerm inspiraling lime scale, and a=z a mesult, it only
slightly modifies the wave amplitede and luminosity of
gravitaticmal waves at a given momeni. Thus, it is unlikely
that its neglect significanily allects the following mesults,

In addition to a linear approsimation with respest o hy; .,
we cany oul a furiber approsimation, neglecling tems of
finy contributicns such as coupling terms between @° and ki
and between Ty, and ;. We have found that the magnitude
ol thess terms i= much =maller than the leading crder terms
and its contribution to the amplitude of gravitational waves
appears o ke much smaller than the typical numerical eror
in this paper of ~ 1% . We ooly include coupling terms be-
tween hy; and spherical parts of o and ¢ since they vield the
fail effect for gravitational waves which significantly modi-
fics the amplitudes of gravitational waves [27]. We also ne-
glect the pedurbed terms of ¢ o, and 8" associated with kj;
since they do nod contain information of gravitational waves
in the wave sone under the gauge conditions adopted in this
paper [28]. With these simplifications, the numerical proce-
dure For a soluticn of h,-_l is gu:ull_',' xi.mpl]ﬁi:d.

A a consequence of the above approximation, we obtain
the wave equation of kj; as

2 2 1t .
lgﬂﬂ nﬂfﬂj” 4'#“-".1-’“;" u[lkﬂ’qjéuicunﬂju.E"' E"r_mﬂxi '.5'4-'"-.';':'} i u!"'"h o (L&) ,l

ki Trl 25_:; l -I||:|41_'|‘|_||:f-'. S}J‘:I |

v2| art— o 207
oF ! S

(4.15)
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where |- |gp is caleulated by subslituting the geometric
and matber variables of quasiequilibriom stales: In the fol-
lowing, we depcbe it as &'EE- Here Nl.‘ﬁ and ﬁfﬂ_:ﬂfﬂr.l'a]
dencite coupling terms between linear terms of fr; and Jfy, or
ap i .R,-'bl: and 0.0 ol er, and iy and oy, denote the spherical
part oof yfr and & which are computed by performing the =ur-
face inlegral over a sphere of Axed mdial coordinates as

J n
Pafry= —

dar = coomnl

(2 dS, 4.16)

where o8 = sin #d8de. Mote that in the present formulation,
the .".pali=| gauge condition is

by =1,

] I="I.
i gt ]l (o In Yo ):rﬂ., . i4.17)

| —I|
| e
We neglect coupling terms of by; with o and 4 except for
with ey and Wy since their order of magnitude is as small as
that of :-::-up]]ng terms bebween J1” and .IH
In Egs. (4.15) and (4.17), sffey and diday ane different
From the spherical part of % e and @ a® in the pear mone,
although in the wave #one they are almesi identical. This
implies that in deriving Fqgs. (4.15) and (4,17}, certain amhbi-
guily remains. Howewer, in numerical computations, we have
found that the difference of the mumerical resulls bobween
two formulations is much smaller than the typical numerical
enor. For this reason, we fix the formulation and gavge con-
dition in the foam of Egs. (4.15) and (417
As menticned in Bec. I, the procedure for the computation
ol gravitaticnal waves adopled here iz quite similar o that
For ul'lluin]ng Eruv]luli.-::-nu] wuves in the p-::-sl—HL'wlun]un ap-
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proximation [3.4]: In the post-Newionian work, one first de-
femmines an equilibivm circular cobit from posi-Mewlonian
eguations of modion, neglecting the dissipaticn terms due to
gravitational radiation. Then, ome substilules the spacelime
metric and malter Aelds into the sowrce term for o wave
eqguation of gravitational waves. In this case, mo berm with
regard to gravilational waves and the radiation reaclion met-
rc is inwvolved in the souwrce lerm of the wave equaticn. We
may explain that we here fallow this procedure.

The main difference bebween our present method and
post-Mewtonian calculations is that we Fully include a gen-
eral relativistic effect in o @, and B for quasieguilibrinm
stales without any approximation, and that we lake inlo ac-
count the effect of tidal deformation of each nevtron star

In the post-Newtonian approximation, h;; is present from
second post-Mewtonian (2PN) order [30,31]. This implies
that cquasicquilibrivm slales obtained in the conformal dat-
ness approximation and gravilational waves compuled in
their background spacetimes contain an enor of 2PN onder
from the viewpoint of the post-MNewtonian approximation. To
oblain quasiequilibriom state= and associaled gravitalional
waveforms for betler post-Mewtonian scoumcy, il s neces-
sary bo fake inlo scoount by Here, we emphasize that our
methed does not mestricl the sercth-crder solution of the
three-metric in conformally Hat foom. Even iF quasiequilib-
rium states are constructed in a formalism with &, we can
compute gravilational woees In the same famework. In this
papet, we adopt the conformal fainess approximation simply
because of o pragmatic reason as menticned in Sec, 1L With a
modified foomalism and a pew numerical code taking into
account fry; it would be possible o improve the sccumcy of
quasiequilibrivm siales appropriaiely in the present frame-
work [see discusion in Sec. V1)

. Basic equulions for computalion of &y

Since by in Eg. (4.13) couples only with functions of r, we decompose it using the spherical harmeonic function ¥, (#.¢]

H Y
¥i, 0 o ] 0 @Y, ¥, 00 0
b E A ¥ 0 |E B.l* © 0 'E., PFL* Wi Xim
* L it 0¥, 02 o i h LI sin” &@W,,,
0 @Y plsing  — 34K, sin 8] 0 0 0
POl i i P D, | Y X fsin g Wosind | (4.15)
v . VR . v <in 8,

where # denotes the relations of symmetry. Note that the trace-free condition for k;; is used in defining Fg. (4.18). Here

A

e Brns Cy. . and Fyoare functions of r, and

W [ L)

..‘-f_.“ 1{-':' ﬁ“ ()| I'ill fj,_. .

(4.19)

{4.20)
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Using Eq. (4.18), the eguations of the spatial gavge conditicn are explicitly writlen as

dA,, 3
dr

"I'Hl'm 2 "'"l'm
dr I pom D
dc, 2
b=

i r

where k= I({+ 1) :mdij h,
wag el (B g el with F, = 0; (3) for = 1,

=2 should be nonzemo. Thos, nonwave components in iy,

For l=2, K.

R

F Ay, hy
r e

) of
IJ‘JW l H'Iwgf.r ]I'II

I.i\.ﬂ

Dy =105 (20 for !
= v el weith Iy,
{=10 and | is regular for r— =, bui nol for r—0. This implies thal they should vanish for

d 1)

F A1l | -0, (4.21)
ar | ag)
[ Wb
Yol _q. (4.22)
1 erg
] 1
o ]nlﬁl 0, (4.23)

¥y |

2. From these equaticns, we And thal the following melations have 1o be satished in this gouge
condition: (1) for =0, A ®agfriy] with 8, = F. = Cp.,

I, Ay mog ey (B, mog frady) or A,
0. The behavior of A, ., . and ), for
0 and 1, and modes only of !

of == | can ke erascd in the present gauge condition.
. Fyp. and I, can be caloulated rlum .."nm. and ), because of our choice of the spaiial gauge conditicn.

This implie= IJ1al wo only necd to solve the squaticms For A, and O, which are derived s (cf. Appendiz A

4 [6 d l|:.|' R~ 6 oy | | ﬁ.'- gpq-

—=+|—+2—In| — — 0t — —] — 1 A

drs | r Ar I-I- x| | Ar re ;;r:rr ] n| | _T I-Il- x| | fm

dlmerg dA, i In |,ﬂrD|IJA_, . bA, |,ir,1 "
“an ] w L5 HHE !
d'r dr T dr I_ dr r _‘l‘."r?lnl. |:r.;|| T.r :umd?&” =S, o (4.24)

4 (2 | & &, - il
[I'_rl |rdr ;-rl —'rmﬂ I‘—'rlrﬂ | e

| ln(aD%jlil |n4||:l|:.| |4| lm,ﬂr.]||

where ¥, dencles the complex conjugate of ¥, and Egs.
(421 and (4.23) are used 0 ormse By, Fp,, . and 0, in
these equations. For the case m=0, these equations ams
elliplic-type equations [or A, and O, . implying that they
are pol gravitalional waves.

In this FEipeT, W consider the binares of two identical
neulren stars. Then, the sy=lom has ar-rotalion symmebey. In
thiz case, A;, of even { and even m and O, of odd | and
gven ae are nonzero, and other componenis ave seeo.

St and 55 of m=0 behave as 07 for r—o he-

cause of the presence of o term [cf. Eg. (4.9)]

|g!;.-1

J .
~ e (LB, r._| . (4.26)

Ford =2 and 3, the fallofl of this term iz = slowe that it could
become a =ounce of numerical ermors in inlegrating Eogs.
(4.24) and (4.25) for the compulation of graviational waves
in the worve zone. Futhermore, Eg. (4.26) gives a main con-
tributicn for solulions of Ay, and O, in the wave sone;
mamely, we need 1o carclully estimate the contribution from

|nn'|;.|

¥+
qot ﬂal’luﬂ II -5

sin & F ogin & | o »

17 N
li:l'.lu i ? d ?l 4 'EIIL
I o= coani 1

(4.25)

ihis term [or an accurabe computation of gravitational wawes.
Ta resolve thiz problem, we transform the variables from A,
and CJ:-.- b mew variahles @s

1
jl’m "'"l'ml _§ qu!lﬂ:lrr fm- |:4_1"'.|':|
n re=conui

1 -
E‘\I|'.l|| E-II‘\.'I "mﬂll r :""Id"‘:
b
“: frm ﬂ .lr.\.

I:Jllﬂ:lrl.I [ |E:Ir-:

|_|

(4.28)

sinm & sin &

and rewrite Fqs. (4.24) and (4.25) in terms of 4, and & .
With this procedure, the source lemms of the wave equations
for Ay, and &, Fall off as (s !
feasible 1o accursicly inlegrie the wave equations without
technical difficulty.

3 .
*y, so thal il becomes
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Ih. Boundary condilions

Chdinany differential wave equations for .-E_.,_. and IE'_.,,,|
with Z== =6 and 225 [m| =6 are solved, imposing boundary
conditions al r=10 ax

dd,, &0,
dr dr

0 (4.29)

and a1 a sufficiently large madius r=r,,, = k=2 i mil) " as

Jl:r-‘l.ni_lu:l . n :"_,q_ [d_ 1[:':'
o tmller A, . .
A
imafbr . i4.31)
.:Ilr"'

where r¥ denobes @ todtoise coordinate defined by
52
. I dr—. (4.32)
iy

Here, we asume the ax_'rmpluli.-: kehaviors

e
ﬁt,,,—~c',1“5'i”:1 atl (4.33)
. expf amilr®)

Crw— o i4.34)

where ) and O ame constants.

Mote that for obtaining an “equilibrium™ state in which

no energy s lost from the syslem, we should adopt the
ingoing-cuigoing wave boundary condition for kecping an
orbit. Hensever, the purpose here is to compuie realisiic, oul-
going gravitational waves, so that we adopt Eqgs. (4.33) and
I:nL."'.l:i:I as the ouler bou nd.al.'_l,' condilions.
11, the Tallof of the term [J.Efl:l iz el WETY slonw,
so that we do not have o change varable= Elliptic-type
ardinary differential equations (ODEs) for &g, and ), are
solwed, impesing the boundary comditions at 5 =10 as

F-::-r [

diA, e .
d'r 4.33)
(O ir')
A 3
p (4.36)
and the outer boundary condilions as
Ap—r 7 (4.3T)
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Cp—r 7L i1.3R)

Mote that these cuber boundary conditions are determined
from the asympiotic behavior of their source lerms [cf. T‘?_'L
and Eq. (4.9)].

Simce the wave equations ans ODEs, 1t is easy o take a
sufficiently large number of grid points up o a distant wave
zone in current computational msources. Il the outer bound-
ary corditions are imposed in the distant wave zone, the
above simple Foundary conditicns, withoul including higher-
order lerms in 1fr, are acceplable. Also, ODEs can be solwed
with a wery high sccumcy in curmenl computaiional re-
sources. lhus, the numerical accumcy for gravilational
wavelorms compubed below s limiled by the accumcy of
quasieguilibrium states obtained in the first step (ie., the
sounce terms of the wave equations limil the sccumcy).

E. Formules for gravilationn] wave amplilnde and luminesity

In the distant wave zone, + and * modes of gravitaticnal
waves, h, and &, . ame defined as [29]

PP PR (4.35)
ar* =in” #
l
== rigind " (4.40)
and, thus=,
'x.'n
b X | P DL s
]
h"-: ‘tgi:'_q |I'r.llﬂl Ilr:’ I'D.In.“'mrl
mol
(4.42)

In the dismnl wave zone, F, and 0, can ke obtained from
r;_lu and E'm. as

_ (mi1)%A, e
Flgem—————. (4.43)
ok,
im2i,,,
n. — i4.44)
Ay

For the lalter, we wrile £, in the wave sone as

L. . . B, . ) .
h EIH:!“ b eosd 2 )+ Haol 2o — D oos( 2W) + H ol Tet— Ge® + Deos( 2] + Hl 1 — ot coa 4790

FH 1200 1L Dicos( 20+ Hagl 4u— 111 0 icosi 49) + H o 4955 — 73507+ 28947 — 1T hcos( 29)

FH 336 1065+ 10— a Jeos{ 40 )+ Hgla® + 100 1 —a*)  cas( W )],

i4.45)
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wheme W =g —01s, I is the distance from a source to an

ohserver, and .|r;r_|,_. dencoles the u.rnp]i.l.ud.c foor each mull.ip::-h:
companenl [Lm:l- [['L':I'\'L'.. we assume that the mass centers for
bao stars are localed :||-::-nE x axis al =0, The gm'l.'i.l.ali-::-n=|

wave luminosity is compuied From [29]

JE DY .
— Eﬂ’ _dSURL L)
D7k K R .
T o, (P FL D, (446)

kil

where b .= dh, . fdt.

¥ MUMERICAL COMPUTATION
A Numerical method and definition of gquontities

I Commnimiion of gereth-arder solnfions: Ceeasiegeilibriem
sequence of birary Renfron sfers

Following previous wodks [16.17], we define the coordi-
nale length of semimajor axis By and half of orbital sepam-
ticn of for @ binary of identical newimon stars as

R-\Jl.l Rirl

R, —,

(5.1)
Rllll f Rirl
A .

(5.2)

where B and B, denote coordinate distances from the
mass cenler of the system (crigin) to the inner and ouoter
ecdges of the stars along the major axiz. To specily 2 medel
along & quasiequilibrivm sequence, we in addilion define a
nondimensional separation as

. 53
i (5.3)
At & = 1. the surfaces of bwo stars contact, and at d— o, the
separation of bwo slars is infnite. In the case m = 1, the se-
gquences ol binaries terminate al o = ;= 1.25 for which the
cusps (e, Lagrangian points) appear at the inner edges of
neutron stars [17]. Also it is found that for 4722, the tidal
effect is nol very important. Thos, we perform a computation
For 1.25=d=3.

In uxi.n.g. the pc:-l:,'ll.'\-::-pir i:quu.l]unx af slaile I:will'l the seo-
metrical wnits «= G =11, all quantities can be noomalized
using & as nondimensional as

M=Mx" T=Ix",

R_o=R.&", D fhe "7 i5.4)
where M, J, and B dencte the total ATDM mass, todal angu-
lar momentum, and a circumferential mdivs. Hence, in the
Following, we use the unit with k= 1. For later convenience,
wi al=o deline several masses as Tollows: My is the est mass

of a spherical star in isolation, M, is the ADM mass of o
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5Fhl:|']|:=| star in isolation, .H_. 2 H‘, and M iz the total
ADM mass of a binary sysiem. Here M is obiained by com-
puiing the volume integral of the righi-hand side of Eq. (4.2).
Mote that M is nol Cn'.]I.Lu] L .‘I-!I'I in the proesence af the hind]ng
oneTeY hebween v slars.

The binding energy of cne slar in isolation and the total
binding emerey of the system is defined as

Ey=M,— My, (5.5)

E~M-2M,. (5.63)

The enerey and angular momentum are monotonically de-
croasing functions of d{ 2 d ) for n =1 [17] irrespective of
the compactness of each =lar.

Cuasiequilibrium stales in the framework of the confor-
mal flatness approximation are compuled wsing the method
developed by Unvi and Eriguchi [16]. We adopt a spherical
polar coordinate (r,&,@) in solving basic equations  for
pravitational fields [of. Eqgs. (4.1)—i4.3)]. Here, the coordi-
nabte origin is located at the mass center of the binar. Since
we consider binares of identical slars, the equations are no-
mercally =nlved [or an oclant region as 0= = |08, and
0w 8 oot 72, We typically take uniform geids of 51 grid
pc:-inlx For & and q. For the radial direclion, we :ld-::-pl a non-
unifoam grid and the typical grid sstiing is as follows: For
D= r= 58, we take 201 grd poinis vniformly (e, grid
spacing Ar=(.025R). On the other bhand, for SRp=r
= 10Ky, we lake 240 ponuniform gids, ic, in total 441
grid points for ro A fourth-order accuwmle method is used For
finite differencing of # and ¢ directions and a second-order
accwrabe one 15 used For r direclion. Hydnoslatic equations an
solved using the so-called body-ftted coordinates [r",ﬂ'r,g:’]
[16] which cover the meutron star intedor as O="=§,, 0
=i w2, and U= o' = o, respectively. We adopt a uniform
grid spacing for these coordinates with typical grid sives of
41 for ¢', 33 for &, and 21-25 for ¢'. A second-order
accurale finile differencing is applied For solving the hydm-
stalic equations.

[Ising this numercal scheme, we compute several se-
quernces, fxing the mest mass M and changing the binary
separation 4. Such sequences are considered o be evelution
SECJUENCES al |‘.-in=||'_l,' neutron stars as a resull of EI.'..l'f’ilill.ilJl.'I:ll
wave emission. We charmclerize each sequence by the com-
actness which is defined @ the mtio of the gravitalional
mass M, 1o the circumferential mdius K. of ope star at infi-
nite separation. Herealter, we denoie it o (MR, [of. Table
I fer relation:s between "ﬁ:‘ 'ﬁn- and [."I-!I'.I'R]zl. E"-::-mpul.'.l-

TARLYE 1. Compactness, baryon mest mass. and grvitational
mass For spherical stars in i=olation foe 7= 2. Mobe that for a maxi-

mum mass star, (MR =0214, &= 0180 and &~ 0.164.

(MIR). i, i,
0.050 0s9A] n0SA124
0.140 014614 0.13623
0.190 0.1 7506 0. L6000
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TABLE II. A sequence of imolational binary nealron slars in guasicguilibium cincular ocbils with small
compaciness (MR ).~ 006,

a e M I VEIM

1.3 15310 1.1576= 107" | 9%ix 10 2 16581 % 10T

1.4 13ETA 10 11578= 107" | 9= 102 13037 = 10T

L& 07T 11582 10! REALE Wil [ 122310 T

1§ 2TERdm 10 1.1585= 107" R e bl L 13 Tx 0T

a0 e T S 11585 107" 22WEm 10 1312x 10T

23 1AEEx 10 IS 2a01Z= 10 2 13769 % 10T

24 eREE S e RS 2agalm 10 13810 10T

15 |.oEE= 1072 11536 107! 24754m 10 144857 10T

28 B4R = 1072 INECEES 15533102 1106 10T

a0 .T3d5= 102 IS R B T 127410 T
ticns are perdformed for small compoactness (MR~ 005 3 R
for calibration @s well as for realistic compaciness as VE J’lﬂnﬂ-ﬁ'ﬂfl ﬁ“"lﬁprrxj:l ;ern'lﬂ"ﬂ_nl:“ﬁl dx
(MR =014 and 019, Helevanl guantities of cach se-
guence are tabulated in Tables 1T and 111, . (5.7

Convergence of o numedcal solution with increasing grid
numbers has been checked o be well achieved. Some of the
resulls are shown in [|.|5] =0 thal we do not touch on this
m.1|:l.-h.'|:l in this paper. In additicn 1o the convergence lesl, we
also check whether a viral melation is =alisfied in numerical
solutions: In the framewnork of the conformal flatness ap-
prosimalion, the virial relation can be wrilten in the form

[23]

TABLE L The same u= Table I bot for (MR

Ax menlioned ah-c:-w.'.. thiz relation is tqu]vu.h:nl to that where
the monopole part of o is equal & — M. Since this identity is
nod trivially satisfied in numerical =oluticns, viclation of this
relalion can be used o estimate the magnitude of numerical
crror, The nondimensional guantity VE/MM s tabulated in
Table= 1 and I, which are typically of 10 . We con-
sider that this is satisfactorily small =0 that the gquasiequilib-

014 fuppery and 0,19 (o).

a e? M J E M, VEIM
125 LoTa= 1071 2683w 10! CERT S |573= 107! 4732021072
13 Lo 10! 2683w 10! BRA 102 L571= 107" 4T731= 1072
1.4 Loea= 10! 2k 10! G910 102 | S66= 10! d.lal=10"2
L5 BI0E= 1072 2685w 10! B0 102 |55 10! 49RO
L& BARI= 1072 2k 10! TOg 102 |552= 107! 4E3N= 02
L& BS10= 1072 L8R 10! TAldx 102 [537= 10! 5756 1072
10 77681072 2700 10! TS5 102 524 107! G715 1072
12 712102 2702 10! TI0E= 102 L511= 107" TAR= 1O ®
24 BT 1072 270 10! B 102 LS00 10! TAa%= 1072
16 G0l 1072 2705 100! BRI= 102 L4591 = 107! BOa7= 102
18 S6TI= 1072 2706 10! BS06 102 L4g2= 107! TATG 1072
an 83771072 2707 10! B.763w 102 L475= 107! TA5%= 1072
el Ls0g= 10! ERE A [V BS5Sw 10 7 | GoE= 10" 4T0= 10"
1.3 LABs= 10! Rk [V BSET= 107 |9o7= 10" 4.143= 107"
1.4 LAs3= 10! Rk [V Balis 1077 [ goix 10! 13a15= 107
L5 LAe7= 1071 RS A BOTR= 1072 Lag7= 10! 4445102
L& LAx7= 107! A1ES 10! B.765 = 102 La7a= 10! 4.121= 1072
L& L2ax= 107! R ELES A BOT2= 102 L9a2= 10! 53RT= 1072
10 L.115=1071 161w 10! BANS = 102 L e 10! 709110
12 L= 1071 LR (A LS L9231 = 10! B.056= 102
24 GARg = 1072 Al 107! T L L217= 10" B.9RL= 1072
16 BITE= 1072 A1GE 107! PN it Land= 10! QAR 102
18 BTE= 1072 AT 10! MRS IEFEES T 77RO 102
an ToaR= 1072 AT 10! L 161 |B&I= 107! B.33%= 1072
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rium =lales can be vsed o wemoth-order solutions for the com-
putation of grovitational waves.

The compuiations in this paper can ke carried oot even
withoul supercomputers. We use modern workstations in
which the typical memeay and computational spoed are |
Obyte and several K Milops, Mumerical soluticns of gua-
sicquilibrium states are oblained after 350650 Jteration poo-
cesses. For cne jleration, ii takes about 50 = for a single Dec
Alpha 667 MHz processor so that aboui 7—10 h ane taken for
:-::-rnp.llul]un of one medel. With these :-::-rnp.lluli.unu] -
sources, the compuiation in this paper has been done in one
menth.

2 Comprfation af ODEs for by,

For solving one-dimensicnal wave equations for Ay, and
), a uniform grid with the grid spacing Ar and 1P grid
points is wsed. The culer boundary is located in the distant
wave rome as 804N in this sl:lljng. This make= the
simple culgoing boundary conditions (4.30) and (4.31) ap-
propriale (see discussion below). To oblain Ej",_.[r] and
.TL_[r] in every 3.|'i.-'_:| pui.nL. :lPFlIuF\\Ti:ll.C ]nl.-l.':rp-c:-lali-::n and ex-
l|'.|p-::-|ali-::-n are used. The i::l.llup-c:-l:lliun for r= J[Ilﬁ'n is per-
Formed luk]ng inkey account the u_"..:,rrnplulii: behavior oo
w, A% and o shown in Eq. (4.9). The equations for 4, and
)y are solved by a secomd-coder finile-differencing scheme
Jeintly wsed with a matrix inversion for a tidiagonal matrix
[32]. One-dimensional elliptic-type equations for A g and Cy
are solved in the same grid setling, only changing the outer
boundary conditicns. These numerical computations can be

FI.'I'[I.'I:I'ITI.D’.] ]I'I = fcw r.|'|.il.'||J|.I.'5 I.I.EiﬂE |J1C S w-::-rl:xluli-::-n dl.'-

HI::I'i.hi:d ilhlt?l'ﬂ.'.

. Calibration of gravitnlional wave amplitude and luminosity
I. Convergence fext
Convergence tests For the gravilaltional wave amplitude

have been porfoomed, changing the resclution for the com-

1

7 phiv’
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pulation of quasiequilibrium siabes For every compaciness,
Ax mentioned abowve, the ermor azzociated with the method
for integrating the one-dimensional wave equaticn is pegli-
gible. Bince the source terms of the wave equalion are com-
pomed of gquasisquilibriuvm soluticns, the mesolution for the
quasiequilibrium affects the pumerical resulis on graviia-
tional waves, To And the magnitude of the numerical eemr,
thi grid size is vared from 51 o 41 and 61 for & and @ and
from 441 to 221 and 331 for r. It is Found that vacying the
angular grid resalution very weakly affecls the numerical
results wilhin this range; the convergence of the wave am-
plitude i= achieved wilthin —(L1% ermr. The effect of the
varying radial grid size is elatively large, but we find that
with a lypical grid size of 441, the numerical enor for the
wave amplitnde is = 1% for (Lei={22) and =2% for
(327 (4,2), and (4.4). Since the amplitude of the (2,2) mode
i5 undemstimated by == 1%, in the following, the tolal am-
plitude and lominceity of gravitational woaves are likely to be
underestimated by == 1% and == 2%, respeclively.

2 Comparivar Setween nemrerioe! reverdis and post-Wewfon i
Forrmnley for @ weakly grevitening biroaory

Before a detailed analy=is on gravitalional waves [rom
compacl binary neutron stars, we carry oul a calibration of
cur method and cwr numerical code by comparing the no-
merical mwesults with the post-Mewtonian foomulas for a bi-
nawy of small compactness (MR 15 . For calibration hene, we
adopt (MK o= 0.05 (cf. Table 1 for H: and M, and Tahle
I for the guasiequilibrivm sequence).

We compare the numerical results with post-Newtonian
formulas of gravilational wavelorms for a binary of 1w
point masses in cicular orbits. Defining an orhital welocily
as y-l:'.ﬂ-f,ﬂ:lm, the post-Mewtonian wawelorm From the two
point massss orbiting in the equatorial plane is decomposed
in the form [2,33]

h. [Hoaf 1+ 6% icosi 29 )+ Bl 267 — Leosi 29+ H ol Te* — 6w + Lcosi 29+ Hal 1 — o) cos(497)
FH ol 126 = [l + Deosi 20+ Hagl 4o — 101 — a¥icos( W) + H ol 495:0° — 73507+ 2894° — 17 )cos( 29
FH (330 106+ 10— o Jeos{40) + Ho( e+ 1001 — w*)* cos( 6], (5.R)
where =cos ¥, 7 denotes the mitio of the reduced mass o M, which is 1/4 for equal mass binaries, and
107-55q . T3+ T4RIg-24Ty" | 107T-55g
o ¢ T 1512 g a0
2 . 1937255+ 365"
Ha 3[i1 Iqie’ i vt 2wl 3 gl |,
131140255+ 285 p°
_ 2 4 5
Hi o (l—3gle EET et lwl ]l - Al |,
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LTTO— 6365+ 2625 "

4
Hy-=|(1

3 Anle” 330

H : l—5gptagiot
52 JSSi -F_ill.]?:ll’.l.,

iz -
Hay E“ Sptigtict,

1= ——( St 5 vt
Hia™ = qygggt ! ot
16 -
Hiy Eil SptSgiv,
Rl T
Hie —(l—Sqgtigic".

40

Here the post-Mewtonian crder of the modes with {27 is
higher than the third post-Mewtonian order [7]. We note that
in Hza., M, Hyp. and Hyy . we include the effect of their
tail terms of second and hall posi-Mewionian (2.5PN) order
which could give a non-negligible contributicn to the wave
amplitudes. The=e terms have nol been explicitly presenied
in ANy papeTs such a= [13], but those for HJ:.. Hﬂ~ and H_“_
may b gnuur\d From black hole pl.'l.'lu:rl'.-uli.-::-n l|'.u.'|.1|.'_l,r [E] and
that for iz are computed with help of the 2.5FM gravita-
ticnal wave luminosity [see Eg. (5.10)] and Eg. (4461 The
¥ mecde can be wrilten In the same way in loms of ),
simply changing the dependence of the angular functions.
Hence, we bereafier pay attention only 1o H),, in comparison.

We also compare the numerical gravitational wave lumi-
nosity with the 25PN formula [3.34]

dE_ 3 (17 3 L
P R = TR i
[ amn o6
T TR TR

(R191 535

I:ﬁ t E:q.lwusl- (5. 100y

144, the fArst post-Mewicnian ([FM) 2PN, and 257N
3T3R4, 595567, and — 3T32). me-
speclively. Since the 2PN coeflicient is by chance much
smaller than ulhl.':rs, the 2PN formola is oot different from
L5PM formula wery much for equal-mass hinaries.

Before we perform the comparizon belween numerical re-

For o

coelficients ame

sultz and post-Mewlonian gravitational waves, we summarize
possible sounces of the discrepancy between two resulis. One
is mssociabed with the conformal Hatness approximation
adopled in obtaining quasicguilibrivm states. In this approxi-
maticn, we discard some terms which are as large as a 2PN
term from viewpoinl of the post-Newtonian approximation.

vt dail—3gie’|,

(5.9

A oa resull, the magnilude of the difference belween two
results could be of ﬂfu"]. The =ccond source is purcly a
numerical ermr ascciated with the finite differencing. The
magnilude of this enor will be assessed in the next subsec-
tion. The third one is asociabed with the post-Mewtonian
formulas in which higher-order conections are neglected.
This could ke significant for binaries of large compaciness.
In the Fsllowing, we will often refer o these sources of dis-
CrEpancy.

i. Colibradiom far the grovitafiong wove amplitude. In
Fl.._!.. 1. we show the relative difference of .I'E.\I"lnll,| to 2 .l;r.'l-!l'r.l!HJn.

as a funclion of |.='1. Here, the relative difference is defined as

- lF'fl'.lu
REm — — |,

- (5115
2pMeH,,

The data points are taken at ¥ 1.3, 14, 1.6, 1.8, 20, 2.2,

2.0, and 3.0, and p! is roughly equal io [R.I'H'I,:.I':?. We do

nod consider €5,2) and (6.2) modes because their magnitude

is much smaller than that of the (2.2 mode.

7
L -
“ ’:x'."_. )
(T gt S
T
= pap R L R
- - Py
: . i
—_— — |.|-"7n- 1
| L = = Trey -
) W SRS =
—-rde -
: |'| . ' . '
LOlg 0% alxd Q0P 1037 D036
FIG. 1. RBelalive difference between the oumerical resolis and

post-Mewlonian analytic resulis as o funclion of v? for several
mades of the gravilational wave amplitude for (MR ). — 0L05,
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We plot three curves for the (2,2) mode; one curve (dod-
ted ling) is plotied v=zing the 2ZFM Formula of H5: shown in
Eq. (5.9, the sccond one (s0lid lineg) wsing the 1.5PM lor-
mula neglecting the 2PN and 2.5PM erms, and the third one
(thin solid line) using the Mewtonian formola [labeled by
[11]1"!’]. By comparing the relative ormors for (2,2) modes
with three post-Mewionian formualas, it is found thal the posi-
Mewlonian corections up to L5PMN order give a cartain con-
tributicn by — 3% of the leading order Newlonian term ewen
al d=3 ful—i].l:l]?'l but that 2PN effects are pol very im-
poclant for small compactness (MR 1o =005, Tt is reason-
able o expect that posti-Mewtonian correction berms higher
than 2N crder bevond the leading terms are also unimpor-
tant for other modes with this compaciness. This indicaics
that Hy,, in Eq. [5.9) contains sufficient cormection terms for
{=2 3 and 4. On the other hand, the absence of el
Mewtonian comection terms beyvond the leading term in H,,
for 1= 5 and 6 would cavse an emor of a certain magnitude
(=g Palons).

The resull presented here also indicates that a sy=lematic
enor associated with the conformal Halness appresimation
for background binary solutions, in which we neglect fy; of
2PN order, is likely o be imclevant for (800K )2 = 0005,

For d=2, 3, and 4 modes at sulfficiently large scparaticon
as d=3 (e -001T in which post-Mewlonian comections
and tidal deformation effects become wnimportant, the mela-
tive ermors converge to constants as shown in Fig. 1. These
constanls can ke regarded as a numerical eor becavse they
should ke zere for sufliciently disiant cabits. Thus, we can
extimate that the magnitude of the numerical error i= = 1%
for (d,m1=12.21. —~3% For (3.2), and —~ 1% -2% (o §—4.
These results are consisient with those for convergence lesis.

For !
thi= paper are not good encugh as a theorstical prediction.
Dl‘l:l:n'i.ng. the mesulle for {=m=2 in r"]g. L, the el

Mewlonian formulas for § =5 and 6 in ]_'.q. [5.':.:'] conereslimils

."-' :IHCI. {J.. |.|'.H.' FIJH[—NL'“-'[IZ:IHiEIﬂ |11|.'m|.1|.u: WO =T il1

the brue value of the wave amplitude by 3% at J
=3 [p==0.01T because of the lack of corection berms of
ﬂ[u:'l and U[:?'l] to the |.-|.':r_:|inE Lerm. r]':ljutil.'lg inbo sicoount
this eormecticn, we may expoct that the numerical emors ane
=A% for I=5% and 2% for I= 6., These resulls indicales
that cur methed can y]u]d l':lir|3,r sccurale wavelorms of
gravilaticnal wawes even for higher multipole modes.

With decreazing the orbital sepacdion, the mtic of the
numerical to post-Mewtonian amplitude becomes higher and
higher imespective of ({,m). This amplification is due 1o the
tidal deformation of each star [ﬂﬁ]. For the (2.2 mode, the
amplification factor is not very large, ie. ~2%. even at J

13 (e =0.0351. However, for higher multipole modes,
the amplification facior is lager Al d=13, it is ~8% Ffor
(3.2), 4.2, and 44) and - 15% lor (54) and (6.6).
This resull is qu:||]luli.w.']}' and even -\'.]l.l.unli.l.ali\nch,r in E.c:-c:-d.
agreement wilh 4 resull in an analytic resull presented in
Appendix B

b, Calibration for the grovifatiora) weve laminasity. In
Fig. 2. 'l.'.rc_ls.h-::-'l.v the gravitational wave lomincsity as a func-
ticn of . We plot the oomerical resulis (solid cicles),

28PN formula (solid line), 2PN fomola (dashed  lineg),

PITYSICAL REVIEW D 64 104017

LM E S |
1
1

namE e R S OEE

il

FIG. 2. The pravitslional wove luminesily normalized by the
quadrupele formula O4e' a= a funclion of v? for (MR, = 005,
The numerical resulls (solid circles] and 1PN (dol-dashed line),
15PN {(dotied line). 2PM {dazhed line). and 2.5PM (=olid line) o
mulas are =hown. The L5PN formula is very close 1o the 2PN
formmula.

L5PN formula (dotied ling), and 1PM Formula (dot-dashed
line). Since v iz small in this case. the 2PN and 2.5PN
formulas almost coincide, and the gravitational wave lumi-
nesily i= mostly determined by (2.2) mode. As in the case of
the wave amplilude, numerical resulis agree with 2PN and
25PN lormulas within a small underestimation by - 1 5%
foor distant orbits. As explained above, this ermor is of numeri-
cal |.1:riEi|:|. For close cabits, the tidal effects ."..]i.._e.hlly incremse
the mugni.ll.l.du l'll:_','\-::-n'_:l the pi::ed.-”cwluni.un formulas, but the
amplificalion is not vary lamge (by ~ 5% at d = 1.33.
Although the effect of the tidal deformation is =ignificant
foar h]ghu:r r.r|.u|li.|:l-::-|c componenls al’ E:’uv]luli.-::-nul waves,
their contributicn 1o the total |umi.n-::-=i|3,' and wave :lmpﬁludl.'
is very small, because the magnitude of the [2,2) mode is
much larger than others. The amplification Facler in the
gravitational wave amplitude and luminosity dus o Gdal de-
formalion is u.':pn::ll.'d. Lo d-l.'r.l:nd. :Ll.'-::-ng]:,' s ] :? bt wcu]dy on
the compacine s, Thus, even for binaries of |:||g|.' compxecl-
ness, we expect thal the amplification is ~2% for the am-
plitude and —~ 5% for the lumincsity at the innemmost binary

arbit, & 1.3.

A Effect af lacation af aier bovindary fu extrocting
grevifafional waves

Ax o fnal calibration, we investigate the effect of ouler
'h-c:-und.al'_l.' conditions ©n E.m\rilu.ljunuJ WAV umpliludl:s. Fez-
cause the ouler boundaries ane ]mp-c:-s-l.'d al a fnite mdivs. In
Fig. 3. we plot the wave amplitude for the (2,2) mode as a
furction of #/& in the caze 4= 1.3 l:-l.?l"-:].[ﬂﬂ:l- We |:||-::-I b
curves. One (solid line) is |Haal e [f| Bl =r 0| which is
chlained by imposing the outer boundary condition at r

P 350, The other is the resull for the fallowing experd-
menl; we impose the ooter boundary condition for o wide
range of the radius as OU1k=Sr =55k and compuie
| Ao r=r 1| In this case, we plot [Balr=r 0 Haair

Frae™ 3500, We find that (1) if we impose the ouler
Foundary condition at r2=58 (10K, the wave amplitude
can be compuied within 0.3% (OU1%) error, (2000 we want
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FIGL 3 [ aal W aar | w5 8 fonction of « for the case we
impose  boundary  conditions a1l rp, =554 (solid ling) and
[T 2t F e W T gl Frane™ 5500] in an experiment of varying r,, from
MIK 1o Fyp =554 (dashed ling) for (MR, = 0005 and &= 13,

e compute the wave amplilude within 5% enon, i s noces-
sary 1o choose the outer mdius as e 7= 15k, and (3) even if
wo impose the boundary condition at r,,— (LG, the wave
amplitude can be estimated within 15% evor In the compu-
taticn of this paper, we always impose the boundary condi-
ticn al == L5k, implying that the numerical ermor of the wave
amplitude associated with the location of the cuier bound-
ares is negligible (much smaller than other numerical er-
rers ).

An interesting fnding is that even if we imposed the
boundary condition in the local wave zone (o in the distant
near #one) ab rp, <k, the wovee amplilude could be esti-
mated cnly with a - 0% error, In oor recenl simualation on
the merger of binary neutron stars, the owler bowndaries ane
lescabed in o distant near zone or in a local wave zone |r
~([L6-21k depending on the stage of the merger] [35]. The
present results indicate that even with thiz approximale treal-
ment of the cwler boundary conditions, the gravitatioml
wave ampliinde could be computed within about a 10% er-

iyt

. Gravitationn] waves from compaci binaries
Mexl, we perform o nemedcal compulation, adopting
mere compact neutron stars, According o medels of spheri-
cal newiron stars, the circuomfbereniial mdios of realistic now-
da b .
EHR LT

-045:

EAL

{1154 . ;

-0A5E -

-0aB:D
oA LoE DET A as o1 S

o

FIG. 4. The wial binding enerpy £, in unils of ', as a fonclion
of o® for (MR, = 0.14 (salid circlez). For comparison, we plot o
curve derived from the 2PN fommula (dashed line).
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FIG3. 5. The same as Fig. 4 bot for the 1otal angular momentom
divided by (2M 5.

LaAM o where M - denotes the solar
mass is in the mnge belween ~ 10 km and —~ 15 km. This
implics that the compactness (M/R). is in the range be-
tween —(L1d and —~021. Thus, we choose (MIR1-.—0.14
and (.19 as examples jef. Table T for 8, and M} and Table
1 for the melevant guantities of the quasiequilibiom se-
quencos).

tron stars of mass M

In Figs. 47, we plot the tolal energy £, and the angular
momentum a5 @ function of ©° for i MR =014 and 0. 1%,
They am: normalized by My and :‘l-:'l-'?’ﬁ1 o be pondimensional.
For comparison, we also plot the encrgy and angular momen-
tum for binares of nonspinning stars dedved in the 2PN
approximation [3] as

| 9tgn . Bl-5Tgptq" |
Eqpy— — pM 7| | R ; vt |+ 2y,
(512
M e 94 2(R1-5Tg+ 57 |
.Ir:II:q.' 7 r;"" I. 2 3 qL?- | 3 K ]Udll,

(513

where £, has 1o be added in the energy in comparison be-
cause in .i'.'I sl |.1n|:.I the h-lndinl.' oneTgy bobween bwo slars
but ulso the |'lindinE ENErgy ol individual stars is included. In
[2]. J2py s oot shown but it is easily computed from the
relation di = 04T for the p-c:-lnl MaEs Cse. FiEurl.'.-: 4 and 5
show thal for distant orkits and for {8 85— 0,14, the nuo-
mercal resulis ame Gited well with 2PM Formulas except for a
possible small systematic, numerical ermorn This indicates

0, - . .
r-g
-0.18E -
-0.15d
AT o
0.128 "

R

(H -

0.0 iy w2 oros

FIG. & The same o= Fig. 4 bot for (M R) =019,
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FIG. 7. The same as Fig. 5 bul for (/R = 0L19,

that For mildly relativistic orbits. higher post-Mewlonian
terms as well as ky; for guasiequilibiom binary solufions
which we do not take inlo sccount in this peipeT are nol very
important. For close cobils as .-j."- .6, the deviation of nou-
mertical msults from the 2PN formula becomes noticeable.
This deviation seems b ko doe to the tidal effects because
the deviaticn increases rather quickly with increasing v, (If
post-Newtonian  comections  are relevant, the  deviation
should be rl|1.1|.'.v|.1rl-ll.1nu| to a loow poweT al . On the other
|'|u.nd.. if tidal effects ars n.'|1.'1.'unl, the deviation i= propor-
tional to &~ B2 [36].) For (MR 12 =0.19 and 2701, the
coincidence belween numedcal and 2PN resulis becomes
worse even for disiant crbiis, in particular for £ This indi-
cabes that effects of third and hiE har p-c:q.-;l-Ntwlun-lun correc-
ticinz could not be neg ﬁgi ble for such co mpacl binarics. Also,
the effects of hy; for solutions of quasiequilibrium binary
neulron siars might oot be negligible.

In Figs. B=11, we show the wave amplitude for the (2.2}
mede, ﬁ::, and the l.'l'..l'n‘ili.ll.ilﬂl'li.ll WRAVE ||.|n'|in-::-.-=.il:.' as a func-
ticn e r.l! for i MR 1. =014 and 0,19 The ump"ludl.' u.nq.
luminosity are pormalized by the quadnipole formulas M e~
and (25)0'", respectively. For comparison, we show the
IFM. 15PN, 2PM, and 2.5PM foomulas.

v* in these sequences of compact binaries is in the range
between (05 and 0.155. The Frequency of graviiational
waves can ke wrillen as

1
PErn R
P T e, I R—
= . T ———__iuH
¥ oaa- b T T woan
£ -
=35 ey
s ' . . ) - a
0.2 q.0¢E 04
o

FIG. B, Amplimde of gravitaliom] woves foe the (2,20 made
{#3:) narmalized by M0 a5 o function of v* for (MUR) =014
[s=olid circles). For comparison, we plol the resols foc the [P
[dot-dashed linegl. 1.5PN (doled line), 2ZPW (dashed linc). and
25PN (=olid line) famualas,
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FIG. 9. The same w= Fig. § bot for (AR = 0.19.
2560 v 'ml M\ s
g —m ] —_— ) 5
fow= =060 He 55| | 53] (3-14)

Thus, IF we assume thai the toial mass of the binary s
2BM ., fgw for binacies prosenbed here is in the mange be-
tween 2500 He and 1350 He

Since convergence al the Fv|.1.-:l-]“'-|q.".1.'l.-::-ni:~|n u:-:r.un:-.i-::-n is
very slow [or 22 =0.05, no post-Newtonian Formulas fit well
with numerical mesults for the whole range of &2* Fresm (U005 ko
(1. 15, For distant cobils, the numerical resuliz agree relatively
ketier with the 2.5FM formulas than with the lower post-
Mewtonian formulas both for the (2,2) mode wave amplitude
and for the luminosity. For close orbits, on the other hand,
the numerical results deviale from 2.5PM lormulas as well as
from other Formulas. This deviation is due either to the tidal
clfect or 1o the higher posi-Mewlonian comections., As we
show in the small compaciness case, the tidal effect could
amplify the gravitational wave amplilude and luminosity by
szveral percenl Therefore, i uq.'l'luinh,' conlribules o this de-
vialion. Howewer, the difference between numerical resulls
and 25PN formulas for p22=20.1 iz oo large o be explained
cnly by the tidal effect. Thus, we conclude that higher post-
Mewtonian corrections affect this difference significantly. To
cxplain the behavior of numerical curves, thisd or higher
post-Mewtonian formulas are obviously necessary [7]. The
magnitude of the error asociated with the neglect of h;; will
ke oslimated in Sec. VE.

I¥. Vulidity af the asaamption for quosiequilibriom

I this FapT, W have assumed that the arbils are in qua-
siequilibrivm. As we define in Sec. [, the asumption is valid

PR MR
: o .
o
cn
1
1
1
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ak e

Mn.hE

C.06 0.9 .1

-

%

FIG. 100 The same as Fig. 2 but e (7R~ 0,14,
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FIG. 11. The same as Fig. 10 bt for (808 = 0,19, Even for
this highly cempact cose, the 1L5PN Fermuola (datied line) is very
closs 1o the 2PN dmzhed line) Foomuola.

only in the case when the coalescence time =cale is longer
than the orhilal period. Here, we assess whether the assump-
ticn holds For close crbits. To estimate the coalescence time
scale, we compule

Sl dE, ‘s
I':||:| t_:m I:n:_l'-':T il’ :l- |: . -:l

whine L' n:|_.::r.|-::-|.q:x e at an innermost slable orbit. 1:3 should be
taken as o al the innermost =lable circular ocbit [IE["G, i.|.'.,
the minima .I'-::-l'E_. and J as @ funclion of o or £ of kinaries.
Howewer, for irmilational binmry pevlmon stars of identical
mass with p= 1. the ISC0 doe= not exizl As we discussed in

[17]. two peutron stars could stat mass tansfer from theic

inner edges For 4= 1.25, resulling possibly in a dumbbell-
like struclure of two coves. Fven if the :hupc virigs, howe-
ever, the energy and angular momenium are likely to con-
tinuvcwsly decreasze with decmeasing sepamtion bebween ae
cores for d==1.25, and their quasiequilibrium  states are
mu]nl_',' determined under the influence of El:ni:l.=| relativistic
gravily and the tidal interaction between the bwo cores. Thus,
wi use an extrapolation For the compulation of £, and J&E

For d=1.25 using duta poinis lor d=125 A fAiting [ormula

for E, is constructed using the data at 4
125, 1.3, 14, 1.5 1.6 and 1.8 as

peints

FIG. 12, Fitling formouola for & 58 o aroand the innermest binary
orhil [al a 1.25) for (MR, = 014 {solid line). The 2PN formola
{dashed line)h and numerical dala point are ol ploticd.
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FICG. 13, The same as Fig. 12 bul for (MR, = 0015
E =y :r|1=: t :r:ul1 Fase®tago 12 (5. 16)

where the last term denctes the effect of a tidal deformation
[3'5]. For the Iilling.. wr use the least soquares misthed. In FI.E.S.
12 and 13, we show E,| in the fiting ormula as @ function of
e for (MR 2=0014 and 719, Ti is found that the EAEIgy
curves around the innermest binany ocbit (al d=1.251 ame
well fitled h:,r thiz method and thal the minimum of the en-
CrEY Appears. We define uﬁ as the value al the minimum.
This minimum is induced l'l:,' the last term of r".n'.]. I:5. L&) fer
0.14.
0. 1%, the minimum ap-
pears even without the fem associaled with the tidal inler-

the caze of mode r.JlL'|3.' ]u.@-l.' compacine=s & l:'.'l-!I'.I'R:I:
For large compaciness as (MR

action, and with the tidal term, v ai the minimum becomes
smaller than that withowt the tidal term. This indicates that
nod cnly the tidal term but alss genenil melalivistic gravily
plays a mole for determining the minimum for such compaci
kinaries.

From Figs. 10 and 11, the gravitational wave luminosity
near the innermest binary orkit at d-1.25 [p?~0.11 for
(MR 1e=014 and * 0015 For (MR )= =019 may be ap-
proximabed by [E:"ﬁ'lﬂ'arm whers © is a constant, —= L85 for
(MR =014, and — 080 for (MIR)n=01%9 Hence, we
uze this simple foomula foc the luminosity insbead of detailed
extrapolation for 4+ 1.25.

(dne may think that this procedurs is too mough. However,
it wiould ke acceplable bocause the evolution time scale from
the innermost hinary orkit at & = 1.25 to the minimum found
from the fitting formula is - 13 and — 1710 of the orbital
pt:l.']ud alt J 1.25 For (MR -=0.14 and 0,19, I1.'5PCI:|]".'L'|]".

Th TE this L'\-::-uE]1 eslimation does ol cause any =erious -

medcal oo (In other words, the arbit at d=1.25 is close ta

the 15000 for both compactnesses.)

In Tig. 14, we show iy as a funclion of vl for
MR =014 I:xulid. circles) and (.19 [ =slid :qnu.n.'::l. For
cumpul.'i:un.. we p|-::-| the arhital Fl:l'i.ud I:xulid. lines) and coa-
lescence time for the Mewionian binary of bwo point masses
[ie.. M, 640" 1: see [9]]. All the quantities are plotted in
units of M, =2M, _ The coalescence time becomes equal to
the arbital period at =3~ 1.4 and & ~0.10 for (MR

014 and at d=d~17 and &*~0.125 for (MIR).
(.19, As mentioned in Sec. 1, azsuming the quasiequilib-
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FIG. 14. The coalescence lime ¢,y as a function of v® for
(MK =014 (zolid cicles) amd For (M/R)L=0.19 (salid
squares ). [n comparizon, the orbital period and coalescence lime in
the Mewlonian point mass case [§o = 50 S(6de "] are plotled by
the solid and thin dolted lines. The lime is shown in onits of M,
(= 21M,).

rivm =lale for binary peutron stars is appropriale only for
distant crbits as 4=d_;,. At d~d_;,. it is likely that an
adiabatic circular crbit gradually changes o a plunging non-
circular orkit. This implies that the quasiequilibrivm treat-
ment [or close binary neutron stars can introduce a certain
sysbematic error, although it seems still o be an adequals
approximation as long as the mdial approaching velocily is
much =maller than the arhital w.']u:il}- [ETER '|1-1:|.-::-w:|.

The coalescence lime we dedved here i= much shorter
than the Newionian coalescence time of two point masses for
close oobils, although the two resulis ane in betler agreement
for o —0. The main meason for the disagreement is that the
variation of the corve For £, becomes very slow due to tidal
effects for close ohits, [Recall that the coalescence time de-
pends strongly on @F,/div”)] In the absence of the tidal
ellect, the shape of the curve for E, wouold ke similar o that
For a binary of poinl masses, =0 that vacation of the energy
near the innermost binary orbit would not be very slow, and
consequently the coalescence time would not be as short as
the above numerical resulis.

In Fig. 15, we show the miio of an avemge, relative mdial
velocily beivween bwo stars [defined as H;E-ER.:JI:'J:IF:.I'r] les

an orhital velocity ¢ as

a1

AT ol 0 e

"
FIG. 15, The ralics of an average. relative mdial veleily 15 an
crbilal velocity [see Hg. (51731] as a funclion of & for (W8
0.14 {dashed line) and CL19 (solid line). The thin dotied line de-
noles the Mewlonian formuola for two point mosses [u:n__ 1 B5.

PITYSICAL REVIEW D 64 104017

.1 |

Al

FIG. 14, Behavior of some of melric components in the near

wane for (MR, =014 and & = 1.3, g=0. 106 in this cmse.
2Ry Ay L) dE aE, |
e —— =] . (5.17)
vt w dr L aidy)

The solid and dashed lines denote the numerical me=olts for
(MR 1o=019 and (1. 14. The dotied line denotes the Mew-
ionian result for two point masses (Le. 1&*75; see [9]0
Figure 15 shows that ai d=d_;,, the radial velocity is still
=2% of the orbital w.‘]u:]l}', bul it becomes — 10F6 of the
crbital velocily near d= 1.25. Tt i= also found that the New-
onian formuls underestimates the mdial velocily by several
|(F# For arbits at d =d_, . For (MR 1==0014, the Factor of
this underestimation is miher large, because in this case, the
tidal effect which ipcroases the mdial welocity s significant
al J '}-:ril .

It i= appropriate o give the folloaving word of caution.
Simce assuming quasiequilibrivm states for binary neutron
stars is mot very pood for 8= d_;, . the velocity mtio derived
for such close orbiis might not be a good indicator. For d
=d_. the orbits of a binary could deviate from the equilib-
rium sequence derived in this paper. The mdial velocily com-
puted in this paper depends strongly on [ 4E, fd(d)] ™ which
becomes very large around 4- 1.25. For a real evolution of
'|'.-i|.1:||}' neulron slars, the lime evolution of E, could be .I-ui.l']}'
different from the curve for the quasiequilibrivm sequence.
To derive the mdial welocity appropriately, numerical simu-
lation with an initial condition ab d— ':}-\:ril may be a |.|.r.|ir.|uc
musthed For this final phase.

E. hy in the near xone

In this paper, we have computed quasiequilibriom siates
axsu.ming that the threc-metric is |:|.1|.1.|'-::-rrr.|u]|._',' flut. For the
cumpulali-::-n of E,IT.l"-l'ililllel'liLI waves, we also adupl a lincar
approximation in hj; , assuming that the magnitude of k;; s
much s=maller than wnity. In this seclion, we investigale
whether these assumptions are indeed ascceptable even for
clovse and compact binaries of neutron stars. In the following,
wi compute the near-zone metic of (200 and (2.2) modes
Frocause they are the dominant terms

In Figs. 16 and 17, we show h, . and &, computed from

(200 and (2,2) modes along the axiz which connects the

104al7-19



MASARL SHIBATA AND KOIT URYLI

ma2 -
aqs | T T -
]
UL it -
- h .
_ [ |1 i ", : ' s
R e
1] i - ! {_...—_-
TtRre M
<.l ot
A
-0.1 L
i [ 1
=i

FIG. 17. The same as Fig. 16 bot e (MR =019 and J

1.3, o =10.150 in this case.

(.14 and (.19 and for
d= 1.3. For comparison, we alsn show gy — |- The centers of
the two stars are located at r~- 005k, Tt is found that the
magnitucke of each mode i= =00 and sufficiently smaller
than -ﬁ':l'; 1. which denciess the deviation from Hal space in
the conformal part of the three-metric. Second  posi-
MNewtonian studies [30.31] indicate that & is a quantity of
If?[u""l and of f.;l[L?!] smaller than 4( ¢ — 1], and the numeri-
cal resulis here agree approsimalely with the post-Mewlonian
resulls. Since the magnitude of ky; is smaller than 0.1 even

mass cenlers of Two stars For (80K,

For strongly relativistic cases, neglecting the nonlinear lerms
of k;; appears to be acceptable as long as we allow an emor
of = 1% However, the magnitude of &;; i= not small encugh
ter neglect the linear term. Thus, quasiequilibriuvm siales com-
p|.1l.-|.'|:| in the conlormal fatness upprl::-xirn:lliun |]E|.'|:,' conlain
i sjsll:malii: evcr of certain rn:l.g.niludl:.

From a simple order estimale using basic equalions for
computation of quasieguilibrivm slales, several guantities
could ke modified in the presence of ;oo

&0
o Hh. (5. 18)
&p -
o (He~h;, (519
il .
T Ehehyil, (5.200
S .
o He~hyh, (521
A
T Hhi;, (522
where quantities with & denote the deviation due 1o the pres-
ence of hj;.
Foor (MR =019 and for close arbits as d 1.3, the ah-

solute magnitude of F; at the location of slars is typically
--[035. This implies that neglecting &;; might induce a =ys-
tematic ermor of G4 1075 for £ and  and of O 1077 for e
by, and M for close and compact binaries. These systemalic
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errors might also induce a systematic error for the Frequency
and amplitude of the grvitaticnal radiation of OF 1071, Ob-
viously, i;; cannot be neglected for close and compact bina-
res if we mequire an sccurmcy within a 1% enmorn

For (MIR)o=014 and j L.3, the magnilude of k-:f is
aboul hall of that for (MR =019, e, —~ 02 at the loca-
lion of stars. This i= reazonable becavse .k.:|: i= of U[:?q:l.
Thu=, for smaller { MRy, the conformal Aalnes :lpplu:l.i.-
mation becomes more acceplable. Howewer, even  for
(MR o= 14, the magnitude of the syslematic smor due 1o
the neglect of k;; could be larger than 1% for close ocbits,
implying that it seems 1o be still necesary even for neutron
stars of mildly large compactness to take into account f; to
guarantee an sccwrmcy within a | % enorn

Finally, we cany oul an exporiment: In solving equations
for the nonaxisymmetcic part of b, we have imposed an
culgning wave boundary condition since it obeys wave equa-
tions. This boundary condition is necessary o compube
gravitaticnal waves in the wave zone. However, 1o compuie
the near-rone metric for r<2h, the berm H#ﬂ_‘]!k_;f in the
WHVE n:tluuli.-::-n i= not WETY impurl:ml because ils mugn]}udl.‘
-h.rr_:l:u';l' is much smaller than that of Ak;;~h, /d° or
b /Ry, This implies that solving an elliptic-lype equation,
neglecling the term lf!""r!_,‘]!.k.:f, could yield an approximale
=i lution for h,-f in the near zone. [n thiz experiment, thus, we
solve the elliptic-tvpe equalion for A as an example and
compare lhe resulis wilh that obtained From the wave equa-
tion b demonstrale that this method is indeed acceptable for
compuiation of the near-zone metric.

The elliptic-type cqualion for Az is solved wnder the
Foundary conditions

Mz 5.3
0, i5.23)
at =11, and
1
Ap—-—, (5.24)
r

ab r=h. The outer boundary condition is determined From
the asymplotic behavior of the sowce berm.

In Fig. 18, we show &k, and b, /r" compuied from two
different equations of different asympiclic behaviors in the
case when (MWK =019, |:.|l 1.3, and pl=(115 {i.c.. in the
highly melativistic case). Mote that the centers of stars an
located al r=0.052h and the stellar mdios is 00408 Tt s
found that the two results agree Fairly well For r== 000, where
the stars are localed. The iypical magniiude of the difference
between the two results is of CH 10 '1:|.

ﬁ-::-::-rdi.ng. L | p-::-sL—NL'qun]un L|'.|-1:|.1|.'_l,r in the 3+ 1 for-
malizsm [3']'..3[], the difference bebween the two resuli= de-
nodes a mdiation reaction potential of 25PN order. In our
present gavge condition, the 2.5PN radialion reaction poben-
fial is writien as [37]

i A dH

T e (529
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FIG. 18, (2.2) modes of k_-J in the near zone for (WIRIL

0.9 and J= 1.3, Datled lines are results oblained nsing o
nonwave-1ype outer boundary condition and salid lines are resulis
using an oulgaing wave boundary condition. The cenlers of slars ane
located at r=0052% and radivs of siaes is =00404 in this case.

where #; denotes the trace-free gquadrupole moment. For
Mewtonian binaries of lwo poinl masses in circular orbits in
the equaiorial plane, we find

B — g

4
hE = —oens b, (5.26)

5

whine -::d.hl:rf_'umpunl.'nls are 1.'u.ni:|'|i.r.|3.. ]_'.qu.'.lliun I:Ellf':l] indi-
cates that the mu.'r_:nilm:h.' ol h_f: is of 10 '1'] even For o°
-], Therslore, the resulis shown in Figo 18 are consistent
with the p-::ﬁl-]"-l'twlun]u.n unu.l:,':]x.

As mentioned aboove, the configumiion of binary neutmn
stars and the crbital velocity are determined by quaniities in
the near zone. Thus, For oblaining a realistic binary configu-
ration and orkital velocity taking into account f;; . solving
medified elliplic-type equalions instead of the wave squa-
ticns for fo;; may be a promising approach.

VL SUNMARY AND DNSCTUSSION

We present an approximate method for the computation of
gravilaticnal waves from close binary newiron slars in quasi-
equilibrivm circular orbits. In this method, we divide the
procedure inlo bwo steps. In the ficst step, we compule binany
neulen stars in guasiequilibrivm circular ockits, adopling a
medified formalism for the Einstein equaticon in which gravi-
taticnal waves are neglecied. In the next siep, grmviiational
waves are compuled solving linear equalions for hy; in the
backgmound spacelimes of quasiequilibria obilained in ihe
st slep. [n this Framework, E.r.wil:lliun:ﬂ WILVEE AT com-
puted by simply =olving ODEs. The numerical analysi= in
thi= paper demonstrales that this methed can yield an accu-
mbe approximate solution for the waselorms and lumincsity
of gravitational waves even for close orhits just belore
merger in which the tidal deformation and generl nelativistic
elfects are likely o b important

From numerical resulis, we fnd that tidal and general
relativizstic effects are importani for gravitational waves from
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close binary neutron stars with A= 15 and £=0.1. As a
result of tidal deformation effects, the amplitude and lumi-
nesily of gravitaiional waves seem to be increased by o Fac-
ior of several percent. 11 is also indicaied thal convergence of
the post-Newlonian expansion is so zlow that even the 257N
formula for the luminosity of gravilational waves is not ac-
curate encugh for close binary neutron stars of 72201,

In Bec. VE, we indicalbe ihat the magnitude of a sysiom-
alic enor in guasicquilibivm siabes asociated with the con-
formal Hainess approximation with =0 is faidy lage for
close and compact binary neutron sacs. To investigals the
quasicquilibrivm states and associaled grvitalional waves
more accurately, we obviously need o improse the formula-
tion for gravitational fields of gquasiequilibium siabes. Thus,
in the rest of ihis secticn, we discuss possible new [formula-
fions in which an accuwrale :t:-mpul:ll]un will be Feasible. Al-
though a Few strategies have been already proposed [10,11],
there seem to ke many olher possibilities, as we bere propose
some different metheds in the case when we assume the
presence of the helical Killing vector,

The mest rigomous direction is o solve the full set of
eguiations derived in Sec. 1. However, to adopl this, we have
o resclve several problems One of the most =erious prob-
lem= is that the tofal ADM mass diverges bocawse of the
presence of slanding gravitational waves in the whole space-
times. This implics thal the spacetime is pol asymptotically
Aal, and it appears that we have o impum.' coerlain culer
'h-c:-und.al'_l.' conditions in the local wave mone ju:l culside the
near #one (e, ab r=~ k). In this case, il is not clear at all
what the appmopriale kFouwndary condition is For gecmetric
variables. As we indicated in Sec. IV, if we impose an inap-
propriale outgoing wave boundary condition in the local
wave one, the emor in the gravitational wave amplitode
could be mther lage. Thus, for adopting this strtegy, we
need o develop appropriate owler bowndary conditions [or
the gravitation fields. We emphasize thal numerical compu-
falion with rough boundary conditions leads oo faicly inac-
curale numerical result in this shrlegy.

One of the strabegies for escaping this “slanding wawe
prul'lh.'m" is foy udupl a linear ur.\pu‘-::mimul]un with re=pect 1o
d;h;; . Mote that the divergence of the ADM muss and related
problems for imposing outer boundary conditions are caused
by the terms A;:AY in the equations for o and g and by the
lzin r-'[,y-'l.-: in the equation for k;; which contain the qua-
dratic terms of d/;; and hence behave as O %y in the
wave zone, Thus, if we neglect the nonlinear terms of &4 ;
in the equations of o, ¢, and &;. there is no problem in
solving these equations with asympiotically Jat coter bouwnd-
ary conditicns in the disiant wave wmone. A= we indicaled in
Sec. VE. nonlinear terms of k; are small in the near sone, so
that r.l-L'EI.'L'El al them wewld nod cause any seons x_'.'sl.q:malii:
error, The neglect is significant in the wave rone becanse il
changes the spacetime structhure dslically. However, as
mentioned in Sec. IV, this lincarizalion may ke considered as
a prescription o exclude the unphysical pathology associated
with the exislence of the standing wave. One concern in this
proceduns is that the solulions derived in this formalism do
nel satisly the Hamiltonian constrmint equation, becauss we
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miedify it, neglecting the nonlinear teems of d4;; . However,
as long as the magnilude of the violation is smaller than an
acceplable numerical emor, say, —0. 1%, this method would
be acceplable.

Another simple method is ks change the wove equaticn
for kg

i1, .rr,r-

associabed with the exisience of slanding waves. In this case,

kv an elliptic-type equation, neglecling the term
By this treatment, we can exclude the problem

we do pot have to neglect nonlinear terms of Fy; because they
do nob cause any serous problems in the distani zone. As
shown in Sec. W E, even if we solve the elliptic-iype equaticn
for b,
with the =oluticon oblained from the wave equations. This

|J1C HZZIIIH]IJI'I i.r.| |J1C Ocar oore llkCI._'p’ \'_'I.'I]I'II:]IZIL'."- '“-"CI.I

indicates that this treatment could vield an accurale appooxi-
mate soluticn for the near-zone graviiational feld and maiter
configuation of binary peatron siacs. In this case, gravila-
ticnal waives cannol be 5im|.1|.|.an|.'-::-u5]}' cumpuh:d. However,
a=z we have shown in this paper, we can compule gravita-
ticonal waves In a post-processing.

The methed we showld choose depends strongly on our
purpess. IF one would want o obiain an “exact™ wolution in
the prezence of the helical Killing vector, we should choose
the firsl cne, even though it may be an unphysical soluiion.
However, if we would want o obiain o masonably accumtbe,
physical solution or o obtain theoretical templales of reason-
able accuracy, =av, within (L1% ermor, some appoximaie
methods such as second and thisd cnes may b ad-::-pl.q:d. W
think that our [= Ky et is not 1o ablain the unp]13.r5]|:a|.- exact
solution but to obiain a reascnably accwmbe phy=ical solution
which can be vused as theorelical templates. In wsing second
and third methods, we do nol need new compulational tech-
nicues or large-scale simulations. Furthermore, compuia-
ticmal cosls will ke cheap. For these reasons, we cansider that
the sccond and third methods ane promising.
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APPENINX A SOME FUNDAMENTAL CALCULATIONS

With the expansion of hj; in terms of tensor harmonics
Functions such == Eg. (4.18), the componentz of the Laplac-

tan of hj; are writlen as

20 htE 4
:r E |',|| _r:'_dllﬂl _'I_ﬂlrr I'|r|.-

- z HI'HI}:IIHI ]

(AL
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APPENDIX B: POST-NEWTOMNLAN WAYEFORNS
OF GEAVITATIONAL WAVES FROM A BINARY
OF TWD ELLIFSOIDAL STARS

The leading terms (up o Arst posi-Mewlonian coder) in
the wave zone expansion of the gravitational waveform are
decomposed in terms of mdiative multipoles as [37]

h. EF |:|‘- i lN 3 f i I!IJ’ N
4l n 1k il 3 L1 ek H‘Errrlh (i ¥

|
| —ﬂ.f N it 5 s g NalVy |+ (B

127

where 1 is a distance from a sowrce o an observer, "'Iia]
-:Ilnflru.rl'n., I“h, I,’XH } k'“.'lfl HJ: .Ir*u"r,
p||:|.q:|_',' unL]x_'rmrnl:lri.-: lenscr, and

£k 15 @ com-

P Ui — NN LBy~ NN

1
5 (i~ Nl (8= NuN)). (B2)

Lia Tijes Tijw e oo and Fipy in Mewtonian order are written
in the Form

Bi= @y~ 5 80 (B3}
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|
e E':'ﬁ.i.::-_i'ﬂ-.ln'l Bt i),

I iBd)
1
'Fl_lkl EJEH 7 l: EI._I E.l:ll.l.'.l.' t &}Eflﬂﬂ t a.:lﬂ_lkrn
t a_lkﬂl'.lnnl i;_u'ﬂ.iﬂ'rr f ﬁ.\.'El_lnn:l
l
t Eiﬁjfﬁul St S ) @ e - (B5)
1 1
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1 1
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b 280+ Si) + B (2500t Sy 1, (BT)
whl.'l'l.'
D I prix . dtr, iB&E)
Sk Ip.t':.r'- - -e“".tjurnf:".r-
(H9)

Here, we consider irmotational binary  meobon stacs of
equal mass in equilibrivm circular cobils with angular veloe-
ity £ in Newtonian gravily for the computation of the above
mullipole moments. For simplicity, we assume thal the shape
ol each star is ellipsoidal and, in a molating frume, the stams
are locaied along the x axis which coincides with the semi-
mu_iur axis. ]}:I_ln]ng the coordinales in the |1.1lu.|]ngI Frame as
[I,}',H] and dl:n-::-l]ng the m.'pal:lliun belween centers of bwo
stars as 2d, we have the following nonzero componenis for

@i
Qra—2AMud*+ @1).  Qrr=202, Qaxr—205.

Quxzy= 2 Myd + 607+ @),

Crxry= 20 Q2™+ 212,

(B10)

@rrzz=20 Q™+ @13),

Crryy=210n. Oyrzz=I0n.

rrzz= 103,

where Wy is the Mewlonian mass of one star, and (2 and £
dencie the guadrmupole moments and 2*-pole moments of
each star (1, 2. and 3 denote xx, vy, and zz, respectively). In
the inertial frame, the nonzero components of @ ane writlen
as

=5 Dyt e Qyy,
E:: EIH’-

D= Pt 5 Ay,
2oy = el @y — Gyl

(BL1)
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L T G F SRt pl Tt F SRR
4 4 2.z
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"
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[

(L

where c™cos( L0 and == sin {15,

T compute 55 i, we need the velocity which s for-
mally chlained after we solve the hydmsiatic equations. For
simplicity, we here szsume the [ollowing form in the rolating
frame:

2 ez .

Vi g1 ¥
v (XX |1+ g2 [ X—d) (B12)
i 0

where g and g2 ane constants which depend on the orhital
separation 24, In the case of incompressible Auid, this be-
comes 3 highly accurate approximate solution [39]. Thus, for
a siar of a stiff equalion of siate such as peatron stars, this
assumplion would be acceplable. In this welocity field, all
components for §;; are sero, and we have the following non-
zero components for 5 -

e VI Qx5 @ ) — @il e Qo 5" Qv
Fgal e Dy o Qevrr)

Sy o\ VI e — @ wr)

yxrrl}.

g
Gl @exrr— yrrr)

Fagal @ yxry
8= Vet g1 Qypre— g Py

Somy ol V@ et @1 @ryez t g2@xxzzs
(B13)

o= Ve Qe t e Q) — a0 (5 Pxrr t e Qpry)
bl Quonn o Quxrr)

8o cA VD iyt 1@ rreet g2 0vxew).

Spo= 5 VQmart e q1@yrzz— 5 920xxzz .

S V@ e a1 Qyrez t gl xxee .

where V=i{{}— ga1d, and
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Qxxx—2iMyd +d Q).

Qarr—2d@a.  Quaz— 24U;-

(B14)

Using these multipsle momenls, we can compuls the
wavelborme and luminosily of graviational waves as

Phy =My — (L +aicosi 210 s
1
Fall aycos( 40ty

1 -
ﬁmr“ "+ 1) cosl 29 )2 [

| I 4
(26— 1 cos(29 e n |,

i iB15)
Dh., = My 2 sin 2% je” o
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<l ] w ) sini 40 et
1 ) _ ;
t EHETH' Sisinl 2% 0" f s
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| J_-,-H“- 1 ber sinf 29 e _."_131. (B 16y
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bk e R R AT
2 E17
567 H( | (B17)
whemne ¢= IHJ, and
2= (@ @yp) (M ™), (B 18)
T~ (Qrrext Qrrvr— 6 Quayy WM ), (19

.Ir-12 | EII.H' EI']TF f'iEA'J.'HI E ]'i'.?:i-!':l |'r|:"|'!I !'-i"jq:li

(B20)
Faz= [ VIQ xzx— Qe — 20| X[ ZE)
b [~ @xgrr t @rovy — 20 ryze)
Faal @y — Cuary — 2Q0xua) |1 IM 2 d*).
(B21)

We note that the subscript of [, indicabes the component in
the expansion by lensor spherical harmonic funclions as in
Eq. (4.18). Other modes of nonzems m bosides the above
mecdes are wanishing due to w-motational symmetey and planes
symmebry with respect to the equatorial plane of the system.
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Lt indicales the amplification factor of the gravitalional

WAVE ;Lrnp]i.lud.n: dus to lidal deformation. For {=m 1.. it
can be wrillen as
i@
fam 1t ——, (522)
H:h;;['

where the second term dencibes the correction due to the 1idal
deformation. Following [36], we write (), as

Ky -
e = My . (B23)

where @y is the length of semiaze= and «, i= a constant
depending on equations of slate. For incompressible fluid,
w, = 1. and x, is smaller for soflter equations of state (in the
Mewtonian case, &, =045 for =] [36]). Thus, the ampli-
ude of quadmpole gravitational waves s increased by the
lidal delormation by a factor i].zﬁ,[nf :l%'ln"JJ. Since o has
o be luger than o and r == |, the amplification mate is at
most 0.2, (According to [36], it is at most ~ (.14 because
ez e =005 for ay = d.) We note that a) — a3 is proporlional
in @~ " =0 that the amplification Factor rapidly increases with
decreazing orbiial separation.

The ampl]ﬁcu.l]un faciors for hlg,hu: mull]pulu: are Found
o ke

22 | Pyt Qe Oz

|+ B24
T Myl -
@ @y Qe 6@ Pl
e <] .
R T Myl
(B25)
fa “3!?1 EEEEERIE‘F!E] QEE':
M:\.‘:Il_ M:\;ﬂﬂl_
Pt Q@205
b
My
Py 22
v ] B26
e Mgt (62)

Thus, it is obviously found that the magnitude of the tidal
elfect For 4 and 47 is aboul 6 times larger than that for 5.
({5 is slightly larger than bul roughly equal to &5 For binary
of incompressible Muid [3G].) “'6 times™ implies that the am-
plitude of gravitational waves for these multipoles can ke
sovetal 0% larger than that without the tidal defoamation.
For a mough estimation of 3. we wse the relations for in-
compressible Auid. In this case, both g /0 and g, Y are
wrillen a= l:':rf :rg:n"[n:lfl ui'l [35]. Thus, the amplification
Facicr becomes
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L 0,0
frm U4 45| 30202720, 30, 0I5 o)
Fod T, (B2T)

irdicaling that the magnitude of the tidal effect on 3; could
be about 4-5 limes as large as that af f5;.

All these vesulls demonstrate that the elfect of tidal defor-
maticn on the gravitational wave amplitede is moe impor-

PITYSICAL REVIEW D 64 104017

fant for higher multipole gravilational waves and qualita-
tively agree with the numerical mesults in Sac. V.

In more higher mullipole modes such as the f=m =06
mode, a lerm such as 2 yrpyer will contrbute, It iz evaluabed
as Mad®+ 150 ppa* + (3”1, and the amplification Factor
due to the tidal deformaticn will ke about 15 times larger
than that for the {=m=2 mode. Thus, the effect of tidal
deformation for close binary neutron stars will be even more
significant.
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