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Computing gravitational waves from slightly nonspherical stellar collapse to a black hole:
Odd-parity perturbation
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Nonspherical stellar collapse to a black hole is one of the most promising gravitational wave sources for
gravitational wave detectors. We numerically study gravitational waves from a slightly nonspherical stellar
collapse to a black hole in linearized Einstein theory. We adopt a spherically collapsing star as the zeroth-order
solution and gravitational waves are computed using perturbation theory on the spherical background. In this
paper we focus on the perturbation of odd-parity modes. Using the polytropic equations of state with polytropic
indicesnp51 and 3, we qualitatively study gravitational waves emitted during the collapse of neutron stars and
supermassive stars to black holes from a marginally stable equilibrium configuration. Since the matter pertur-
bation profiles can be chosen arbitrarily, we provide a few types for them. Fornp51, the gravitational
waveforms are mainly characterized by a black hole quasinormal mode ringing, irrespective of perturbation
profiles given initially. However, fornp53, the waveforms depend strongly on the initial perturbation profiles.
In other words, the gravitational waveforms strongly depend on the stellar configuration and, in turn, on thead
hoc choice of the functional form of the perturbation in the case of supermassive stars.
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I. INTRODUCTION

Detection of gravitational waves is one of the great
challenges in experimental and theoretical physics in
decade. Several kilometer-size laser interferometers, suc
TAMA @1#, the Laser Interferometric Gravitational Wave O
servatory~LIGO! @2#, and GEO@3# are in operation now and
VIRGO @4# will be in several years. In addition to thes
ground-based detectors, the Laser Interferometer Space
tenna ~LISA! with an arm length of 53106 km has been
proposed@5,6# and is planned to start taking observations
2012.

Nonspherical stellar collapse is one of the most promis
sources of gravitational waves for both ground-based de
tors and space antennas. Ground-based interferometric d
tors have a good sensitivity in the frequency range betw
;10 and 1 kHz. Thus, the stellar core collapse of a mas
star to a neutron star@7# or a black hole@8# is one of the
targets. According to@8#, at the formation of a massive blac
hole, quasinormal modes of a black hole are excited
gravitational waves of high amplitude associated with
quasinormal modes are emitted.~See @9# for a review of
black hole quasinormal modes.! The frequency of gravita-
tional waves associated with the fundamental quadrup
quasinormal modes of rotating black holes is@10#
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where the frequency is higher for more rapidly rotating bla
holes. Equation~1.1! indicates that formation of black hole
of mass *20M ( may be a promising source for lase
interferometric detectors.

The frequency band of space antennas is between;1024

and;0.1 Hz @5#. This suggests that the formation of supe
massive black holes may be one of the most promis
sources. Although the actual scenarios by which superm
sive black holes form are still uncertain, viable stellar d
namical and hydrodynamical routes leading to the format
of supermassive black holes have been proposed@11–13#. In
typical hydrodynamical scenarios, a supermassive gas c
is built up from multiple collisions of stars or small ga
clouds in stellar clusters to form a supermassive star. Su
massive stars ultimately collapse to black holes followi
quasistationary cooling and contraction to the onset of ra
instability @14,15#. Such dynamical formation of superma
sive black holes may be a strong gravitational wave sou
for LISA @16–20#.

The most hopeful approach for the computation of gra
tational waves from stellar collapse to a black hole is
numerically solve the fully nonlinear coupled equations
Einstein and the general relativistic hydrodynamic equatio
There has been much progress in this field in the last
years@21#. However, it is not technically easy to compu
©2003 The American Physical Society02-1
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gravitational waves with high precision in numerical relat
ity, since the amplitude of gravitational waves associa
with the stellar collapse is not very large and as a result, t
could be contaminated by numerical noises and/or ga
modes. To cross-check the numerical results and also to c
pute precise gravitational waveforms, it is desirable to h
another method.

As an alternative approach, linear perturbation theory
been developed@22–24#. In this approach, we decompos
the fully nonlinear metric and matter field of slightly non
spherical profiles into a spherically symmetric dynami
field and linearized nonspherical perturbations. Becaus
progress in numerical techniques and computational
sources, Einstein’s equations in spherically symmetric spa
time can be now accurately computed at low computatio
cost. Furthermore, due to the spherical symmetry of
background spacetime, the perturbations can be expand
spherical harmonics. Thus all the equations for gravitatio
waves reduce to two simple~111! wave equations of even
and odd parities, which can be numerically solved with h
precision. Although this method is applicable only to sligh
nonspherical problems, the gravitational waveforms of sm
amplitude associated with stellar collapse can be comp
with high accuracy. The result is also useful for calibration
fully nonlinear numerical results.

The history of progress in linear perturbation theory o
spherically symmetric spacetime is as follows. The first wo
in this field was done by Regge and Wheeler@25# and Zerilli
@26#. They derived the linear perturbation equations of o
parity @25# and of even parity@26# in Schwarzschild back-
ground spacetime. Subsequently, a gauge-invariant form
ism of linear perturbations was developed by Moncrief@27#.
Extending his work, Cunningham, Price, and Moncrief@22#
derived perturbation equations on the Oppenheimer-Sn
solution for a collapsing uniform dust ball@28#, and com-
puted gravitational waves emitted during the gravitatio
collapse of a dust ball to a black hole. Gerlach and Sengu
@29# subsequently developed a gauge-invariant formula
of the linear perturbation on general spherically symme
spacetimes. Using the Gerlach-Sengupta formalism, Se
and co-workers@23# computed gravitational radiation from
stellar core collapses, focusing mainly on the waveforms
sociated with the formation of neutron stars. They nume
cally solved the spherically symmetric general relativis
hydrodynamic equations using the May-White sche
@30,31#. Haradaet al. @32# studied scalar gravitational radia
tion from a collapsing homogeneous dust ball in sca
tensor theories of gravity, using a similar method to that
Cunningham, Price, and Moncrief@22#. Iguchi, Nakao, and
Harada@33,34# studied nonspherical perturbations of a c
lapsing inhomogeneous dust ball, which is described by
Lemaı̂tre-Tolman-Bondi solution@35#. Recently, Gundlach
and Martı´n-Garcı´a @24# have developed a covariant gaug
invariant formulation of nonspherical perturbations
spherically symmetric spacetimes with a perfect fluid, a
derived coordinate-independent matching conditions for p
turbations at the stellar surface.

The dynamics of spherically symmetric spacetimes h
been often studied using a method developed by May
02400
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White @30#. In this scheme, spherically symmetric spac
times are described in terms of the so-called Misner a
Sharp coordinate system@36#, in which a spacelike comov
ing slicing and an orthogonal time coordinate are adopt
This formulation is robust for the simulation of oscillatin
spherical stars and stellar core collapse to neutron s
However, it is not robust enough to carry out simulations
black hole formation, because the computation often cras
before all of the matter is swallowed into a black hole due
inappropriate choice of the slicing condition@54#.

To compute black hole formation, a null formulation pr
posed by Hernandez and Misner is well suited@37#. In this
formulation, spacetime is foliated by an outgoing null coo
dinate and thus the whole region outside the black hole
rizon can be covered. The singularity avoidance of the n
foliation is assured until the foliation reaches an event ho
zon if the cosmic censorship holds. Using this formulatio
Miller and Motta@38# performed the numerical simulation o
collapse to black hole formation. Baumgarte, Shapiro, a
Teukolsky@39# used this formulation to study neutrino emi
sion in the delayed collapse of hot neutron stars to bl
holes. This formulation was also applied to the study of c
mic censorship@40,34# and the formation of primordial black
holes@41#. Linke et al. @42# also computed the spherical co
lapse of supermassive stars using an outgoing null coordi
but different radial coordinate, i.e., Bondi metric to study t
neutrino emissivity during the collapse.

In this paper, we present a new implementation in line
ized Einstein theory, in which spherical background spa
times are computed with the Hernandez-Misner sche
while nonspherical linear perturbations are treated using
single-null coordinate system. With the Hernandez-Misn
scheme, it is possible to follow spherical stellar collapse t
black hole until almost all the matter has collapsed below
event horizon. The null coordinate system is well suited
the computation of gravitational waves emitted near
event horizon, which we want to study here. As a rela
work to the present treatment, Siebelet al. @43# presented
simulations of gravitational collapse of neutron stars to bla
holes and the computation of quasinormal ringing in t
spherically symmetric Einstein-fluid-Klein-Gordon syste
using an outgoing null coordinate without linear approxim
tion.

This paper is organized as follows. In Sec. II we brie
review the evolution equations for spherically symmet
spacetimes in terms of the Hernandez-Misner null formu
tion. In Sec. III we describe the evolution equations for od
parity gauge-invariant perturbations in the single-null co
dinate system and then derive the explicit match
conditions at the stellar surface. In Sec. IV we explain
method for computation of gravitational waves in our gaug
invariant formalism. In Sec. V we describe numerical tec
niques adopted in the current implementation. In Secs.
and VII, we present the numerical results of test simulatio
and gravitational waveforms from the collapse of a sup
massive star and neutron star to black holes, respectiv
Section VIII is devoted to a summary. We adopt geometri
units in whichG5c51, whereG andc denote the gravita-
tional constant and speed of light, respectively.
2-2
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II. BACKGROUND SPACETIME

A. 2¿2 split of spherically symmetric spacetimes

We decompose a spherically symmetric spacetimeM into
a product asM5M 23S 2. Namely a metric is written as

gmn[diag~gAB ,R2gab!, ~2.1!

wheregAB , R, andgab are the~111! Lorentz metric, scalar
function onM 2, and unit curvature metric onS 2. The greek
indicesm,n, . . . , capital latin indicesA,B, . . . , andsmall
latin indices a,b, . . . denote the spacetime componen
M 2 components andS 2 components, respectively. The c
variant derivatives onM, M 2, andS 2 are denoted as;m , uA
and :a , i.e., we define them from the conditionsgmn;l50,
gABuC50, andgab:c50.

The stress-energy tensor for general spherically symm
ric spacetimes is given by

tmn5diag~ tAB ,~ ta
a/2!R2gab!. ~2.2!

The totally antisymmetric covariant unit tensorseAB on M 2

andeab on S 2 are defined as

eACeCB52gA
B , eace

cb5ga
b . ~2.3!

B. Hernandez-Misner formulation of general relativistic
hydrodynamics

We choose the Hernandez-Misner coordinate system
the form

ds252e2cdu222ec1l/2dudx1R2~du21sin2udf2!,
~2.4!

where x is a comoving coordinate, andc, l, and R are
functions ofu andx.

We assume that the stars are composed of a perfect fl
for which the energy-momentum tensor is written as

tmn5~e1p!umun1pgmn , ~2.5!

wheree, p, andum are the energy density, pressure and fo
velocity of the fluid.

We define the following new variables:

U[e2cR,u , ~2.6!

G[e2l/2R,x2U5A12
2m

R
1U2, ~2.7!

wherem is the Misner-Sharp quasilocal mass@36#. Then, the
field equations are written in the form@37#

U ,u52
ec

12cs
2 FGe2l/2

e1p
p,x1

m14pR3p

R2 G
2

eccs
2

12cs
2 S e2l/2U ,x1

2UG

R D , ~2.8!

R,u5ecU, ~2.9!
02400
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m,u52ec4pR2pU, ~2.10!

e2l/25
G1U

R,x
, ~2.11!

n5
e2l/2

4pR2
f , ~2.12!

S e

nD
,u

52pS 1

nD
,u

, ~2.13!

m,x54pR2el/2~eG2pU!, ~2.14!

c ,x5
1

G
U ,x1el/2

m14ppR3

GR2
. ~2.15!

n is the baryon rest-mass density,f 5 f (x) is an arbitrary
function associated with the rescaling of the radial coor
nate, andcs is the sound speed which is defined by

cs
2[S ]p

]e D
s5const

, ~2.16!

wheres denotes the entropy.
The regularity condition atx50 gives the boundary con

ditions as

R50, ~2.17!

U50, ~2.18!

G51, ~2.19!

m50. ~2.20!

The boundary condition at the stellar surfacex5xs is given
by

p50. ~2.21!

In the original form of the Hernandez-Misner formalis
@37#, f is chosen to be unity. In this case,x coincides with the
conserved massm contained in the interior to a shell. An
other candidate forf is

f ~x!5
4pn~u0 ,x!x2

~G1U !~u0 ,x!
. ~2.22!

In this case,x coincides with the circumferential radius of th
shell on the null surfaceu5u0. In this paper we adopt Eq
~2.22! for f, since it has a nicer feature for the integration
nonspherical perturbations which we will describe in t
next section.

We assume that the exterior of the star is a vacuum. Th
the zeroth-order solution is the Schwarzschild spacetime
2-3
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ds252S 12
2M

R DdT21S 12
2M

R D 21

dR2

1R2~du21sin2udf2!, ~2.23!

whereM is the gravitational mass of the system. To comp
gravitational waves in this background, it is convenient
introduce null coordinatesū and v̄ defined as

ū5T2R* , ~2.24!

v̄5T1R* , ~2.25!

where

R* [R12M lnS R

2M
21D . ~2.26!

Then, the line element is of the form

ds252S 12
2M

R Ddūdv̄1R2~du21sin2udf2!.

~2.27!

In the following, we refer to the standard outgoing null c
ordinateū as an observer time coordinate according to@39#.

The ratio of the proper time intervaldts of an observer at
the stellar surface to the observer time intervaldū is given
by

dts

dū
5~G1U !~u,xs!. ~2.28!

The lapse functiona at x is defined by the ratio of the prope
time intervaldt of each fluid element to the observer tim
interval dū as

a~u,x![
dt

dū
5

dt

dts

dts

dū
5

ec(u,x)

ec(u,xs)
~G1U !~u,xs!.

~2.29!

We note that the lapse functiona is directly related to the
observed redshiftz asa51/(11z).

In solving the dynamics of a spherical star, the bound
condition for c is arbitrary. In the present computation, w
chooseec(u,xs)51 for the boundary condition ofc. Then,
we can identify the null coordinateu with the proper timets
of the comoving observer at the stellar surface.

III. ODD-PARITY PERTURBATIONS

A. Gauge-invariant perturbations

Perturbed metric and matter fields of odd parity are
noted by

Dgmn5S 0 hASa

hASa h~Sa:b1Sb:a!
D , ~3.1!
02400
e

y

-

Dtmn5S 0 DtASa

DtASa Dt~Sa:b1Sb:a!
D , ~3.2!

whereY, Sa[ea
bY:b andSa:b1Sb:a are the scalar, vector an

tensor harmonics, respectively. Here, the sufficesl andm are
omitted for simplicity. The scalar harmonic functionY satis-
fies

gabY:ab52 l ~ l 11!Y. ~3.3!

The gauge-invariant perturbations are defined as

kA[hA2huA12hvA , ~3.4!

LA[DtA2QhA , ~3.5!

L[Dt2Qh, ~3.6!

where

vA[
RuA

R
. ~3.7!

L is identically zero forl 51, and no perturbation of odd
parity appears forl 50.

For a perfect fluid, the matter perturbations of odd par
are only specified by the four-velocity perturbations as

Dum5~0,bSa!, ~3.8!

whereb is a function ofx andu and completely determine
the matter perturbations. The concrete form is determined
solving the field equations@cf. Eq. ~3.10!#. In terms ofb, the
gauge-invariant perturbations are written as

LA5b~e1p!uA , ~3.9!

andL50.

B. Field equations: Interior

The covariant field equations for nonspherical pertur
tions in the stellar interior were derived by Gerlach and S
gupta @29# for general matter fields and have been recen
reformulated by Gundlach and Martı´n-Garcı´a @24# for a per-
fect fluid. We follow @24# to derive the basic equations fo
the perturbations.

The perturbation equation for the matter field,D(tn;m
m )

50, is integrated to give

b52
e2l/2

R2~e1p!
j , ~3.10!

where j 5 j (x) is an arbitrary function ofx. Integration ofj
by dx yields a conserved quantityJ as

J5E jdx, ~3.11!

whererJSfsinududf corresponds to thez-component of an-
gular momentum forl 51.
2-4
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At R50, b should satisfy the regularity condition as

b5Rl 11b̄, ~3.12!

whereb̄ is a regular function atR50. The regularity ofb
also leads to the following condition:

e2l/2j 5Rl 13 j̄ , ~3.13!

where j̄ is a regular function atR50. In terms of the func-
tion j, the gauge-invariant matter perturbations are descri
as

Lu5
ec2l/2

R2
j , ~3.14!

Lx5
1

R2
j . ~3.15!

Thus, in the following, we specifyj instead ofb.
The metric perturbations of odd parity are characteriz

by a master variable as

P[e2c2l/2F S kx

R2D
,u

2S ku

R2D
,x
G , ~3.16!

where P is related to a variablep̃1 introduced in@22# as
p̃15 l ( l 11)R2P. P should satisfy the regularity conditio
at R50 as

P5Rl 22P̄, ~3.17!

whereP̄ is a regular function atR50. P̄ satisfies the fol-
lowing wave equation forl>2:

22e2c2l/2P̄ ,xu1e2c2l/2~ec2l/2P̄ ,x! ,x1
2~ l 11!

R

3$2~G1U !e2cP̄ ,u1Ge2l/2P̄ ,x%2~ l 12!

3F4p~e2p!1~ l 22!
2m

R3 G P̄

516p@Re2c2l/2~ec j̄ ! ,x1$~ l 11!G12U% j̄ #. ~3.18!

The relation betweenkA andP is given for l>1 by

~ l 21!~ l 12!ku516pR2Lu1~R4P! ,u2ec2l/2~R4P! ,x ,
~3.19!

~ l 21!~ l 12!kx516pR2Lx2~R4P! ,x . ~3.20!

For l>2, the gauge-invariant metric perturbations are o
tained from Eqs.~3.18!, ~3.19!, and ~3.20!. However, forl
51, Eqs.~3.19! and ~3.20! give

R4P516pJ, ~3.21!
02400
d

d

-

where we assume that the perturbation is regular atR50.
Equation~3.21! implies that there is no gravitational-wav
mode forl 51.

C. Field equations: Exterior

We have two metric perturbationskT andkR in the exte-
rior. Defining the master variableP as

P[S kR

R2D
,T

2S kT

R2D
,R

, ~3.22!

we find the following wave equations forl>2

2F ,TT1F ,R
*

R
*
2V~R!F50, ~3.23!

where

F[R3P, ~3.24!

V~R![S 12
2M

R D S l ~ l 11!

R2
2

6M

R3 D . ~3.25!

Here, we note thatF is related to the variablec̃ defined in
@22# as c̃5 l ( l 11)F. Using the double-null coordinate
(ū,v̄), we obtain

4F ,ūv̄1V~R!F50. ~3.26!

Equation~3.23! has a static solution with an appropria
fall-off at infinity as

Fstatic5
q

l ~ l 11! S 2M

R D l

FS l 21,l 13,2l 12;
2M

R D ,

~3.27!

whereF(a,b,c;z) denotes the hypergeometric function a
q, which has the dimension of length, corresponds to
multipole moment of the system. Because@ l ( l 11)#21 is
factorized out in the above equation, the definition of t
moment is the same as that defined in@22#. This static solu-
tion is used for providing initial conditions of metric pertu
bations~see Sec. V!.

The relation betweenkA andP is given for l>1 by

~ l 21!~ l 12!kT52S 12
2M

R D ~R4P! ,R

5~R4P! ,ū2~R4P! ,v̄ , ~3.28!

~ l 21!~ l 12!kR52S 12
2M

R D 21

~R4P! ,T

52S 12
2M

R D 21

3@~R4P! ,ū1~R4P! ,v̄#. ~3.29!

For l 51, we find the solutions of Eqs.~3.28! and ~3.29! as
2-5
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R4P5const. ~3.30!

The integration constant in Eq.~3.30! is related to the tota
angular momentum of the fluid perturbation forl 51. The
master variableP is time independent in the exterior forl
51 as shown in Eq.~3.30!. This constancy implies the con
servation of the angular momentum of linear perturbation
the spherically symmetric background.

To compute nonspherical metric perturbations, we div
the background spacetime into regions I–III~see Fig. 1!.
Region I is defined as the interior of the star. Region II is
intermediate exterior region from which one can emit an
going null ray that encounters the stellar surface before
stellar surface is swallowed into the event horizon. Reg
III is the exterior region outside region II. Region II is intro
duced to help the matching procedure at the stellar surfac
numerical computation. Hereafter, we will refer to the ing
ing null surface which divides the exterior regions into r
gions II and III as the junction null surface. Such an elab
rate procedure is needed to calculate the late-t
gravitational radiation extracted at the point far from the s
and to assure that the matching condition is satisfied at
stellar surface simultaneously.

For the convenience of computation, we introduce n
null coordinatesũ and ṽ in region II. We identify these null
coordinatesũ and ṽ with the values of the proper timets of
an observer comoving at the stellar surfacex5xs at its inter-
section of an outgoing ray (ũ5const) and an ingoing ray
( ṽ5const), respectively. Namely, the stellar surface is giv
by ũ5 ṽ.

When we define functionsA andB as

A~ ũ![
dū

dũ
5

1

G1U
~ ũ,xs!, ~3.31!

FIG. 1. Spacetime structure of spherically symmetric black h
formation is depicted. Region I denotes the stellar interior, regio
denotes the intermediate exterior region from which we can emi
ingoing light ray which hits the stellar surface before the horiz
formation, and region III denotes the far exterior region. T
boundary between regions I and II is the stellar surface.
02400
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B~ ṽ ![
dv̄

dṽ
5

1

G2U
~ ṽ,xs!, ~3.32!

we can rewrite the wave equation forF as

4F ,ũṽ1A~ ũ!B~ ṽ !V~R!F50. ~3.33!

We integrate Eq.~3.33! in region II. The event horizon is
given by a finite value ofũ. It is found that the effective
potential termṼ[A(ũ)B( ṽ)V(R) is regular on the even
horizon in this coordinate system, which helps numerical
tegration of the wave equation.

D. Matching

The matching condition at the stellar surfacex5xs for the
odd-parity perturbations is obtained from the continuity co
dition for P, nALA , and nAP uA216pR22uALA for l>1,
and fornAkA anduAkA for l>2, wherenA[2eABuB @24#.
The explicit equations are

P in5Pex, ~3.34!

2e2cP in,u1e2l/2P in,x216pR24e2l/2j

52
Pex,ū

G1U
1

Pex,v̄

G2U
52Pex,ũ1Pex,ṽ . ~3.35!

UsinguAP inuA5uAPoutuA , we can derive an alternative form
of the matching condition as

22e2cP in,u1e2l/2P in,x216pR24e2l/2j

522
Pex,ū

G1U
522Pex,ũ . ~3.36!

For l 51, the matching conditions lead to

P in516p
J~x!

R4
, ~3.37!

Pex516p
J~xs!

R4
. ~3.38!

Thus, the gauge-invariant variableP is completely deter-
mined by the initial distribution of perturbed angular m
mentum in the star.

IV. GRAVITATIONAL WAVES

To compute gravitational waves in the wave zone, it
convenient to adopt the radiation gauge. In this gauge,
following tetrad components denote the1 and3 modes of
gravitational waves;

h1[
1

2
~hû û2hf̂f̂!, ~4.1!

h3[hûf̂ . ~4.2!

e
II
n
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Hereafter, we adopt the following choice for the orthonorm
bases:

Yl0 for m50 and

Yl ,m6
[

1

A2
~Yl ,m6Yl ,2m! for mÞ0. ~4.3!

The metric perturbationsh1 and h3 in the radiation
gauge are written in terms ofF as

h152
1

~ l 21!~ l 12!

1

R
~F1const!A1~u,f!1O~R22!,

~4.4!

h352
1

~ l 21!~ l 12!

1

R
~F1const!A3~u,f!1O~R22!,

~4.5!

where the angular dependence can be explicitly calculate

A1~u,f![Su:u2
1

sin2u
Sf:f

52S 1

sinu
Y,uf2

1

sinu tanu
Y,fD , ~4.6!

A3~u,f![
Su:f1Sf:u

sinu

5
2

tanu
Y,u22m2

1

sin2u
Y1 l ~ l 11!Y. ~4.7!

Here, Y denotes one of the bases shown in Eq.~4.3!. The
luminosity of gravitational wavesPl ,n for each mode in
terms of the master variable is given by~see@22,33# for m
50 and also@44#!

dPl ,n

dV
5

1

16p~ l 21!2~ l 12!2
F ,ū

2
~A1

2 1A 3
2 !~u,f!,

~4.8!

Pl ,n5
1

16p

l ~ l 11!

~ l 21!~ l 12!
F ,ū

2 , ~4.9!

where the subscriptn denotes 0 andm6 .

V. NUMERICAL METHOD

A. Numerical integration

The spherically symmetric stellar collapse is compu
using the single-null comoving coordinates. Our method
essentially the same as that used by Baumgarte, Shapiro
Teukolsky@39#. An artificial viscosity term is incorporated t
deal with shock waves. The details of numerical meth
which we adopt are found in@39#.

To solve the perturbation equations for the interior of t
star~region I!, it is convenient to decompose Eq.~3.18! into
02400
l

as

d
s
nd

d

the first-order differential equations as

22e2c2l/2Q,u1e2c2l/2~ec2l/2Q! ,x

1
2~ l 11!

R
$2~G1U !e2cP1Ge2l/2Q%2~ l 12!

3F4p~e2p!1~ l 22!
2m

R3 G P̄

516p@Re2c2l/2~ec j̄ ! ,x1$~ l 11!G12U% j̄ #, ~5.1!

22e2c2l/2P,x1e2c2l/2~ec2l/2Q! ,x1
2~ l 11!

R

3$2~G1U !e2cP1Ge2l/2Q%

2~ l 12!F4p~e2p!1~ l 22!
2m

R3 G P̄

516p@Re2c2l/2~ec j̄ ! ,x1$~ l 11!G12U% j̄ #, ~5.2!

P̄ ,u5P, ~5.3!

P̄ ,x5Q. ~5.4!

We note that the regularity at the center requires

P5ec2l/2Q. ~5.5!

Equation~5.1! constitutes a hyperbolic-type partially dif
ferential equation to which we apply the first-order up-wi
scheme to stably evolve the functionQ. Other equations con
stitute ordinarily differential equations, and thus the integ
tion is carried out with the second-order Runge-Ku
method. The Courant-Friedrich-Lewy~CFL! condition for
the stability of integration limits then-th time stepDun as

Dun52Cmin
i

e2c i
n
1(l i

n/2)Dxi , ~5.6!

whereC(<1) is the Courant number.
In the exterior of the star~regions II and III!, the double-

null coordinates are adopted. In region II, Eq.~3.33! is de-
composed into the first-order differential equations as

Z̃,ṽ52
1

4
A~ ũ!B~ ṽ !V~R!F, ~5.7!

W̃,ũ52
1

4
A~ ũ!B~ ṽ !V~R!F, ~5.8!

F ,ũ5Z̃, ~5.9!

F ,ṽ5W̃, ~5.10!

and in region III, Eq.~3.26! is decomposed as

Z,v̄52
1

4
V~R!F, ~5.11!
2-7
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W,ū52
1

4
V~R!F, ~5.12!

F ,ū5Z, ~5.13!

F ,v̄5W. ~5.14!

For integration of these equations, we use the finite dif
encing scheme proposed by Hamade´ and Stewart@45#.

The coordinates (ũ,ṽ) depend on the spacetime trajecto
of the stellar surface. Thus, they are determined after
spherically symmetric stellar dynamics is solved. For t
reason, we divide a numerical simulation into two steps.
the first step, we carry out numerical computation for t
zeroth-order background solution taking into account
CFL condition for the first-order nonspherical perturbatio
and in the second step, we evolve the nonspherical pertu
tions.

For accurate numerical integration, the distribution of g
points in region I plays a quite important role. We adopt t
equally spaced grid in terms of the initial circumferent
radius. In region II, the distribution of grid points is aut
matically determined in computing zeroth-order solution.
region III, the equally spaced grid in terms ofū andv̄ works
well.

B. Matching

At the stellar surface, the matching conditions~3.34! and
~3.36! for P and its derivatives determine the boundary co

ditions forP̄, P, andQ atx5xs in region I, and forF, Z̃ and
W̃ at ũ5 ṽ in region II. In matching solutions of regions
and II, we have to be careful since the outermost sev
mass shells form a very disperse envelope during the
lapse. This implies that the grid resolution around the ou
most envelope is not very good. If the matching betwe
regions I and II is done at the location of the outermost m
shell, a large numerical error is produced. To suppress
numerical error, we match the solutions at the location o
mass shell which is not outermost one but is located slig
inside the outermost one. We find that this works quite w
We have also checked that the numerical results do not
pend on the location of the matching if more than;95% of
the total mass is contained inside the mass shell for
matching.

At the junction null surface, the matching is not necessa
since the double-null coordinates are adopted in both
gions. We only need to store the numerical data set on
junction null surface in region II, and use it as a part of init
data for the integration of region III.

C. Initial data

In the present formulation, the null cone composed ou

5u0 ,ũ5ũ0, and ū5ū0 should be taken as an initial nu
surface. Since it is the characteristic surface of the w
equation, we only need to specifyP init(R) andb init(R) there.

We provide the initial data set in the following manner:
region I, we first give the functionsP init(R) and b init(R).
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Then,P̄(u0 ,x) and j (x) are specified from Eqs.~3.10! and

~3.17!. From the initial dataP̄(u0 ,x), we can determine
Q(u0 ,x) on the initial slice by differentiation through Eq

~5.4!. Then, fromP̄(u0 ,x), Q(u0 ,x), and j (x), we can ob-
tain P(u0 ,x) by integrating Eq.~5.2! with the central value
given by the boundary condition~5.5! at the center.

In region II we first provide F(ũ0 ,ṽ)
5P(ũ0 ,ṽ)R3(ũ0 ,ṽ). Then,W̃(ũ0 ,ṽ) is obtained by differ-
entiation through Eq.~5.10!, and Z̃ by integrating Eq.~5.7!
with the initial value given by the matching condition~3.36!
at the surface.

In region III the method for construction of the initial da
sets ofF, W, andZ is the same as that in region II, exce
for that the initial values needed for integration of Eq.~5.11!
are given at the point on the junction null surface.

When the background spacetime is initially momentar
static, it is natural to choose momentarily static initial da
sets. Thus, the initial data set is given in the following ma
ner. First we specifyb init(R), and computej (x) from Eq.

~3.10!. Then, we determineP̄(u0 ,x) and Q(u0 ,x) by inte-
grating Eqs.~5.2! and ~5.4! using the conditionP(u0 ,x)

5P,x(u0 ,x)50 with the initial valueP̄(u0,0) andQ(u0,0)

50. Here, we have to tuneP̄(u0,0) so that it matches the
static exterior solution at the stellar surface. The matchin
written as

e2l/2Q1F ~2l 11!1
2M

R

Fl8

Fl
G G1U

R
P̄216p j̄ R50,

~5.15!

whereF( l 21,l 13,2l 12;2M /R) is abbreviated asFl .
After this procedure, the multipole momentq is deter-

mined by matching the interior solution with the exteri
static solution~3.27!. Then, using the momentq, the initial
data set for the exterior solution is provided by Eq.~3.27!.

D. Event horizon

The effective potential term of the wave equation forP is
regular on the event horizon. However, it contains a term
the form ‘‘zero divided by zero’’~for R→2M , A→`, and
V→0). This implies that it is not possible to numerical
integrate the wave equation forP on the null surfaces which
are very close to the event horizon. To integrate the w
equations until the null surface reaches the event horizon
use an extrapolation for the value ofP on the junction null
surface in the neighborhood of the event horizon as

P5PNmax1
PEH2PNmax

REH2RNmax
~R2RNmax!, ~5.16!

where the valuePEH on the event horizon is estimated as

PEH5PNmax1
PNmax2PNmax21

RNmax2RNmax21
~REH2RNmax!,

~5.17!
2-8
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COMPUTING GRAVITATIONAL WAVES FROM SLIGHTLY . . . PHYSICAL REVIEW D68, 024002 ~2003!
PNmax andRNmax are the values forP andR on the junction
null surface at theNmaxth ~final! time step in region II and
REH52M . To compute gravitational waves in region I
emitted in the neighborhood of the event horizon, this
trapolation is necessary and quite helpful.

VI. CODE TESTS

A. Spherically symmetric hydrodynamic code

As the first test of the spherically symmetric general re
tivistic hydrodynamic code, we performed a simulation f
the homogeneous dust collapse. The numerical solution
be compared with the Oppenheimer-Snyder solution@28#.
We chose the total grid number as 500 in this test. As
initial condition, we set a momentarily static dust ball
uniform density and of radius 4M . Precisely speaking, th
dust surface is maximally expanded on the initial null slic
In this case, the event horizon is located atts57.243M ,
wherets denotes the proper time of an observer comov
with the stellar surface.

In Fig. 2 we show the time evolution of the coordina
velocity profiles as a function of the circumferential radius
selected time steps. The crosses denote the numerical re
and the solid curves the exact solutions. The figure sh
that the numerical results agree with the exact soluti
within 0.01% error. We also note that the computation can
continued until the null hypersurface reaches a surface v
close to the event horizon.

To demonstrate that the code works well even in the p
ence of pressure, we carried out a long-term evolution
spherically symmetric stars in equilibrium. Here, we ado
the polytropic equations of state as

e5n~11e!, ~6.1!

p5KnGa, ~6.2!

ne5
p

Ga21
, ~6.3!

wheree is the specific internal energy, andGa an adiabatic
constant, for which we choose as 2 and'4/3. With Ga52,
moderately stiff equations of state for neutron stars are qu
tatively approximated. WithGa'4/3, the equation of state
for supermassive stars of mass*106M ( , in which the ra-
diation pressure dominates over the gas pressure, is wel
proximated. According to@15#, the equation of state for su
permassive stars may be approximated by the polytro
equation of state withGa as

Ga5
4

3
10.00142S M

106M (

D 21/2

. ~6.4!

Thus, we adoptGa5(4/3)10.00142 to model a superma
sive star of mass 106M ( . The equilibrium configurations ar
obtained by solving the Tolman-Oppenheimer-Volkoff equ
tion.

In Fig. 3 the gravitational mass as a function of the cen
density for the equilibrium configurations withGa5(4/3)
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10.00142 and 2 are shown. For simulations in this paper,
adopted four static configurations of nearly maximum m
along the equilibrium sequences~see A–D in Fig. 3! as ini-
tial data sets. Models A and C are stable against gravitatio
collapse, while B and D are marginally stable. We summ
rize these models in Table I.

For long-term test simulations, we adopt models A and
To induce a small oscillation, we initially increased the sp
cific internal energye uniformly by 1% both for model A and
for model C. In Fig. 4 we show the time evolution of th
central density. It is found that the stars oscillate in a perio
manner. By performing the Fourier analysis, we measu
the period of this stellar oscillation, and found that the osc
lation angular frequency is

v'v̄
M1/2

R3/2
, ~6.5!

wherev̄59.5931022 for model A and 0.788 for model C
where the initial stellar radii are given by 1.9003103M and
5.501M for models A and C, respectively~see Table I!.

According to a post-Newtonian theory, the angular fr
quency of the radial oscillation for supermassive stars can
estimated as@15#

v25
3uWu

I
~Ga2Gcrit!, ~6.6!

whereW, I, andGcrit are the gravitational energy, moment
inertia, and critical polytropic index, respectively. Here,Gcrit
is estimated in the post-Newtonian approximation as@46#

Gcrit5
4

3
11.125S 2M

R D . ~6.7!

FIG. 2. Snapshots of the velocity profile in the numerical sim
lation of homogeneous dust collapse with the initial radiusR
54M . Crosses and solid curves denote the numerical and e
solutions, respectively. The initial data set is put on the initial o
going null cone on which the dust surface is momentarily sta
The vertical and horizontal axes are the coordinate velocityU
5e2cR,u and the circumferential radiusR, respectively. The at-
tached labels denote the proper timets of a comoving observer a
the stellar surface. All the quantities are shown in units ofM51.
2-9
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From this analysis,v̄ should be 9.6231022 for model A.
Thus, the numerical result agrees with the analytic o
within 0.5% error.

The angular frequency of the radial oscillation for neutr
stars can be also calculated using the semianalytic form
derived by Chandrasekhar@46#. From this approximate for-
mula, we can predict the oscillation frequency should
'0.9rc

1/2 @47# and hencev'0.063M 21. On the other hand
the numerical result indicates thatv'0.0616M 21, which is
again in good agreement with the analytic result within a f
percent error.

Models B and D are marginally stable against gravi
tional collapse. Thus, if the internal energy is reduced, th

FIG. 3. Gravitational mass as a function of central density
spherical equilibrium stars with polytropic equations of stateP
5KnGa, where~a! Ga5(4/3)10.00142 and~b! Ga52. Models A
and C are stable while models B and D are marginally stable aga
gravitational collapse. The numerical values are shown in unit
c5G5K51.
02400
e

la
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start collapsing. We have checked that they indeed colla
to black holes. The detailed results of the gravitational c
lapse are described in Sec. VII.

B. Perturbation code

We have carried out a wide variety of test simulations
our perturbation code. First, we checked that gravitatio
waves accurately propagate on the flat Minkowski ba
ground. Forl 52, the exact solutions for linear gravitation
waves in the Minkowski spacetime are obtained as@48#

f

st
f

FIG. 4. Evolutions of the central density~a! for model A with
Ga5(4/3)10.00142 and~b! for model C withGa52. The horizon-

tal axis is the timeū for an observer at infinity. The internal energ
e is initially increased uniformly by 1% both for~a! and for ~b!
from the equilibrium configuration. All the quantities are shown
units of M51.
TABLE I. Models for equilibrium solutions. The unit ofc5G5M51 is adopted.

Model Ga Central energy density radius

A (4/3)10.00142 1.85231029 1.9003103

B (4/3)10.00142 3.70731029 1.5083103

C 2 5.94431023 5.501
D 2 1.04431022 4.745
2-10
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COMPUTING GRAVITATIONAL WAVES FROM SLIGHTLY . . . PHYSICAL REVIEW D68, 024002 ~2003!
P̄53
I ~ t2r !2I ~ t1r !

r 5
13

I 8~ t2r !1I 8~ t1r !

r 4

1
I 9~ t2r !2I 9~ t1r !

r 3
, ~6.8!

whereI is an arbitrary function, andI 8 its derivative. Here,
we choose

I ~y!5exp@24~y22!2#. ~6.9!

Since the background spacetime is flat, the matching sur
between regions I and II is artificial. As the matching surfa
we chose the surface ofr 51 in this test. In Fig. 5 we show
numerical results with the exact solution for the wavefor
observed atr 55. To demonstrate the convergence of t
numerical solutions, we performed simulations with thr
levels of the grid resolution asDr 5Du5Dv50.001, 0.002,
and 0.004. Figure 5 shows that numerical results converg

FIG. 5. Linear gravitational waveforms forl 52 in the
Minkowski spacetime extracted atr 55. The initial data set is pro-
vided on the initial null surfacet5r . Three levels of the grid reso
lution asDr 5Du5Dv50.001, 0.002, and 0.004 are adopted. T
solid line denotes the exact solution.~b! is the magnification of the
region encompassed by the square in~a!.
02400
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first order to the exact solution. We note that the number
grid points per wavelength is; 1000 for the best-resolved
case.

Next, we computed the propagation of gravitation
waves forl 52 in the collapse of a homogeneous dust ba
The same type of computation was already carried
@22,23#, so that we can calibrate our code by comparing
present results with previous ones.

In @22#, the momentarily static perturbations are provid
at the initial hypersurface. Thus, we also choose the mom
tarily static initial data on the null hypersurface~i.e., the dust
surface is assumed to reach the maximum expansion at in
slice!. However, the word of caution is appropriate here. T
previous computation was carried out using 111 coordinate
system ~not single-null coordinate system!. On the other
hand, we choose the single-null coordinate system. Nam
the coordinate system and also the time slicing are differ
between the two. Thus, even if we set the same function ob̄
in different coordinate systems, this does not imply that
give the identical initial condition. Moreover, the former fo
mulation has ambiguity in determining the second-order ti
derivative of gravitational perturbation, while the latter o
does not. Hence, the momentarily static initial data sets
these two formulations are different from each other. It i
plies that it is difficult to precisely compare the results o
tained in these two formulations.

To calibrate the effect of different initial conditions on th
results, we provided two perturbation profiles fixingq. In the
first one, we gaveb̄ init(R)5const on the initial hypersurface
and in the second one,b̄ init(R)}exp@2(R/Rc)

2#, whereRc is
chosen to be one-third of the initial surface radius.

FIG. 6. Total radiated energy of gravitational waves forl 52
from homogeneous dust collapse for different initial~maximally
expanded! radii. The initial momentq is normalized so thatq
52M . We set the momentarily static initial data on the initial nu
slice. The results for two kinds of initial distribution for matte

perturbationb̄ init are plotted. For the case ofb̄ init}exp@2(R/Rc)
2#,

the radiusRc is chosen to be one-third of the initial radius of th
dust ball. The present results are compared with those of Cunn
ham, Price, and Moncrief@22# ~CPM1978!, in which the initial data
sets were set on the spacelike surface of maximum expansion
2-11



e
it

or
lly
ases
ical
sys-
ate

of
i-

-

law
lex
lcu-

-
ed

%
is

aw

-
ed

tar.
the

his
that
a-

is
fter
as-
he

to
ita-

is
he
ce-
ut
e

ite
the
an

s
t

e

r

th

a
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In Fig. 6 the total radiated energy of gravitational wav
are summarized. In these numerical computations, grav
tional waves are extracted atR540M . For comparison, we
also plot the results of@22#. We note that in this figure,q is

FIG. 7. ~a! Waveform,~b! luminosity, and~c! accumulated en-
ergy of gravitational waves forl 52 radiated from homogeneou
dust collapse with the initial radiusR520M . These are estimated a
R540M and normalized so thatq52M . The horizontal axis is the

observer timeū. We set the momentarily static initial data on th

initial null surface with the matter perturbationb̄ init5const. The
solid, long-dashed, and dashed lines denote the results foN
51000, 500, and 250, respectively, whereN is the number of spa-
tial grid points inside the dust ball. The matching is done at
outermost mass shell. All the quantities are shown in unit ofM
51. The long-dashed and dashed lines are almost indistinguish
because they lie on top of the solid line.
02400
s
a-

normalized so thatq52M . It is found that numerical results
of two different profiles ofb differ by a factor of;1.4, and
that the results of@22# are greater than our results by a fact
of ;3. However, the total radiated energy systematica
decreases as the initial dust radius increases for all the c
in the same manner. Thus, we conclude that our numer
results agree with the previous ones besides a possible
tematic error associated with the difference of the coordin
conditions.

The waveform, luminosity, and integrated total energy
gravitational waves from a collapsing dust ball with the in
tial radiusR520M for l 52 are plotted in Fig. 7. Gravita
tional waves are extracted atR540M . As found in@22#, the
quasinormal ringing oscillation and subsequent power-
tail characterize the gravitational waveforms. The comp
frequency of the fundamental quasinormal mode was ca
lated to be 2Mv50.7473410.17792i by solving the eigen-
value equations@49#. On the other hand, our numerical re
sults show that the complex frequency of the damp
oscillation is given by 2Mv50.75210.179i . Thus, the nu-
merical results agree with the theoretical value within 1
error both for the frequency and for the damping rate. It
found that the waveform is characterized by the power-l

tail for ū*350M . The power-law index numerically com
puted is'7.0 and also agrees with that analytically deriv
in @50# as2(2l 13)527.

We also computed gravitational waves from a static s
As the stellar models, we adopted models A and C. Since
odd-parity matter perturbation is time independent in t
case, gravitational waves propagate freely. This implies
with the momentarily static initial perturbation, no gravit
tional radiation should be emitted. We checked that this
indeed the case except for the tiny amount emitted soon a
the simulation started, which is due to numerical errors
sociated with the finite differencing and relaxation of t
numerical system.

VII. STELLAR COLLAPSE TO BLACK HOLES
AND GRAVITATIONAL WAVES

We have computed stellar collapse of models B and D
black holes. Since they are marginally stable against grav
tional collapse, we extracted the internal energye by 1%
initially to induce the collapse. Here the energy extraction
done on the initial null cone. The difference between t
energy extractions on the initial null cone and on the spa
like hypersurface is very small for nonrelativistic stars b
may be significant for highly relativistic stars. During th
collapse, we adopt theG-law equation of state as

p5~Ga21!ne. ~7.1!

The simulations were carried out using both the May-Wh
and the Hernandez-Misner schemes. We note that with
latter scheme, we can follow the evolution only outside

e

ble
2-12
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COMPUTING GRAVITATIONAL WAVES FROM SLIGHTLY . . . PHYSICAL REVIEW D68, 024002 ~2003!
event horizon. This implies that we cannot find apparent
rizon and event horizon in the following simulation. We st
the calculation of the stellar collapse and estimate the va
of the perturbation field on the event horizon using the
trapolation whenRs/2M51.01 is satisfied for the surface ra
dius Rs. We have confirmed that the obtained waveform
not so sensitive to the choice of the criterion. In the simu
tion of the collapse of models B and D, we have observed
evident shock wave until the black hole forms.

A. Collapse of a supermassive star

Supermassive stars are quasistable objects of ma
3105M (&M&1010M ( and possible direct progenitors o
supermassive black holes@14,15#. They quasistationarily
contract due to radiative cooling to the onset of radial ins
bility @14,15#, resulting in formation of supermassive blac
holes. The quasistatic evolution of rotating supermass
stars was recently investigated by Baumgarte and Sha
@16#. Taking into account that supermassive stars are likel
be rigidly rotating and that the adiabatic index is'4/3, they
clarified that the ratio of the rotational energy to the gravi
tional energy is at most;0.009 at the onset of the gravita
tional collapse. They also found that oblateness of superm
sive stars around the central region is very small~see Fig. 1
in @16#!, justifying that the Roche model@15# for rotating
supermassive stars is adequate. Shibata and Shapiro@19# nu-
merically computed the collapse of a marginally stable ro
ing supermassive star to a Kerr black hole in the tw
dimensional fully general relativistic simulation. The
indicated that more than 90% of the stellar mass collap
directly into the black hole in the dynamical time scale as
the spherical collapse. These results suggest that if we
attention only to the inner region, the collapse proceeds
nearly spherical manner. Motivated by this fact, we apply
present perturbation analysis to compute gravitational wa
emitted during the collapse of supermassive stars.

1. Spherical collapse

We adopted model B withGa5(4/3)10.00142 to model a
supermassive star of mass 106M ( . In the numerical simula-
tion, we typically take 1000 grid points to cover the sup
massive star. For the collapse of model B, with the Ma
White scheme, apparent horizon was located near the ce
in a late time of collapse, but soon after the formation, n
merical accuracy deteriorates and as a result computa
crashed before the event horizon swallowed all the fluid
ements. On the other hand, the computation can be contin
until the null hypersurface reaches the event horizon with
Hernandez-Misner scheme; i.e., the whole region outside
event horizon is computed numerically. This clearly indica
the robustness of the Hernandez-Misner scheme. The ma
ing is done on the mass-shell within which 99.7% of the to
mass is enclosed. In the following, we deal with this mat
ing surface as the stellar surface.

In Fig. 8~a! we display the snapshots of the density profi
at selected time steps. In this simulation, the spacet
settles down to a static one atū.176760M . The calculation
has been stopped atū.176763M or ts.175294M . At this
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FIG. 8. ~a! Snapshots of the density profile,~b! the trajectories
of mass shells, and~c! the mass fraction contained in a high-redsh
region are plotted for the gravitational collapse of model B w
Ga5(4/3)10.00142. We extract 1% of the internal energy from t
equilibrium configuration to induce the collapse. In~a! the label for

each curve denotes the observer timeū. In ~b! the vertical and
horizontal axes denote the circumferential radius and observer t
respectively. The labels denote the mass fractions enclosed by
shells. In~c! the high-redshift region is defined as the one in whi
the lapse functiona is less than 0.1. We deal with the mass sh
which encloses 99.7% of the total mass as the stellar surface. Al
quantities are shown in units ofM51.
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HARADA, IGUCHI, AND SHIBATA PHYSICAL REVIEW D 68, 024002 ~2003!
moment, we have obtained the redshift (11zs).190.7 at the
surface. Since the equation of state of supermassive sta
soft, the mass is highly concentrated around the center. In
late stage of the collapse, the increase of the central den
is accelerated, and hence the collapse proceeds in a run
manner.~This makes the simulation without null formulatio
technically difficult!. Figure 8~b! shows the trajectories o
mass shells forū*176400M . Each mass shell asymptot
cally approaches a constant value greater than 2m because
the lapse function decreases to zero. This figure shows
the central region collapses earlier, while the outer envel
accretes slowly after the evolution of the central region
almost frozen. Figure 8~c! shows the total mass contained
the high-redshift region in which the lapse function is le
than 0.1@or equivalently (11z) is greater than 10 wherez
denotes the gravitational redshift#. This region first appears
at the center atū.176510M . We find that 80% of the stella
mass is swallowed into this high-redshift region within t
time interval Dū;15M . After the inner region collapses
surrounding atmosphere falls into this high-redshift reg
spending a much longer time.200M .

2. Gravitational radiation

For computation of the nonspherical perturbations, a st
initial condition forb̄ should be given. However, the realist
perturbation profile of the initial data set is not clear for t
odd-parity perturbation. The purpose of this paper is to st
the gravitational waveforms during the formation of a bla
hole qualitatively. Thus, to investigate the dependence of
gravitational waveforms on the initial perturbation profil
we gave three kinds of the initial data sets as~1! with b̄ init

5const, ~2! with b̄ init5exp@2(R/Rc)
2#, and ~3! with b̄ init

5exp@2((R2Rs)/Rc)
2#, where the scale length of the inho

mogeneity,Rc , for the matter perturbation is chosen to
Rc5Rs/3. For ~1!, the perturbation is uniformly distributed
For ~2!, the amplitude of the perturbation in the inner regi
is larger than that in the outer region. For~3!, the amplitude
of the perturbation is the largest near the stellar surface.

To check the convergence, computations for case~1! were
carried out withN51000, 500, and 250, whereN is the
number of grid points in the stellar interior. The waveleng
of gravitational waves is roughly comparable with the ste
size for the early stage and with the stellar size or the siz
the formed black hole for the late stage. Since we adopt
comoving coordinate, the number of grid points per wa
length is kept almost constant and of the order 1000
1000-zone calculations.

The waveform, luminosity, and integrated total energy
gravitational waves forl 52 are plotted in Fig. 9. Since th
oscillation period of gravitational waves is much shorter th
the total time of integration, we show them only around t
time of major emission. Figure 9 demonstrates that the c
vergence is achieved well. For example, it is found that
totally radiated energy shows the first-order convergence.
though the numerical error in the time of the major emiss
might look very large, it is only due to the extremely lon
time for the collapse compared to the duration of the ma
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FIG. 9. ~a! Waveform,~b! luminosity, and~c! accumulated en-
ergy of gravitational waves forl 52 radiated from the collapse o
model B with Ga5(4/3)10.00142. Gravitational waves are ex
tracted atR52000M . The initial matter perturbation is chosen s

that b̄ init5const. The momentarily static initial perturbation
given. The amplitude of the perturbation is normalized so thaq
52M . The solid, long-dashed, and dashed lines denote the re
for N51000, 500, and 250, respectively, whereN is the number of
spatial grid points inside the star. The matching is done on the m
shell which encloses 99.7% of the total mass. All the quantities
shown in units ofM51.
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COMPUTING GRAVITATIONAL WAVES FROM SLIGHTLY . . . PHYSICAL REVIEW D68, 024002 ~2003!
emission. It is seen in Fig. 9~a! that the waveform is made u
of the precursory wave, quasinormal ringing, long-time-sc
decay, quasinormal ringing again, and power-law tail. F
ures 9~b! and ~c! indicate that the primary and seconda
contributions to the totally radiated energy come from
first and second bursts of quasinormal ringing, respectiv
The reason of the existence of this second burst will be
plained later.

We show the waveform, luminosity, and integrated to
energy of quadrupole (l 52) gravitational waves for differ-
ent initial perturbations~1!–~3! in Fig. 10. In all three cases
the amplitude of the perturbation is normalized so thaq
52M . Here, we display the results withN51000.

As seen in Fig. 10, the gravitational waveform depen
strongly on the perturbation profile initially given. For ca
~2!, as seen in Figs. 10~c! and ~d!, gravitational waves of
high amplitude are emitted aroundū.176510M , approxi-
mately at the same time as the formation of the high-reds
region. The waveform is characterized mainly by a quasin
mal mode of the formed black hole. The duration of th
major emission is roughly;50M , i.e., approximately equa
to the period and/or the damping time of the quasinorm
mode. Indeed, the waveform forū*176520M is well fitted
by a damped oscillation of the complex frequency 2Mv
'0.7410.19i , which agrees with the theoretically predicte
value 2Mv50.7473410.17792i @49# within a few percent
error. It is possible in principle in the present scheme
observe the modulation of gravitational waveforms due
mass accretion as Papadopoulos and Font@51# demonstrated
for the spherically symmetric Klein-Gordon field on the a
creting black hole background. However, in the present
merical results, it is difficult to distinguish the effects of th
mass increase from the gravitational waveforms, possibly
cause the mass accretion rate is rather high and the dur
of accretion is not so long.

For case~1!, as seen in Figs. 10~a! and ~b!, gravitational
waves look as the linear combination of a quasinormal m
of a black hole and a long time scale and nonoscillat
component~note that the amplitude of gravitational wav
does not settle down to zero for a long-time durati
.200M after ū.176510M ). The long-time-scale compo
n
e

e
at
f t
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nent is produced due both to the perturbation profile initia
given and to the nature of the collapse of the backgrou
spherical star: In the collapse of supermassive stars, the
tral region collapses first and subsequently, the outer en
lope gradually falls into the black hole spending a long tim
duration.200M . Sinceb̄ init5const, the outer envelope re
tains a considerable fraction of the perturbation for case~1!.
As a result, the quasinormal modes are likely to be conti
ously excited for the duration.200M during which the mat-
ter falls into a black hole. However, the quasinormal mod
continuously excited should cancel each other due to
phase cancellation effect@52#. This suppresses the amplitud
of gravitational waves and produces a long-time-scale co
ponent, which results in the suppression of radiated energ
seen in Fig. 10~g!.

For case~3!, in which the matter perturbation is retaine
mainly near the stellar surface, as seen in Figs. 10~e! and~f!,
the effect of the phase cancellation is more outstanding
this case, the amplitude of gravitational waves is highly s
pressed and the amplitude of the quasinormal mode ring
is much smaller than that of the long-time-scale compone
We note that the time scale of the long-time-scale compon
is in approximate agreement with the time duration in wh
the accretion of the surrounding envelope continues.

Figure 10~h! shows the one-sided power spectral dens
for the obtained gravitational waveforms for all three cas
It is clear that the phase cancellation effects significan
suppress the high-frequency component for cases~1! and~3!
while the low-frequency component depends not on the
tial distribution of matter perturbation but on the initial mo
ment of perturbation.

To explain more clearly why the long-time-scale a
nonoscillative component appears, we artificially superi
pose the waveformF(t) obtained for case~2! displayed in
Fig. 10~c!, which is characterized by quasinormal ringin
with the weight factorw(t) as

E
2`

`

dt8w~ t8!F~ t2t8!, ~7.2!

wherew(t) is chosen by trial as
w~ t !5H 8S t

tc
DexpS 2

t

tc
D1S t

ta/4
D F S t

ta/4
D 3

11G21

for 0<t<ta,

0 for t,0,ta,t,

~7.3!
is

il-
tion
t’’
and we set tc52.95M and ta5236M . The tc and ta

correspond to the time scales of the collapse of the in
region and of the accretion of the outer envelope, resp
tively. See Fig. 11~c! for the shape of this function. In th
above functional form, the first and second terms imit
the effects of inner collapse and subsequent accretion o
outer envelope, respectively. In Fig. 11~a!, we display
er
c-

e
he

the result for the superimposed waveform. This result
qualitatively the same as that obtained for case~1! displayed
in Fig. 10~a!. We note that the long-time-scale and nonosc
lative component is produced by the long-term superposi
of quasinormal ringing, including a precursory ‘‘burs
wave.

Next we choose another weight factorw(t) defined as
2-15
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FIG. 10. ~a!, ~c!, and~e! Waveform,~b!, ~d!, and~f! luminosity, ~g! accumulated energy, and~h! the one-sided power spectral density
gravitational waves forl 52 radiated from the collapse of model B withGa5(4/3)10.00142. Gravitational waves are extracted atR
52000M . The momentarily static initial perturbation is given. The amplitude of the perturbation is normalized so thatq52M . In ~g! and

~h!, the solid, long-dashed, and dashed lines denote the results forb̄ init5const, exp@2(R/Rc)
2#, and exp$2((R2Rs)/Rc)

2%, respectively,

whereb̄ init is the initial distribution of the renormalized matter perturbation andRc is chosen to beRc5Rs/3. For waveforms and luminosi
ties, we display the results for each case in each figure for clarity. Note that the vertical axis of~g! is in logarithmic scale. The matching i
done on the mass shell which encloses 99.7% of the total mass. All the quantities are shown in units ofM51.
024002-16
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COMPUTING GRAVITATIONAL WAVES FROM SLIGHTLY . . . PHYSICAL REVIEW D68, 024002 ~2003!
w~ t !5H S t

ta/4
D F S t

ta/4
D 3

11G21

for 0<t<ta,

0 for t,0,ta,t,

~7.4!

and we again setta5236M . See Fig. 11~c! for the shape of
this function. This functional form imitates the effect of a
cretion of the outer envelope alone. In Fig. 11~b!, we display
the result for the superimposed waveform. This result
qualitatively the same as that obtained for case~3! displayed
in Fig. 10~e!. It should be again emphasized that the sup
position not of the pure damped oscillation but of the f
waveform for case~2!, including the precursory burst wave
produces the long-time-scale component. The above con
eration confirms our speculation.

We note that the second quasinormal ringing seen aro
ū.176750M in Figs. 10~a! and~b! for case~1! and in Figs.
10~e! and ~f! for case~3! are excited by the stellar surfac
which falls into the black hole finally. Since the phase ca
cellation is not effective at this stage, the quasi-normal ri
ing dominates the waveform for the latest phase. After t
ringing, a power-law tail is seen, and the power-law ind
agrees with the theoretically predicted value27.

Finally we note the following point. In this simulation, a
the matter is swallowed into a black hole eventually beca
the zeroth-order solution is spherically symmetric. That
the reason why the accretion ends at some finite mom
However, in a realistic nonspherical problem, the ma
around the stellar surface does not fall into the black ho
and would form surrounding disks. This implies that t
gravitational waveforms calculated for the latest phaseū
*176750M will be modified in a realistic simulation.

B. Collapse of a neutron star

We performed a simulation for the collapse of a neutr
star to a black hole adopting model D. As in the collapse
a supermassive star, 1000 grid points are typically take
cover the neutron star interior. For the collapse of model
both the May-White and Hernandez-Misner schemes
evolve the collapse to the formation of the event horiz
with reasonable accuracy. In the following, the results in
Hernandez-Misner scheme will be described. In this simu
tion, the matching is done on the mass shell within wh
96.1% of the total mass is enclosed. In the following,
deal with this matching surface as the stellar surface.

In Fig. 12 we show the snapshots of the density profile
selected time steps, trajectory of the mass shells as a fun
of time, and the mass fraction of the fluid elements in
region of strong gravitational field in which the magnitude
the lapse function is less than 0.1. We note that in this sim
lation, the event horizon is just about to form atū

.111.5M . The calculation has been stopped atū.111.5M
or ts.68.04M . At this moment, we have obtained the re
shift (11zs).22.89 at the surface. In contrast with the co
lapse of the supermassive stars, the central density incre
only by a factor of'3.0 throughout the collapse. Thus, th
evolution of the central density does not show the runaw
behavior. Also, the collapse proceeds very coherently: Fig
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12~c! indicates that the high-redshift region first appears
the center atū.99.1M and that almost all the fluid elemen
collapse to the high-redshift region in a short time interv
Dū;6M .

FIG. 11. Waveforms generated by superimposing the wavef
obtained for case~2!. The shape of weight factors are displayed
~c!. ~a! and ~b! show the waveforms for the weight factor labelle
‘‘Collapse1Accretion’’ and for that labelled ‘‘Accretion.’’ The
waveforms are normalized so that the maximum amplitude is un
See text for details.
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To study the evolution of the perturbation, we gave t
momentarily static initial data sets with matter perturbatio
~1!–~3! as in the collapse of a supermassive star. The am
tude of the perturbation is normalized so thatq52M .

In Fig. 13, we show the waveform, luminosity and acc
mulated energy of gravitational waves for case~1!. Compu-
tations were carried out withN51000, 500, and 250, an

FIG. 12. Same as Fig. 8 but for the collapse of model D w
Ga52. We deal with the mass shell which encloses 96.1% of
total mass as the stellar surface.
02400
e
s
li-

-

Fig. 13 demonstrates that convergence is achieved~note that
results withN51000 and 500 agree well with each other!. A
small modulation is found just after the beginning of com
putation. This is because the initial data sets which are
merically constructed are not precisely static solutions of
finite differencing equation for the evolution of perturb

e
FIG. 13. Same as Fig. 9 but for the collapse of model D w

Ga52. Gravitational waves are extracted atR5100M . The match-
ing is done on the mass shell which encloses 96.1% of the t
mass. All the quantities are shown in units ofM51.
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FIG. 14. ~a! Waveform,~b! luminosity, ~c! accumulated energy, and~d! one-sided power spectral density of gravitational waves fol
52 radiated from the collapse of model D withGa52. Gravitational waves are extracted atR5100M . The momentarily static initial
perturbation is given. The amplitude of the perturbation is normalized so thatq52M . The solid, long-dashed, and dashed lines denote

results forb̄ init5const, exp@2(R/Rc)
2#, and exp$2@(R2Rs)/Rc#

2%, respectively, whereb̄ init is the initial distribution of the renormalized
matter perturbation andRc is chosen to beRc5Rs/3. The matching is done on the mass shell which encloses 96.1% of the total mas
the quantities are shown in units ofM51.
io
or
nd
s
s
h

lla
th
o

cu
e

.
al
y
a-
nn
oe
c

of
ssive
time

r

in-
e is
so-

atic
ho-
nu-
f a

way
the
It is
tions. The above is confirmed by the fact that this modulat
becomes smaller asN increases. After this spurious precurs
disappears, a black hole quasinormal mode is excited a
power-law tail follows@55#. No other outstanding feature i
found in the gravitational waveform in contrast with the ca
of the supermassive star collapse. This is likely due to t
the collapse proceeds very coherently forGa52. The first
and major gravitational emission of the quasinormal osci
tion occurs approximately just after the appearance of
high-redshift region. From the numerical result, the quasin
mal frequency and the index of the power-law tail are cal
lated as 2Mv50.75210.176i and27.1. These values agre
well with the theoretical values 2Mv50.7473410.17792i
and2(2l 13)527 @49,50# both within a few percent error

Figure 14 shows gravitational waves for different initi
matter perturbations~1!–~3!. The waveform depends onl
very weakly on the initial perturbation distribution. The re
son is that the collapse proceeds in a very coherent ma
and hence the difference of the perturbation distribution d
not generate outstanding differences. There is no phase
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cellation effects on the neutron star collapse irrespective
the shape of the perturbation as opposed to the superma
star case as is seen in the shape of spectrum. A small
delay of the oscillational phase is seen for cases~1! and ~3!
compared with case~2!. This is simply because the matte
perturbation enters the black hole for case~2! earlier than for
cases~1! and ~3!.

VIII. SUMMARY

We have reported a new implementation in linearized E
stein theory. In this code, the Hernandez-Misner schem
adopted to compute a spherically symmetric zeroth-order
lution. As a result, we can compute stellar collapse to a st
black hole until the null hypersurface reaches the event
rizon, and the whole region outside the event horizon is
merically generated. We emphasize that the collapse o
supermassive star to a black hole proceeds in a runa
manner, i.e., the central density grows rapidly although
surrounding atmosphere does not collapse very rapidly.
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not technically easy to compute such collapse with a 111
numerical scheme. The Hernandez-Misner coordinate sys
is essential to enable thorough computation of the black h
formation.

We have also proposed a new numerical method to c
pute gravitational waves in perturbation theory. We divi
the computational domain into three regions. For compu
tion of the perturbations in the exterior region, we ado
double-null coordinates which agree with the characteri
curves of gravitational waves. This choice enables the c
putation of gravitational waves emitted during the entire h
tory of black hole formation.

To study the qualitative nature of gravitational wav
from stellar collapse, we performed simulations for the c
lapse of a supermassive star and a neutron star to black h
In the gravitational collapse of the neutron star, gravitatio
waveforms are characterized by a black hole quasinor
mode, as demonstrated in the fully general relativistic sim
lations @8#. On the other hand, for gravitational collapse
the supermassive star, the waveform depends strongly on
perturbation profile that we give initially. For a centrally co
centrated matter perturbation, the waveforms are chara
ized mainly by a black hole quasinormal mode, as in
collapse of neutron stars. However, when the matter per
bation is distributed uniformly, the waveform is determin
by a linear combination of the black hole quasinormal mo
and a long-time-scale component which results from the
perposition of the quasinormal ringing component. Mo
over, when the matter perturbation is located around the
face, the long-timescale component dominates
waveform. This is likely due to the less-coherent nature
the collapse of supermassive stars: the central part colla
earlier and subsequently the outer envelope accretes on t
central black hole.
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We have determined the choices of initial distribution
perturbation not assuming physically realistic situations
cause of the lack of our knowledge on physically realis
odd-parity perturbation. Therefore, at present, we do
claim that the gravitational waves obtained here are reali
in particular for the collapse of supermassive stars. Howe
our present results strongly suggest that the gravitationa
diation is not so sensitive to the initial condition for neutro
star collapse but is highly sensitive for supermassive
collapse.

In the formation of intermediate-mass black holes~mass
*200M () formed from quite massive stars, which is des
bilized by electron-positron pair creation@53#, collapse
would proceed in the same manner as for supermassive s
Thus, gravitational waveforms from the formation
intermediate-mass black holes also depend strongly on
state of the precollapse star.

We have focused on perturbations of odd parity. T
dominant modes of gravitational waves are likely to be
even parity in most cases, and thus the study of the ev
parity perturbations seems to be more important. In a ro
ing stellar collapse, quadrupole deformation that rotat
stars retain before collapse will be the source of gravitatio
waves of even parity. The study of such effects on grav
tional waves emitted in a black hole formation is now
progress.
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