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Computing gravitational waves from slightly nonspherical stellar collapse to a black hole:
Odd-parity perturbation
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Nonspherical stellar collapse to a black hole is one of the most promising gravitational wave sources for
gravitational wave detectors. We numerically study gravitational waves from a slightly nonspherical stellar
collapse to a black hole in linearized Einstein theory. We adopt a spherically collapsing star as the zeroth-order
solution and gravitational waves are computed using perturbation theory on the spherical background. In this
paper we focus on the perturbation of odd-parity modes. Using the polytropic equations of state with polytropic
indicesn,=1 and 3, we qualitatively study gravitational waves emitted during the collapse of neutron stars and
supermassive stars to black holes from a marginally stable equilibrium configuration. Since the matter pertur-
bation profiles can be chosen arbitrarily, we provide a few types for themnferl, the gravitational
waveforms are mainly characterized by a black hole quasinormal mode ringing, irrespective of perturbation
profiles given initially. However, fon,= 3, the waveforms depend strongly on the initial perturbation profiles.

In other words, the gravitational waveforms strongly depend on the stellar configuration and, in turnadn the
hoc choice of the functional form of the perturbation in the case of supermassive stars.
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I. INTRODUCTION M -1
f~(0.03—0.08)M‘12(300—800)(W) Hz,
Detection of gravitational waves is one of the greatest © (1.2

challenges in experimental and theoretical physics in this

decade. Several kilometer-size laser interferometers, such as

TAMA [1], the Laser Interferometric Gravitational Wave Ob- where the frequency is higher for more rapidly rotating black
servatory(LIGO) [2], and GEQ 3] are in operation now and holes. Equatior{1.1) indicates that formation of black holes
VIRGO [4] will be in several years. In addition to these of mass=20M, may be a promising source for laser-
ground-based detectors, the Laser Interferometer Space Amterferometric detectors.

tenna(LISA) with an arm length of % 10° km has been The frequency band of space antennas is betwe#d *
proposed5,6] and is planned to start taking observations inand~0.1 Hz[5]. This suggests that the formation of super-
2012. massive black holes may be one of the most promising

Nonspherical stellar collapse is one of the most promisingources. Although the actual scenarios by which supermas-
sources of gravitational waves for both ground-based detecive black holes form are still uncertain, viable stellar dy-
tors and space antennas. Ground-based interferometric dete@mical and hydrodynamical routes leading to the formation
tors have a good sensitivity in the frequency range betweenf supermassive black holes have been propfsed13. In
~10 and 1 kHz. Thus, the stellar core collapse of a massivéypical hydrodynamical scenarios, a supermassive gas cloud
star to a neutron stdi7] or a black hole[8] is one of the is built up from multiple collisions of stars or small gas
targets. According tf8], at the formation of a massive black clouds in stellar clusters to form a supermassive star. Super-
hole, quasinormal modes of a black hole are excited anthassive stars ultimately collapse to black holes following
gravitational waves of high amplitude associated with thequasistationary cooling and contraction to the onset of radial
quasinormal modes are emitte(Gee[9] for a review of instability [14,15. Such dynamical formation of supermas-
black hole quasinormal modgsThe frequency of gravita- sive black holes may be a strong gravitational wave source
tional waves associated with the fundamental quadrupoléor LISA [16-20.
guasinormal modes of rotating black holeg i§)] The most hopeful approach for the computation of gravi-

tational waves from stellar collapse to a black hole is to
numerically solve the fully nonlinear coupled equations of

*Electronic address:harada@gravity.phys.waseda.ac.jp Einstein and the general relativistic hydrodynamic equations.
TElectronic address:iguchi@th.phys.titech.ac.jp There has been much progress in this field in the last few
*Electronic address:shibata@provence.c.u-tokyo.ac.jp years[21]. However, it is not technically easy to compute
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gravitational waves with high precision in numerical relativ- White [30]. In this scheme, spherically symmetric space-
ity, since the amplitude of gravitational waves associatedimes are described in terms of the so-called Misner and
with the stellar collapse is not very large and as a result, thegharp coordinate systef86], in which a spacelike comov-
could be contaminated by numerical noises and/or gaugig slicing and an orthogonal time coordinate are adopted.
modes. To cross-check the numerical results and also to conthis formulation is robust for the simulation of oscillating
pute precise gravitational waveforms, it is desirable to havepherical stars and stellar core collapse to neutron stars.
another method. However, it is not robust enough to carry out simulations for
As an alternative approach, linear perturbation theory hablack hole formation, because the computation often crashes
been developedi22—-24. In this approach, we decompose before all of the matter is swallowed into a black hole due to
the fully nonlinear metric and matter field of slightly non- inappropriate choice of the slicing conditi¢54].
spherical profiles into a spherically symmetric dynamical To compute black hole formation, a null formulation pro-
field and linearized nonspherical perturbations. Because gfosed by Hernandez and Misner is well suif&d]. In this
progress in numerical techniques and computational reformulation, spacetime is foliated by an outgoing null coor-
sources, Einstein’s equations in spherically symmetric spacatinate and thus the whole region outside the black hole ho-
time can be now accurately computed at low computationatizon can be covered. The singularity avoidance of the null
cost. Furthermore, due to the spherical symmetry of thdoliation is assured until the foliation reaches an event hori-
background spacetime, the perturbations can be expandedzon if the cosmic censorship holds. Using this formulation,
spherical harmonics. Thus all the equations for gravitationaMiller and Motta[38] performed the numerical simulation of
waves reduce to two simpld+1) wave equations of even collapse to black hole formation. Baumgarte, Shapiro, and
and odd parities, which can be numerically solved with highTeukolsky[39] used this formulation to study neutrino emis-
precision. Although this method is applicable only to slightly sion in the delayed collapse of hot neutron stars to black
nonspherical problems, the gravitational waveforms of smalholes. This formulation was also applied to the study of cos-
amplitude associated with stellar collapse can be computeahic censorship40,34] and the formation of primordial black
with high accuracy. The result is also useful for calibration ofholes[41]. Linke et al.[42] also computed the spherical col-
fully nonlinear numerical results. lapse of supermassive stars using an outgoing null coordinate
The history of progress in linear perturbation theory of abut different radial coordinate, i.e., Bondi metric to study the
spherically symmetric spacetime is as follows. The first workneutrino emissivity during the collapse.
in this field was done by Regge and Whe¢2%] and Zerilli In this paper, we present a new implementation in linear-
[26]. They derived the linear perturbation equations of oddized Einstein theory, in which spherical background space-
parity [25] and of even parityf26] in Schwarzschild back- times are computed with the Hernandez-Misner scheme,
ground spacetime. Subsequently, a gauge-invariant formaWwhile nonspherical linear perturbations are treated using the
ism of linear perturbations was developed by Moncfizf].  single-null coordinate system. With the Hernandez-Misner
Extending his work, Cunningham, Price, and Moncfi22] = scheme, it is possible to follow spherical stellar collapse to a
derived perturbation equations on the Oppenheimer-Snyddilack hole until almost all the matter has collapsed below the
solution for a collapsing uniform dust bdl28], and com- event horizon. The null coordinate system is well suited for
puted gravitational waves emitted during the gravitationalthe computation of gravitational waves emitted near the
collapse of a dust ball to a black hole. Gerlach and Senguptavent horizon, which we want to study here. As a related
[29] subsequently developed a gauge-invariant formulatiowork to the present treatment, Siekedlal. [43] presented
of the linear perturbation on general spherically symmetricsimulations of gravitational collapse of neutron stars to black
spacetimes. Using the Gerlach-Sengupta formalism, Seidéoles and the computation of quasinormal ringing in the
and co-workerd23] computed gravitational radiation from spherically symmetric Einstein-fluid-Klein-Gordon system
stellar core collapses, focusing mainly on the waveforms asdsing an outgoing null coordinate without linear approxima-
sociated with the formation of neutron stars. They numeridion.
cally solved the spherically symmetric general relativistic This paper is organized as follows. In Sec. Il we briefly
hydrodynamic equations using the May-White schemeeview the evolution equations for spherically symmetric
[30,31]. Haradaet al. [32] studied scalar gravitational radia- spacetimes in terms of the Hernandez-Misner null formula-
tion from a collapsing homogeneous dust ball in scalartion. In Sec. Ill we describe the evolution equations for odd-
tensor theories of gravity, using a similar method to that ofparity gauge-invariant perturbations in the single-null coor-
Cunningham, Price, and Moncrig€22]. Iguchi, Nakao, and dinate system and then derive the explicit matching
Harada[33,34 studied nonspherical perturbations of a col- conditions at the stellar surface. In Sec. IV we explain the
lapsing inhomogeneous dust ball, which is described by thenethod for computation of gravitational waves in our gauge-
Lematre-Tolman-Bondi solutior{35]. Recently, Gundlach invariant formalism. In Sec. V we describe numerical tech-
and Martn-Garca [24] have developed a covariant gauge- niques adopted in the current implementation. In Secs. VI
invariant formulation of nonspherical perturbations onand VII, we present the numerical results of test simulations,
spherically symmetric spacetimes with a perfect fluid, andand gravitational waveforms from the collapse of a super-
derived coordinate-independent matching conditions for permassive star and neutron star to black holes, respectively.
turbations at the stellar surface. Section VIII is devoted to a summary. We adopt geometrical
The dynamics of spherically symmetric spacetimes haveunits in whichG=c=1, whereG andc denote the gravita-
been often studied using a method developed by May antlonal constant and speed of light, respectively.
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Il. BACKGROUND SPACETIME m = —e’47R%pU, (2.10
A. 242 split of spherically symmetric spacetimes
. , . r+u
We decompose a spherically symmetric spacethénto [P p— (2.11)
a product asM =M 2x §2. Namely a metric is written as Rx
9,.,=diag gas,R*7ap), (2.1 e M2
n= S0 (212
whereg,g, R, andy,, are the(1+1) Lorentz metric, scalar 47R
function onM 2, and unit curvature metric afi2. The greek
indicesu,v, ..., capital latin indicesA,B, . .., andsmall € 1
latin indices a,b, ... denote the spacetime components, nl T 7PlL (213
M ? components ané? components, respectively. The co- o o
variant derivatives otM, M ?, andS? are denoted as,, |a . 2 N2
and .,, i.e., we define them from the conditiogs,,.,=0, my=4mRe" (el ~pU), (2.14
gAB\C:01 andyap,c=0.
The stress-energy tensor for general spherically symmet- Y Nl 4mpR® 51
ric spacetimes is given by ‘l’yx_r xT€ Rz (2.19

—di a 2
tur=diagtag, (ta/2)R"Yap). 2.2 n is the baryon rest-mass densifys=f(x) is an arbitrary

The totally antisymmetric covariant unit tensaggs on M 2 function associated with the rescaling of the radial coordi-

and e, on S2 are defined as nate, ancc, is the sound speed which is defined by
eace”®=—0R, €ace=7}. (2.3 a_ [P
ci=|— , (2.16
Jde
s=const
B. Hernandez-Misner formulation of general relativistic
hydrodynamics wheres denotes the entropy.
We choose the Hernandez-Misner coordinate system o The regularity condition at=0 gives the boundary con-
the form itions as
ds?=—e?’du?—2e? " Mdudx+ R?(d %+ sirfad ¢?), R=0, (2.17
(2.9
U=0, 2.1
where X is a comoving coordinate, angt, A, and R are (218
functions ofu andx. r—1 2.19
We assume that the stars are composed of a perfect fluid, o :
for which the energy-momentum tensor is written as
m=0. (2.20

tuy=(etpP)u,u,+pg,,, 2.9 N o
) The boundary condition at the stellar surfacexs is given
wheree, p, andu” are the energy density, pressure and fourby

velocity of the fluid.
We define the following new variables: p=0. (2.22)

= —y
U=e "Ry, 2.6 In the original form of the Hernandez-Misner formalism

>m [37], fis chosen to be unity. In this casegoincides with the
I'=e MR,—U= 1 [1- —+U?, (2.7 conserved masg contained in the interior to a shell. An-
’ R other candidate fof is

wherem s the Misner-Sharp quasilocal md&6]. Then, the Amn(Ug X)X

field equations are written in the forp37 - T
q mB7] f(x)= U (ug 0" (2.22
e’ |I'e M? m-+47R3p
U,=- 2| et Pxt > In this casex coincides with the circumferential radius of the
1-c5 P R shell on the null surface=u,. In this paper we adopt Eq.
elc2 SUT (2.22 for f since it has_a nicer feature for the inte_grat_ion of
— s ( M2y 4 _) (2.8  honspherical perturbations which we will describe in the
1-¢c2 7R next section.
We assume that the exterior of the star is a vacuum. Then,
Rvu:e‘ﬂu, (2.9 the zeroth-order solution is the Schwarzschild spacetime as

024002-3



HARADA, IGUCHI, AND SHIBATA

2M 2M\ 71
__|4_ 2 _ 2
ds’= (1 R)dT+—1 R) dR
+R?(d#?+sirf0d ¢?), (2.23

whereM is the gravitational mass of the system. To compute

gravitational waves in this background, it is convenient to

introduce null coordinates andv defined as

u=T-R,, (2.29
v=T+R,, (2.25
where
R —R+2Mw<j1—1) (2.26
2M

Then, the line element is of the form

d§=—(1—%QJ&EE4R%d¥+smwd¢%.
(2.27)

In the following, we refer to the standard outgoing null co-

ordinateu as an observer time coordinate accordingj38).
The ratio of the proper time intervdlrs of an observer at

the stellar surface to the observer time interstal is given
by

drg
—=(I'+U)(u,xy. (2.28
du

The lapse functiorr atx is defined by the ratio of the proper
time intervald7 of each fluid element to the observer time

interval du as

d T e(ux)

du

dr drg

u, X S
a(Ux)= de du

——(I'+U)(u,xy).
(2.29

We note that the lapse functiam is directly related to the
observed redshift asa=1/(1+2).

In solving the dynamics of a spherical star, the boundar
condition for ¢ is arbitrary. In the present computation, we
choosee?(u,x) =1 for the boundary condition of. Then,
we can identify the null coordinatewith the proper timerg
of the comoving observer at the stellar surface.

ez//(u Xg)

IIl. ODD-PARITY PERTURBATIONS

A. Gauge-invariant perturbations

Perturbed metric and matter fields of odd parity are de-

noted by

0
hAS,

hASa

h(sa:b+sb:a) , (31)

Ag,,=
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0 AtsS,

At L
AtASa At(sa:b+ Sb:a)

(3.2

wr=

whereY, S,=e Y p andS,.,+S,., are the scalar, vector and
tensor harmonlcs respectively. Here, the sufflcasdm are
omitted for simplicity. The scalar harmonic functidhsatis-
fies

'yabY:ab

——1(1+1)Y. (3.3

The gauge-invariant perturbations are defined as

kAEhA_h‘A"‘ZhUA, (34)
La=Ata—Qhy, (3.5
L=At—-Qh, (3.6
where
R
va= - 3.7

L is identically zero forl=1, and no perturbation of odd
parity appears fot=0.

For a perfect fluid, the matter perturbations of odd parity
are only specified by the four-velocity perturbations as

Au,=(0,88,),

where is a function ofx andu and completely determines
the matter perturbations. The concrete form is determined by
solving the field equationsf. Eq.(3.10]. In terms ofg, the
gauge-invariant perturbations are written as

La=B(e+p)ua,

(3.8

(3.9
andL=0.

B. Field equations: Interior

The covariant field equations for nonspherical perturba-
tions in the stellar interior were derived by Gerlach and Sen-
gupta[29] for general matter fields and have been recently
reformulated by Gundlach and MartGarca [24] for a per-
fect fluid. We follow [24] to derive the basic equations for
the perturbations.

Y’ The perturbation equation for the matter fiell(t}.

=0, is integrated to give

ef}\/2

R2(e+p)

B

i (3.10

wherej=j(x) is an arbitrary function ok. Integration ofj
by dx yields a conserved quantityas

=fjdx

where$JS,sin 6dAd¢ corresponds to thecomponent of an-
gular momentum fot=1

(3.11)
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At R=0, B should satisfy the regularity condition as

B=R"1p, (3.12
WhereEis a regular function aR=0. The regularity of3
also leads to the following condition:

e*}\/2j — R|+3j_

(3.13

wherej is a regular function aR=0. In terms of the func-
tion j, the gauge-invariant matter perturbations are described

as
el M2
Lu= =5, (3.14
1.
L= EJ (315)

Thus, in the following, we specify instead ofg3.

The metric perturbations of odd parity are characterized

by a master variable as

Ku

ky
R \R

I=e" Y—N\I2
RZ

: (3.16

,u 3 X

whereIl is related to a variabler; introduced in[22] as

7,=1(1+1)R?IL. II should satisfy the regularity condition

atR=0 as

M=R 21, (3.17)

wherell is a regular function aR=0. 11 satisfies the fol-
lowing wave equation fot=2:

2(1+1)

—2e” ¢7)\/Zﬁ,xu+e7 l//—x/z(eg//—x/zﬁ’x)’xJr =

X{—(T+U)e VIl ,+Te T }—(1+2)
2m|—
x| 4m(e=p)+(1-2) 7Tl

=16m[Re " M(e’}) ,+{(I+ 1) +2U}j]. (3.18
The relation betweek, andlIl is given forl=1 by

(1-1)(1+2)k,= 167R2L ,+ (R*) ,— e’ MARI) ,,
(3.19

(1=1)(I+2)k,=16mR?L,— (R*) . (3.20

For =2, the gauge-invariant metric perturbations are ob-

tained from Eqgs(3.18), (3.19, and (3.20. However, forl
=1, Egs.(3.19 and(3.20 give

R =167, (3.2

PHYSICAL REVIEW D68, 024002 (2003

where we assume that the perturbation is regulaR=a0.
Equation(3.21) implies that there is no gravitational-wave
mode forl =1.

C. Field equations: Exterior

We have two metric perturbations andkg in the exte-
rior. Defining the master variabE as

kR) ky
HE(— - =] . 3.22
2 2
R T R R
we find the following wave equations foe 2
_CDVTT+CI)‘R*R*_V(R)¢):O, (323
where
d=RII, (3.29)
VR1=[ 1 2M\ [1(I+1) 6M 32
(R)={1-—7" R (3.29

Here, we note thad is related to the variablgy defined in
[22] as ¥=1(1+1)®. Using the double-null coordinates

(u,v), we obtain
40 +V(R)®=0. (3.2

Equation(3.23 has a static solution with an appropriate
fall-off at infinity as

2M
R

@ = | I I .
static |(|+]) f 1, 3,2| 2, R |’
(3.27}

whereF(a,b,c;z) denotes the hypergeometric function and
g, which has the dimension of length, corresponds to the
multipole moment of the system. Becaud¢l+1)] ! is
factorized out in the above equation, the definition of the
moment is the same as that defined22]. This static solu-
tion is used for providing initial conditions of metric pertur-
bations(see Sec. Y.

The relation betweek, andlIl is given forl=1 by

2M
(I=1)(1+2)kr= —(1— ?)(R“H)R

= (R ;—(R) 7, (3.29

2M\ 1t
(I-=1)(1+2)kg= —(1— ?) (RYT) ¢

o2

X[(R) o+ (R ;1. (3.29

Forl=1, we find the solutions of Eq$3.28 and(3.29 as
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-~ dv 1
B0)= === (©:x, (3.32

we can rewrite the wave equation fér as
4® 7=+ A(U)B(v)V(R)® =0. (3.33

We integrate Eq(3.33 in region Il. The event horizon is
given by a finite value ofi. It is found that the effective
potential termV=A(u)B(v)V(R) is regular on the event
horizon in this coordinate system, which helps numerical in-
tegration of the wave equation.

D. Matching

The matching condition at the stellar surfacex, for the
odd-parity perturbations is obtained from the continuity con-

FIG. 1. Spacetime structure of spherically symmetric black holedition for IT, n*L,, and nAH|A_ 16mR2UAL, for 1=1,
formation is depicted. Region | denotes the stellar interior, region 1@2nd for n*ks andu”k, for 1=2, whereny= — exgu® [24].
denotes the intermediate exterior region from which we can emit ad he explicit equations are
ingoing light ray which hits the stellar surface before the horizon
formation, and region lll denotes the far exterior region. The =11y, (3.34
boundary between regions | and Il is the stellar surface.

—e I, ,+e ML,  — 16mR™ %™ M?j

Meyy ey
B Fixlj + FEXLUJ =—llggtIleg. (339

R*I1 = const. (3.30

The integration constant in E¢3.30 is related to the total
angular momentum of the fluid perturbation for1. The
master variabld] is time independent in the exterior for  Using uAHin‘A=uAH0qu, we can derive an alternative form
=1 as shown in Eq(3.30. This constancy implies the con- of the matching condition as

servation of the angular momentum of linear perturbation in

the spherically symmetric background. —2e My, + e My, , — 167R ™ e ™
To compute nonspherical metric perturbations, we divide _
the background spacetime into regions I-($ee Fig. 1 :_zrix’d =—2M i (3.36

Region | is defined as the interior of the star. Region Il is an
intermediate exterior region from which one can emit an in-
going null ray that encounters the stellar surface before the
stellar surface is swallowed into the event horizon. Region IX)

[l is the exterior region outside region Il. Region Il is intro- =160 ——, (3.37
duced to help the matching procedure at the stellar surface in 4

numerical computation. Hereafter, we will refer to the ingo-

ing null surface which divides the exterior regions into re- J(xg)

gions Il and IIl as the junction null surface. Such an elabo- ey=16m R (3.39
rate procedure is needed to calculate the late-time

gravitational radiation extracted at the point far from the Star‘l’hus, the gauge-invariant variablé is completely deter-

and to assure that the matching condition is satisfied at thﬁ]ined by the initial distribution of perturbed angular mo-
stellar surface simultaneously. mentum in the star

For the convenience of computation, we introduce new

For|=1, the matching conditions lead to

null coordirlatesu~andv in region Il. We identify these null IV. GRAVITATIONAL WAVES
coordinatess andv with the values of the proper time; of o ) o
an observer comoving at the stellar surfacex, at its inter- To compute gravitational waves in the wave zone, it is

convenient to adopt the radiation gauge. In this gauge, the
following tetrad components denote theand X modes of
Tyravitational waves:

section of an outgoing rayu(= const) and an ingoing ray
(v=const), respectively. Namely, the stellar surface is give
by U="0.

When we define functiond andB as 1
- h.=5(hs—hsa), 4.0
A= LGy (330
u=-—=-= u,Xe), .
du I'+U hye=hp;. (4.2
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Hereafter, we adopt the following choice for the orthonormalthe first-order differential equations as

bases:
Yo for m=0 and
1
Y|'miEE(Y|‘miY|’_m) for m+#0. (43)

The metric perturbation$i, and hy in the radiation
gauge are written in terms @ as

1 1 _
h,=-— m §(®+COHSDA+(0,¢)+O(R 2),
(4.4)
1 1
hy= =(®+const Ay (6,¢) +O(R™?),

- (I-D(1+2)R
(4.5

where the angular dependence can be explicitly calculated as

A (0,0)=S,. ,———S,.
2 Y LY 4.6
““lsing " ? singtang ¢)’ (4.6
Sp. 6 S¢:0
Ax(91¢)5%
1
Y p—2m>——Y+I(I+1)Y. (4.7

~tang

ha)

Here, Y denotes one of the bases shown in E43). The

luminosity of gravitational waves®, , for each mode in
terms of the master variable is given tgee[22,33 for m

=0 and alsd44])

dP,
dQ  167(1—-1)4(1+2)2

Y AL+ AZ)(0,9),
(4.8

110+,

Pl,n: ﬁ m ,H’ (49)

—2e~ z//—)\/ZQ u+ e~ z//—)\/Z( ea,b—)\/ZQ) «

2(1+1)

+
R

{—(T'+U)e "P+Te M2Q}—(1+2)

X i

2m
47T(e—p)+(|—2)¥

=16n[Re " Me’}) ,+{(I+1)'+2U}j], (5.0

2(1+1)
R

—2e VNP e UMb N2Y)
x{—(I'+U)e "P+T'e "2Q}

—(1+2) I

2m
4w(e—p)+(|—2)¥

=16m[Re " M(e’}) ,+{(I+ )T +2U}j], (5.2

1l =P, (5.3
IT,=Q. (5.9

We note that the regularity at the center requires
P=e/ 22Q, (5.5

Equation(5.1) constitutes a hyperbolic-type partially dif-
ferential equation to which we apply the first-order up-wind
scheme to stably evolve the functi@h Other equations con-
stitute ordinarily differential equations, and thus the integra-
tion is carried out with the second-order Runge-Kutta
method. The Courant-Friedrich-Lew§CFL) condition for
the stability of integration limits the-th time stepAu" as

Au"=2Cmine™ i T DA, | (5.6
|

whereC(=1) is the Courant number.

In the exterior of the stafregions Il and 1l), the double-
null coordinates are adopted. In region Il, E§.33 is de-
composed into the first-order differential equations as

~ 1 . -
where the subscript denotes 0 andh.. . Z5= 4A(U)B(U)V( R, .7
V. NUMERICAL METHOD an: _ %A(E)B(Z)V(R)CI), (5.8
A. Numerical integration

The spherically symmetric stellar collapse is computed (I),EZZ (5.9
using the single-null comoving coordinates. Our method is
essentially the same as that used by Baumgarte, Shapiro, and o =W, (5.10
Teukolsky[39]. An artificial viscosity term is incorporated to ’
deal with shock waves. The details of numerical methodand in region lll, Eq.(3.26) is decomposed as
which we adopt are found if89].

To solve the perturbation equations for the interior of the 7 EV(R)(I) (5.11)
star(region ), it is convenient to decompose E®.18 into v 4 ' '
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1 — . .o
W V(R)®, (5.12 Then,IT(uo,x) andj(x) are specified from Eq¢3.10 and

g (3.17. From the initial datall(ug,x), we can determine
Q(ug,x) on the initial slice by differentiation through Eq.

®u=2, (.13 (5.4). Then, fromII(ug,x), Q(ug,x), andj(x), we can ob-
=W, (5.14 tain P(ug,X) by integrating Eq(5.2) with the central value
v given by the boundary conditiof5.5) at the center.
For integration of these equations, we use the finite differ- In  region I we first provide ®(ug,v)
encing scheme proposed by Hamadhel Stewarf45). =T1(Ug,0)R3(Uy,0). Then,W(l,v) is obtained by differ-

The coordinatesi,v) depend on the spacetime trajectory eniation through Eq(5.10, andZ by integrating Eq(5.7)

of the stellar surface. Thus, they are determined after thgin the initial value given by the matching conditié8.36
spherically symmetric stellar dynamics is solved. For thisy; the surface.

reason, we divide a numerical simulation into two steps. In | yegion 11l the method for construction of the initial data
the first step, we carry out numerical computation for thegetg ofd, W, andZ is the same as that in region Il, except

zeroth-order background solution taking into account thgo that the initial values needed for integration of E5.11)
CFL condition for the first-order nonspherical perturbations ;. given at the point on the junction null surface.

e_md in the second step, we evolve the nonspherical perturba- \wpen the background spacetime is initially momentarily

tions. N , o . static, it is natural to choose momentarily static initial data
For accurate numerical integration, the distribution of gridsets Thus, the initial data set is given in the following man-

points in region | plays a quite important role. We adopt theor First we specifyB,(R), and computg(x) from Eq.

Il d grid in t f the initial ci f tial
equally spaced grid in terms of the initial circumferentia (3.10. Then, we determingl(ug.x) and Q(ug x) by inte-

radius. In region Il, the distribution of grid points is auto- ) ‘ )
matically determined in computing zeroth-order solution. In9rating Egs.(5.2) and (5.4) using the conditionP(uo,x)

region IlI, the equally spaced grid in termswiandv works = P.x(Uo,X) =0 with the initial valuell(uo,0) andQ(uo,0)
well. =0. Here, we have to tunH (up,0) so that it matches the
static exterior solution at the stellar surface. The matching is
B. Matching written as
At the stellar surface, the matching conditigi@s34) and 2M F/IT+U— _
(3.36 for I1 and its derivatives determine the boundary con- e M2Q+|(21+1)+ R F—} TH_ 167jR=0,
[

ditions forIl, P, andQ atx= X, in region |, and ford, Z and (5.19
W atu=0 in region II. In matching solutions of regions |
and 1l, we have to be careful since the outermost severavhereF(l—1,+3,2+2;2M/R) is abbreviated a5 .
mass shells form a very disperse envelope during the col- After this procedure, the multipole momeqtis deter-
lapse. This implies that the grid resolution around the outermined by matching the interior solution with the exterior
most envelope is not very good. If the matching betweerstatic solution(3.27). Then, using the momemy, the initial
regions | and Il is done at the location of the outermost masgata set for the exterior solution is provided by E827).
shell, a large numerical error is produced. To suppress the
numerical error, we match the solutions at the location of a D. Event horizon
mass shell which is not outermost one but is located slightly . . . .
inside the outermost one. We find that this works quite well. The effective potentla! term of the wave equayon]fbrs
We have also checked that the numerical results do not d&gular on the event horizon. However, it contains a term of
pend on the location of the matching if more thai®5% of the form “zero divided by zero’(for R—2M, A—c, and
the total mass is contained inside the mass shell for thy —0)- This implies that it is not possible to numerically
matching. Integrate the wave equation fbr on the nul! surfaces which

At the junction null surface, the matching is not necessary2'€ Very close to the event horizon. To integrate the wave
since the double-null coordinates are adopted in both re€quations until the null surface reaches the event horizon, we

gions. We only need to store the numerical data set on thHS€ an extrapolation for the value Hf on the junction null

junction null surface in region I, and use it as a part of initial Surface in the neighborhood of the event horizon as

data for the integration of region Ill. TTEH— 1T Nmx

IT=IINmaxt ———— (R— RNmax), (5.16
C. Initial data REH— RNmax

In the present formulation, the null cone composedi of
=Uy,U=Uy, andu=u, should be taken as an initial null
surface. Since it is the characteristic surface of the wave N Neoom 1

. TTNmax— T Vmax
equation, we only need to specifl,;(R) andB;,;(R) there. MEH=[Nmaxy ——— (REH— RNmay)

We provide the initial data set in the following manner: In RNmax— RNmax—1

region |, we first give the function$l;(R) and Bi,:(R). (5.17

where the valudI®" on the event horizon is estimated as
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[1Nmax and RNmax are the values fofl andR on the junction 0.1 ' ' ' '
null surface at theN,,¢h (final) time step in region Il and 0 1 0 .
REH=2M. To compute gravitational waves in region I o4 b 0.880256
emitted in the neighborhood of the event horizon, this ex- 5, e . 1
trapolation is necessary and quite helpful. % 02 o N o ieds
o 03r Mo R 419431 iy
VI. CODE TESTS T o4t ; 4.92403 ]
B2 5.59863
A. Spherically symmetric hydrodynamic code 8 -0.5 FSimulation + .
o Exact 6.21243
As the first test of the spherically symmetric general rela- 06 | 6.76126 8
tivistic hydrodynamic code, we performed a simulation for 07k 7 24254 i
the homogeneous dust collapse. The numerical solution cai . L . .
be compared with the Oppenheimer-Snyder solufi?8]. '0'80 1 2 3 4 5
We chose the total grid number as 500 in this test. As the Circumferential Radius

initial condition, we set a momentarily static dust ball of _ o _ )
uniform density and of radiusM. Precisely speaking, the _FIG. 2. Snapshots of the velocity prof|I(=T in the r_lu_njerlcal simu-
dust surface is maximally expanded on the initial null slice.li"t'on of homogengous;.ddust collz;pse W'tr:‘ the |n|t.|allrad2?15
In this case, the event horizon is located rat7.243M, _‘Iu\t/!' Crosses "’t‘_n ISOTIh C_ur_‘t’_ef‘ g Fj;nOtett. € ntumeiur::a_ a}tr_\ | exf‘Ct
where 75 denotes the proper time of an observer comovings‘o.u lons, respectively. The initial dafa set 1s put on the initial out-

. going null cone on which the dust surface is momentarily static.
with the stellar surface. . . :

In Fig. 2 we show the time evolution of the coordinate The vertical and horizontal axes are the coordinate velodity

locit : fil functi fthe ci f tial radi t=e"”R,u and the circumferential radiuR, respectively. The at-
Ve|0C| y profiies as a uhnc lon of the C|rcumheren lal ra |Ius aliached labels denote the proper timeof a comoving observer at
selected t'm_e steps. The crosses den_Ote the numer'ca resuila stellar surface. All the guantities are shown in unit$/of 1.
and the solid curves the exact solutions. The figure shows

that the numerical results agree with the exact solutlons+ 0.00142 and 2 are shown. For simulations in this paper, we

W'th'.n 0.01% error. We also note that the computation can b%\dopted four static configurations of nearly maximum mass
continued until the null hypersurface reaches a surface Veré{long the equilibrium sequencésee A—D in Fig. 3 as ini-

cloie ;0 the e;/e?t ?r(]) rl[zt(;]n. d K I in th tial data sets. Models A and C are stable against gravitational
0 demonstrate that the code works well even In the pres'oIIapse, while B and D are marginally stable. We summa-

ence of pressure, we carried out a long-term evolution o ize these models in Table |.

spherically §ymmetr'ic stars in equilibrium. Here, we adopt For long-term test simulations, we adopt models A and C.
the polytropic equations of state as To induce a small oscillation, we initially increased the spe-

e=n(l+e) (6.) cific internal energye uniformly by 1% both for model A and
’ for model C. In Fig. 4 we show the time evolution of the
p=Kn'a (6.2)  central density. Itis found that the stars oscillate in a periodic

manner. By performing the Fourier analysis, we measured
the period of this stellar oscillation, and found that the oscil-

ne=+—_7. (6.3 lation angular frequency is
a
. e . . . _M1/2
wheree is the specific internal energy, aid, an adiabatic o~ 6.5
constant, for which we choose as 2 and/3. WithI',=2, R32’ .

moderately stiff equations of state for neutron stars are quali-

tatively approximated. Witd';~4/3, the equation of state \herew=9.59x10"2 for model A and 0.788 for model C,
for supermassive stars of massi0°M ¢, in which the ra-  where the initial stellar radii are given by 1.9900°M and
diation pressure dominates over the gas pressure, is well ag:501M for models A and C, respectivelgee Table)l
proximated. According t¢15], the equation of state for su-  According to a post-Newtonian theory, the angular fre-

permassive stars may be approximated by the polytropiguency of the radial oscillation for supermassive stars can be
equation of state with', as estimated a§15]

4 —-1/2 , 3|W|
I'y=%+0.0014 106|\/|@ : (6.9 w :l_(ra_rcrit)7 (6.6)

3

Thus, we adopl = (4/3)+0.00142 to model a supermas- whereW, |, andI'; are the gravitational energy, moment of
sive star of mass P01, . The equilibrium configurations are inertia, and critical polytropic index, respectively. HeFg;
obtained by solving the Tolman-Oppenheimer-Volkoff equa-is estimated in the post-Newtonian approximatior] 46|
tion.

In Fig. 3 the gravitational mass as a function of the central ro_4i1dM
density for the equilibrium configurations with = (4/3) ety R

. (6.7
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FIG. 3. Gravitational mass as a function of central density of (b)
spherical equilibrium stars with polytropic equations of st&te
=Kn'a, where(a) I';=(4/3)+0.00142 andb) I',=2. Models A FIG. 4. Evolutions of the central densifg) for model A with

and C are stable while models B and D are marginally stable againgt_= (4/3)+0.00142 andb) for model C withI';=2. The horizon-

gravitational collapse. The numerical values are shown in units O{al axis is the timea for an observer at infinity. The internal energy
c=G=K=1.

e is initially increased uniformly by 1% both fofa) and for (b)

. L — _ from the equilibrium configuration. All the quantities are shown in
From this analysisw should be 9.6 10 2 for model A. units OfMﬂll 9 a

Thus, the numerical result agrees with the analytic one

within 0.5% error. _ o start collapsing. We have checked that they indeed collapse
The angular frequency of the radial oscillation for neutrony, piack holes. The detailed results of the gravitational col-
stars can be also calculated using the semianalytic formulr%lpse are described in Sec. VII.

derived by Chandrasekh@6]. From this approximate for-
mula, we can predict the oscillation frequency should be
~0.9Y2[47) and hencav~0.063V1 1. On the other hand,

Time

B. Perturbation code

the numerical result indicates that=0.0616V ~1, which is We have carried out a wide variety of test simulations for
again in good agreement with the analytic result within a fewour perturbation code. First, we checked that gravitational
percent error. waves accurately propagate on the flat Minkowski back-

Models B and D are marginally stable against gravita-ground. Forl =2, the exact solutions for linear gravitational
tional collapse. Thus, if the internal energy is reduced, theyvaves in the Minkowski spacetime are obtained 48

TABLE |. Models for equilibrium solutions. The unit af=G=M=1 is adopted.

Model I, Central energy density radius
A (4/3)+0.00142 1.85%10°° 1.900x 10°
B (4/3)+0.00142 3.70¥10°° 1.508x 10°
C 2 5.944x 1073 5.501
D 2 1.044x 1072 4.745
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FIG. 6. Total radiated energy of gravitational waves fer2
from homogeneous dust collapse for different initfalaximally
expanded radii. The initial momentq is normalized so that
=2M. We set the momentarily static initial data on the initial null
slice. The results for two kinds of initial distribution for matter
perturbations;,; are plotted. For the case @,;>exd—(R/R)?],
the radiusR; is chosen to be one-third of the initial radius of the
dust ball. The present results are compared with those of Cunning-
ham, Price, and Moncri¢22] (CPM1978, in which the initial data
sets were set on the spacelike surface of maximum expansion.

first order to the exact solution. We note that the number of
grid points per wavelength is- 1000 for the best-resolved
case.
Next, we computed the propagation of gravitational
waves forl =2 in the collapse of a homogeneous dust ball.
FIG. 5. Linear gravitational waveforms fof=2 in the The same type of computation was already carried out
Minkowski spacetime extracted at=5. The initial data set is pro- [22,23], so that we can calibrate our code by comparing the
vided on the initial null surfacé=r. Three levels of the grid reso- present results with previous ones.
lution asAr=Au=Ap=0.001, 0.002, and 0.004 are adopted. The |4 [22] the momentarily static perturbations are provided
solid line denotes the exact solutidi) is the magnification of the 5t the initial hypersurface. Thus, we also choose the momen-

25 2.55 2.6 2.65 2.7 2.75 28
(b) Time

region encompassed by the squardan tarily static initial data on the null hypersurfatee., the dust
surface is assumed to reach the maximum expansion at initial
— Ql(t—r)— I(t+r) QI "(t—=r)+1"(t+r) slice). However, the word of caution is appropriate here. The
=3 (5 +3 4 previous computation was carried out usingllcoordinate
system (not single-null coordinate systgmOn the other
1"(t—r)—1"(t+r) hand, we choose the single-null coordinate system. Namely,

(6.8 the coordinate system and also the time slicing are different

between the two. Thus, even if we set the same functigh of
in different coordinate systems, this does not imply that we
give the identical initial condition. Moreover, the former for-
mulation has ambiguity in determining the second-order time
6.9 derivative of gravitational perturk.)ation,.whil_e_ the latter one
does not. Hence, the momentarily static initial data sets for

Since the background spacetime is flat, the matching surfac,lq,ese :]WO 'fqrmdu.?tlors are dlfferlent from eacr:1 other.l It wg-
between regions | and Il is artificial. As the matching surface P'€S that it is difficult to precisely compare the results ob-

we chose the surface of=1 in this test. In Fig. 5 we show talr_}_ed ml_éhetsetawo ;forn:ul;ig%ns. tinitial diti th
numerical results with the exact solution for the waveforms O Calibrate the efiect or difierent initial conditions on the

observed at=5. To demonstrate the convergence of theresults, we provid_ed two perturbation profiles fixiagn the
numerical solutions, we performed simulations with threefirst one, we gavegiy(R) = const on the initial hypersurface,

levels of the grid resolution asr=Au=Av=0.001, 0.002, and in the second ong@;,(R) = exd —(R/R)?], whereR, is
and 0.004. Figure 5 shows that numerical results converge ahosen to be one-third of the initial surface radius.

r3

wherel is an arbitrary function, antl’ its derivative. Here,
we choose

I(y)=exd —4(y—2)?].
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normalized so thagg=2M. It is found that numerical results
of two different profiles ofg differ by a factor of~1.4, and
that the results of22] are greater than our results by a factor
of ~3. However, the total radiated energy systematically
decreases as the initial dust radius increases for all the cases
in the same manner. Thus, we conclude that our numerical
results agree with the previous ones besides a possible sys-
tematic error associated with the difference of the coordinate
conditions.

The waveform, luminosity, and integrated total energy of
gravitational waves from a collapsing dust ball with the ini-

-0.0008 o 100 150 200 2% 300 tial radiusR=20M for | =2 are plotted in Fig. 7. Gravita-
(@) Time tional waves are extracted Rt=40M. As found in[22], the
quasinormal ringing oscillation and subsequent power-law
1x10°8 . . L
tail characterize the gravitational waveforms. The complex
1x10 frequency of the fundamental quasinormal mode was calcu-
11012 lated to be M w=0.74734+0.17792 by solving the eigen-
T value equation$49]. On the other hand, our numerical re-
0 sults show that the complex frequency of the damped
B 1x . . . .
z oscillation is given by M w=0.752+0.179. Thus, the nu-
o 1x1078

1x10°%°
1x1022

1x1024

1x1026 L

0 100

(b)

2.5x10°8
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300 400 500 600
Time
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5x10° |-
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FIG. 7. (a) Waveform,(b) luminosity, and(c) accumulated en-

100
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merical results agree with the theoretical value within 1%
error both for the frequency and for the damping rate. It is
found that the waveform is characterized by the power-law

tail for u=350M. The power-law index numerically com-
puted is~7.0 and also agrees with that analytically derived
in [50] as—(21+3)=-7.

We also computed gravitational waves from a static star.
As the stellar models, we adopted models A and C. Since the
odd-parity matter perturbation is time independent in this
case, gravitational waves propagate freely. This implies that
with the momentarily static initial perturbation, no gravita-
tional radiation should be emitted. We checked that this is
indeed the case except for the tiny amount emitted soon after
the simulation started, which is due to numerical errors as-
sociated with the finite differencing and relaxation of the
numerical system.

VII. STELLAR COLLAPSE TO BLACK HOLES
AND GRAVITATIONAL WAVES

We have computed stellar collapse of models B and D to
black holes. Since they are marginally stable against gravita-

ergy of gravitational waves for=2 radiated from homogeneous tional collapse, we extracted the internal enesgpy 1%
dust collapse with the initial radiu8=20M. These are estimated at nitially to induce the collapse. Here the energy extraction is
R=40M and normalized so thaf=2M. The horizontal axis is the done on the initial null cone. The difference between the

observer timeu. We set the momentarily static initial data on the energy extractions on the initial null cone and on the space-
initial null surface with the matter perturbatig;,;=const. The like hypersurface is very small for nonrelativistic stars but
solid, long-dashed, and dashed lines denote the resultdNfor may be significant for highly relativistic stars. During the
=1000, 500, and 250, respectively, whétés the number of spa-  collapse, we adopt thE-law equation of state as

tial grid points inside the dust ball. The matching is done at the
outermost mass shell. All the quantities are shown in unitVof

=1. The long-dashed and dashed lines are almost indistinguishable

; . p=(I',—1)ne.
because they lie on top of the solid line.

(7.9

In Fig. 6 the total radiated energy of gravitational waves
are summarized. In these numerical computations, gravitafhe simulations were carried out using both the May-White
tional waves are extracted R=40M. For comparison, we and the Hernandez-Misner schemes. We note that with the
also plot the results d22]. We note that in this figureg is  latter scheme, we can follow the evolution only outside an
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event horizon. This implies that we cannot find apparent ho- TN S L L L AL
fizon and event horizon in the following simulation. We stop 1.7676¢+5

the calculation of the stellar collapse and estimate the value 001 |
of the perturbation field on the event horizon using the ex-
trapolation wherRy/2M =1.01 is satisfied for the surface ra- 0.0001
dius R;. We have confirmed that the obtained waveform is
not so sensitive to the choice of the criterion. In the simula-
tion of the collapse of models B and D, we have observed nog
evident shock wave until the black hole forms. w

y Density

1x10°8 -
1x108 -

) X101 |
A. Collapse of a supermassive star

Supermassive stars are quasistable objects of mass X102 -
xlOSMQSMsloloMG and possible direct progenitors of oo o e T T T T T e T 000
supermassive black holelsl4,15. They quasistationarily (4 Circumferential Radius
contract due to radiative cooling to the onset of radial insta-
bility [14,15, resulting in formation of supermassive black &g : :
holes. The quasistatic evolution of rotating supermassive
stars was recently investigated by Baumgarte and Shapirc 5o |-
[16]. Taking into account that supermassive stars are likely to T

be rigidly rotating and that the adiabatic index~igl/3, they é e ]
clarified that the ratio of the rotational energy to the gravita- &

tional energy is at most-0.009 at the onset of the gravita- £ 30 L i
tional collapse. They also found that oblateness of supermasg

sive stars around the central region is very snedle Fig. 1 =

in [16]), justifying that the Roche modélL5] for rotating 5 2 i

supermassive stars is adequate. Shibata and SHagirau-
merically computed the collapse of a marginally stable rotat- Il ™ 7

ing supermassive star to a Kerr black hole in the two-

Qim_ensional fully general relativistic simulation. They 196400 176500 176600 176700 176800
indicated that more than 90% of the stellar mass collapses(b) Time
directly into the black hole in the dynamical time scale as in
the spherical collapse. These results suggest that if we pa' 1 . .
attention only to the inner region, the collapse proceeds ina 4| ]
nearly spherical manner. Motivated by this fact, we apply the
present perturbation analysis to compute gravitational waves 08 i
emitted during the collapse of supermassive stars. 07 | T
=
S 06 A
1. Spherical collapse E
c 05 F 4
We adopted model B with' ;= (4/3)+ 0.00142 to modela & 04 L ]
supermassive star of mass®M, . In the numerical simula- =
tion, we typically take 1000 grid points to cover the super- 03 i
massive star. For the collapse of model B, with the May- 02 1
White scheme, apparent horizon was located near the cente ¢4 | i
in a late time of collapse, but soon after the formation, nu- 0 . ) .
merical accuracy deteriorates and as a result computatior, . 176400 176500 176600 176700 176800
crashed before the event horizon swallowed all the fluid el- Time

ements. On the other hand, the computation can be continued ) ) ) _

until the null hypersurface reaches the event horizon with the FIG. 8. (&) Snapshots of the density profilth) the trajectories

Hernandez-Misner scheme; i.e., the whole region outside th&f mass shells, ant) the mass fraction contained in a high-redshift

event horizon is computed numerically. This clearly indicateg©dion are plotted for the gravitational collapse of model B with

the robustness of the Hernandez-Misner scheme. The matcha=(#/3)+0.00142. We extract 1% of the internal energy from the

ing is done on the mass-shell within which 99.7% of the totalequnllbnum configuration to induce thgcollapse.(a) the label for

mass is enclosed. In the following, we deal with this match-ach curve denotes the observer timein (b) the vertical and

ing surface as the stellar surface. horlzonFaI axes denote the circumferential radllus and observer time,
In Fig. 8a) we display the snapshots of the density prof”erespectlvely. The labels denote the mass fractions enclosed by mass

at selected time steps. In this simulation, the spacetim hells. In(c) the_hlgh_-redshn‘t region is defined as the one in which
k — ) e lapse functionr is less than 0.1. We deal with the mass shell
settles down to a static one @#=17676(M. The calculation  \hich encloses 99.7% of the total mass as the stellar surface. All the

has been stopped at=176763 or T~=17529M . At this  quantities are shown in units df=1.
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moment, we have obtained the redshift{(4) =190.7 at the 6x10° ' ' ] N-1000 —
surface. Since the equation of state of supermassive stars 5x10°6 ! i N:ggg T

soft, the mass is highly concentrated around the center. In thi
late stage of the collapse, the increase of the central densit ~ 4x10°
is accelerated, and hence the collapse proceeds in a runaw:
manner(This makes the simulation without null formulation i
technically difficuly. Figure &b) shows the trajectories of & 2x10® | -
mass shells fou=176400. Each mass shell asymptoti-
cally approaches a constant value greater thamb2cause

the lapse function decreases to zero. This figure shows the 0
the central region collapses earlier, while the outer envelope

3x10°¢ | H -

1x10°6

. . . - -6
accretes slowly after the evolution of the central region is ~ ~*'° J ;
almost frozen. Figure(8) shows the total mass contained in 2x10° | . ! !
the high-redshift region in which the lapse function is less 176400 176500 176600 176700 176800 176900

than 0.1[or equivalently (z) is greater than 10 where Time

denotes the gravitational redshifThis region first appears :
at the center at=176510M. We find that 80% of the stellar X101
mass is swallowed into this high-redshift region within the
time interval Au~15M. After the inner region collapses, 1x1016
surrounding atmosphere falls into this high-redshift region

et

spending a much longer time 200M. _ Ix1071®
[
z !
itati iati o 20 oo
2. Gravitational radiation x10%° |
For computation of the nonspherical perturbations, a static o2 |

initial condition for 8 should be given. However, the realistic
perturbation profile of the initial data set is not clear for the xio2 L
odd-parity perturbation. The purpose of this paper is to study .
the gravitational waveforms during the formation of a black 176400 176500 176600 176700 176800 176900 177000
hole qualitatively. Thus, to investigate the dependence of the() Time

gravitational waveforms on the initial perturbation profile,
we gave three kinds of the initial data sets(&swith Bi,it

=const, (2) with Enitzexq—(R/Rc)Z], and (3) with Binit 3x10°18 ) : i
=exf —((R—Ry/R)?], where the scale length of the inho- i

3.5x10°13 T T T T T

mogeneity,R., for the matter perturbation is chosen to be 3 25x10™ | Nﬁlggg —
R.=Ry3. For (1), the perturbation is uniformly distributed. £ ! N=250 -+
For (2), the amplitude of the perturbation in the inner region 5  2X19™ 1
is larger than that in the outer region. @), the amplitude & R | 1
of the perturbation is the largest near the stellar surface. §

To check the convergence, computations for casavere g a0 b ]

carried out withN=1000, 500, and 250, whend is the
number of grid points in the stellar interior. The wavelength sx1014 |
of gravitational waves is roughly comparable with the stellar ;
size for the early stage and with the stellar size or the size of 0 : L : .
the formed black hole for the late stage. Since we adopt the() 176400176500 176500 1:?;20 176800 176900 177000
comoving coordinate, the number of grid points per wave-
length is kept almost constant and of the order 1000 for
1000-zone calculations. FIG. 9. (8 Waveform,(b) luminosity, and(c) accumulated en-
The waveform, luminosity, and integrated total energy ofergy of gravitational waves for=2 radiated from the collapse of
gravitational waves fot=2 are plotted in Fig. 9. Since the model B with I'y=(4/3)+0.00142. Gravitational waves are ex-
oscillation period of gravitational waves is much shorter thartracted atR=2000M. The initial matter perturbation is chosen so
the total time of integration, we show them only around theihat g,,,=const. The momentarily static initial perturbation is
time of major emission. Figure 9 demonstrates that the congiven. The amplitude of the perturbation is normalized so that
vergence is achieved well. For example, it is found that the=2M. The solid, long-dashed, and dashed lines denote the results
totally radiated energy shows the first-order convergence. Alfor N=1000, 500, and 250, respectively, whétés the number of
though the numerical error in the time of the major emissionspatial grid points inside the star. The matching is done on the mass
might look very large, it is only due to the extremely long shell which encloses 99.7% of the total mass. All the quantities are
time for the collapse compared to the duration of the majoshown in units ofM =1.
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emission. It is seen in Fig.(8d that the waveform is made up nent is produced due both to the perturbation profile initially
of the precursory wave, quasinormal ringing, long-time-scalaggiven and to the nature of the collapse of the background
decay, quasinormal ringing again, and power-law tail. Fig-spherical star: In the collapse of supermassive stars, the cen-
ures 9b) and (c) indicate that the primary and secondary tral region collapses first and subsequently, the outer enve-
contributions to the totally radiated energy come from thelope gradually falls into the black hole spending a long time
first and second bursts of quasinormal ringing, respectivelygyration=200M. SinceB;,;=const, the outer envelope re-
The reason of the existence of this second burst will be €Xtains a considerable fraction of the perturbation for d@e
plained later. o _ As a result, the quasinormal modes are likely to be continu-
We show the waveform, luminosity, and integrated totaloysly excited for the duratios-200M during which the mat-
energy of quadrupolel & 2) gravitational waves for differ-  ter falls into a black hole. However, the quasinormal modes
ent initial perturbation$1)—(3) in Fig. 10. In all three cases, continuously excited should cancel each other due to the
the amplitude of the perturbation is normalized so that phase cancellation effef$2]. This suppresses the amplitude
=2M. Here, we display the results with=1000. of gravitational waves and produces a long-time-scale com-
As seen in Fig. 10, the gravitational waveform dependsponent, which results in the suppression of radiated energy as
strongly on the perturbation profile initially given. For case seen in Fig. 1@).
(2), as seen in Figs. 1) and (d), gravitational waves of For case(3), in which the matter perturbation is retained
high amplitude are emitted arount=17651M, approxi- mainly near the stellar surface, as seen in Figée)land(f),
mately at the same time as the formation of the high-redshifthe effect of the phase cancellation is more outstanding. In
region. The waveform is characterized mainly by a quasinorthis case, the amplitude of gravitational waves is highly sup-
mal mode of the formed black hole. The duration of thispressed and the amplitude of the quasinormal mode ringing
major emission is roughly-50M, i.e., approximately equal is much smaller than that of the long-time-scale component.
to the period and/or the damping time of the quasinormalVe note that the time scale of the long-time-scale component

mode. Indeed, the waveform for=176520M is well fitted IS In approximate agreement with the time duration in which
by a damped oscillation of the complex frequency @ the accretion of the surroundmg_ envelope continues. _
~0.74+0.19, which agrees with the theoretically predicted ~ Figure 1@h) shows the one-sided power spectral density
value 2Vl w=0.74734+0.17792 [49] within a few percent O the obtained gravitational waveforms for all three cases.
error. It is possible in principle in the present scheme td't 1S clear that' the phase cancellation effects significantly
observe the modulation of gravitational waveforms due tc>UPPress the high-frequency component for cateand(3)
mass accretion as Papadopoulos and Fetitdemonstrated  While the low-frequency component depends not on the ini-
for the spherically symmetric Klein-Gordon field on the ac- tial distribution of matter perturbation but on the initial mo-
creting black hole background. However, in the present nuMment of perturbation. .
merical results, it is difficult to distinguish the effects of the 10 €xplain more clearly why the long-time-scale and
mass increase from the gravitational waveforms, possibly béonoscillative component appears, we artificially superim-
cause the mass accretion rate is rather high and the durati®¢Se the wavefornd(t) obtained for cas¢2) displayed in
of accretion is not so long. Fig. 10c), which is characterized by quasinormal ringing,
For case(1), as seen in Figs. 18 and (b), gravitational ~ With the weight factow(t) as
waves look as the linear combination of a quasinormal mode

of a black hole and a long time scale and nonoscillative fw T ot
component(note that the amplitude of gravitational waves _wdt w(t)He(t-th), (7:2
does not settle down to zero for a long-time duration
=200M after u=17651M). The long-time-scale compo- wherew(t) is chosen by trial as
|
8(t> p( t)+( t )[( t 3+1 - for O=t=<t
—lex —_ — _— _— —=t= )
w(t)={ |\t te) \tJ4/|\tJ4 : (7.3

0 for t<Ot<t,

and we sett,=2.95V and t,=236M. The t. and t, the result for the superimposed waveform. This result is
correspond to the time scales of the collapse of the innequalitatively the same as that obtained for cébedisplayed
region and of the accretion of the outer envelope, respedn Fig. 10(a). We note that the long-time-scale and nonoscil-
tively. See Fig. 1(c) for the shape of this function. In the lative component is produced by the long-term superposition
above functional form, the first and second terms imitateof quasinormal ringing, including a precursory “burst”
the effects of inner collapse and subsequent accretion of theave.

outer envelope, respectively. In Fig. (&L we display Next we choose another weight facteft) defined as
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FIG. 10. (a), (c), and(e) Waveform,(b), (d), and(f) luminosity, (g) accumulated energy, artt) the one-sided power spectral density of
gravitational waves fot =2 radiated from the collapse of model B with,=(4/3)+0.00142. Gravitational waves are extractedRat
=2000M. The momentarily static initial perturbation is given. The amplitude of the perturbation is normalized se=tRkt. In (g) and
(h), the solid, long-dashed, and dashed lines denote the resuligfetconst, exp—(RR)?], and exp—((R—Ry)/R.)?}, respectively,
whereB;,;; is the initial distribution of the renormalized matter perturbation Rads chosen to b&.=R4/3. For waveforms and luminosi-
ties, we display the results for each case in each figure for clarity. Note that the vertical &issoin logarithmic scale. The matching is
done on the mass shell which encloses 99.7% of the total mass. All the quantities are shown in Mnit4 of
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t ol "2 ' ' " "Collapse+Accretion”
PR — + 1 for O$t$t , ollapse+Accretion
w(t)= (ta/4)[(ta/4 (1.9 1F .
0 for t<0t,<t, 0s L |
and we again set,=236M. See Fig. 1(c) for the shape of 06 [ -

this function. This functional form imitates the effect of ac-
cretion of the outer envelope alone. In Fig(d)1 we display
the result for the superimposed waveform. This result is o2 | -
qualitatively the same as that obtained for cé®eadisplayed

in Fig. 10e). It should be again emphasized that the super-
position not of the pure damped oscillation but of the full 02
waveform for cas€?2), including the precursory burst wave,
proqluces th? Iong-tlme-scale'component. The above consic 36400 176.500 17eleoo 17sl7oo 17slsoo 17s|900 177000
eration confirms our speculation. @)

We note that the second quasinormal ringing seen arount Time
u=17675M in Figs. 1Ga) and(b) for case(1) and in Figs. T T T
10(e) and (f) for case(3) are excited by the stellar surface
which falls into the black hole finally. Since the phase can-
cellation is not effective at this stage, the quasi-normal ring-
ing dominates the waveform for the latest phase. After this
ringing, a power-law tail is seen, and the power-law index
agrees with the theoretically predicted valué . )

Finally we note the following point. In this simulation, all
the matter is swallowed into a black hole eventually because
the zeroth-order solution is spherically symmetric. That is
the reason why the accretion ends at some finite moment
However, in a realistic nonspherical problem, the matter
around the stellar surface does not fall into the black hole,

0_

T T
"Accretion”

. . Lo -1
and would form surrounding disks. This implies that the 176400 176500 176600 176700 176800 176900 177000
itational f lculated for the | hase ® Time
gravitational waveforms calculated for the latest phase
=17675M will be modified in a realistic simulation. a5
' I "Colllapse+Accretilon"
4 "Accretion" ------- i

B. Collapse of a neutron star

We performed a simulation for the collapse of a neutron
star to a black hole adopting model D. As in the collapse of
a supermassive star, 1000 grid points are typically taken tcg
cover the neutron star interior. For the collapse of model D,&
both the May-White and Hernandez-Misner schemes car_qE-;
evolve the collapse to the formation of the event horizon=
with reasonable accuracy. In the following, the results in the
Hernandez-Misner scheme will be described. In this simula-
tion, the matching is done on the mass shell within which
96.1% of the total mass is enclosed. In the following, we
deal with this matching surface as the stellar surface.

In Fig. 12 we show the snapshots of the density profile at(c)
selected time steps, trajectory of the mass shells as a function
of time, and the mass fraction of the fluid elements in the FIG. 11. Waveforms generated by superimposing the waveform
region of strong gravitational field in which the magnitude of obtained for cas€2). The shape of weight factors are displayed in

the lapse function is less than 0.1. We note that in this simu(c). (& and(b) show the waveforms for the weight factor labelled
lation, the event horizon is just about to form at “Collapse+Accretion” and for that labelled “Accretion.” The

; — waveforms are normalized so that the maximum amplitude is unity.
=111.8V. The calculation has been stoppeduat111.8M  gge text for details.

or 7+~=68.04Vl. At this moment, we have obtained the red-

shift (1+2z)=22.89 at the surface. In contrast with the col- - . . L
lapse of the supermassive stars, the central density increaskd©) indicates that the high-redshift region first appears at
only by a factor of~3.0 throughout the collapse. Thus, the the center ati=99.1M and that almost all the fluid elements

evolution of the central density does not show the runawagollapse to the high-redshift region in a short time interval
behavior. Also, the collapse proceeds very coherently: Figurdau~6M.

50 100 150 200 250
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FIG. 12. Same as Fig. 8 but for the collapse of model D with  FIG. 13. Same as Fig. 9 but for the collapse of model D with
I',=2. We deal with the mass shell which encloses 96.1% of thd ,=2. Gravitational waves are extractedRat 100M. The match-
total mass as the stellar surface. ing is done on the mass shell which encloses 96.1% of the total

mass. All the quantities are shown in unitsMf=1.

To study the evolution of the perturbation, we gave the
momentarily static initial data sets with matter perturbationsFig. 13 demonstrates that convergence is achi¢nete that
(1)—(3) as in the collapse of a supermassive star. The ampliresults withN= 1000 and 500 agree well with each othéx
tude of the perturbation is normalized so tijat 2M. small modulation is found just after the beginning of com-

In Fig. 13, we show the waveform, luminosity and accu-putation. This is because the initial data sets which are nu-
mulated energy of gravitational waves for c4sg Compu-  merically constructed are not precisely static solutions of the
tations were carried out withN=1000, 500, and 250, and finite differencing equation for the evolution of perturba-
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FIG. 14. (a) Waveform,(b) luminosity, (c) accumulated energy, arid) one-sided power spectral density of gravitational waved for
=2 radiated from the collapse of model D with,=2. Gravitational waves are extracted Rt 100M. The momentarily static initial
perturbation is given. The amplitude of the perturbation is normalized sajth@M. The solid, long-dashed, and dashed lines denote the
results for 8= const, exp—(RIR)?], and exp—[(R—RY/R.]%}, respectively, wheres,,; is the initial distribution of the renormalized
matter perturbation anB, is chosen to b&.=R43. The matching is done on the mass shell which encloses 96.1% of the total mass. All
the quantities are shown in units bf=1.

tions. The above is confirmed by the fact that this modulatiorcellation effects on the neutron star collapse irrespective of

becomes smaller d$increases. After this spurious precursor the shape of the perturbation as opposed to the supermassive

disappears, a black hole quasinormal mode is excited andstar case as is seen in the shape of spectrum. A small time

power-law tail follows[55]. No other outstanding feature is delay of the oscillational phase is seen for cad@sand (3)

found in the gravitational waveform in contrast with the casecompared with cas€?). This is simply because the matter

of the supermassive star collapse. This is likely due to thagerturbation enters the black hole for c48gearlier than for

the collapse proceeds very coherently foy=2. The first  caseq1) and(3).

and major gravitational emission of the quasinormal oscilla-

tlpn occurs approxmately just after_ the appearance of the VIl SUMMARY

high-redshift region. From the numerical result, the quasinor-

mal frequency and the index of the power-law tail are calcu- We have reported a new implementation in linearized Ein-

lated as M w=0.752+0.176 and—7.1. These values agree stein theory. In this code, the Hernandez-Misner scheme is

well with the theoretical valuesMw=0.74734-0.17792  adopted to compute a spherically symmetric zeroth-order so-

and— (2l +3)=—7 [49,50 both within a few percent error. lution. As a result, we can compute stellar collapse to a static
Figure 14 shows gravitational waves for different initial black hole until the null hypersurface reaches the event ho-

matter perturbationgl)—(3). The waveform depends only rizon, and the whole region outside the event horizon is nu-

very weakly on the initial perturbation distribution. The rea- merically generated. We emphasize that the collapse of a

son is that the collapse proceeds in a very coherent mannsupermassive star to a black hole proceeds in a runaway

and hence the difference of the perturbation distribution doemanner, i.e., the central density grows rapidly although the

not generate outstanding differences. There is no phase casdrrounding atmosphere does not collapse very rapidly. It is
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not technically easy to compute such collapse with+al 1 We have determined the choices of initial distribution of
numerical scheme. The Hernandez-Misner coordinate systeperturbation not assuming physically realistic situations be-
is essential to enable thorough computation of the black holeause of the lack of our knowledge on physically realistic
formation. odd-parity perturbation. Therefore, at present, we do not
We have also proposed a new numerical method to Corr_plaim 'ghat the gravitational waves obtaineq here are realistic
pute gravitational waves in perturbation theory. We dividein particular for the collapse of supermassive stars. However,
the computational domain into three regions. For computa®Ur present results strongly suggest that the gravitational ra-
tion of the perturbations in the exterior region, we adoptdlatlon iS not so sensitive to the initial condition for neutron

double-null coordinates which agree with the characteristiSt@r collapse but is highly sensitive for supermassive star

curves of gravitational waves. This choice enables the Com(;ollapse. . . .
9 In the formation of intermediate-mass black holesass

utation of gravitational waves emitted during the entire his- ) . N
P 9 9 =200M ) formed from quite massive stars, which is desta-

tory of black hole formation. bilized by electron-positron pair creatiofb3], collapse

To study the qualitative nature of gravitational waves I dinth ¢ " ¢
from stellar collapse, we performed simulations for the col-Would proceed In Iné same manner as for SUpermassive stars.
Tgwus, gravitational waveforms from the formation of

lapse of a supermassive star and a neutron star to black holes, .

In the gravitational collapse of the neutron star, gravitationa|merme(]|'ate'maSS black holes also depend strongly on the
waveforms are characterized by a black hole quasinorm tate of the precollapse star. . .

mode, as demonstrated in the fully general relativistic simu- V\/_e have focused on pe_rturbanons of Od.d parity. The
lations[8]. On the other hand, for gravitational collapse of dominant modes of gravitational waves are likely to be of

the supermassive star, the waveform depends strongly on e e_? pan:y g] tr_nost cases, tang thus th_e stu?y :)flthe evte?-
perturbation profile that we give initially. For a centrally con- panty perturbations seems fo be more important. in a rotat-
g stellar collapse, quadrupole deformation that rotating

centrated matter perturbation, the waveforms are charactel?

ized mainly by a black hole quasinormal mode, as in theStars retain before collapse will be the source of gravitational

collapse of neutron stars. However, when the matter pertu?f.""’wes of even parlty. T he study of such effepts on graw'ta-
bation is distributed uniformly, the waveform is determinedtlonal waves emitted in a black hole formation is now in
by a linear combination of the black hole quasinormal mode'09ress.
and a long-time-scale component which results from the su-
perposition of the quasinormal ringing component. More-

over, when the matter perturbation is located around the sur- We are grateful to K. Nakao and C. Gundlach for helpful
face, the long-timescale component dominates theliscussion. We are also grateful to J. M. Overduin for care-
waveform. This is likely due to the less-coherent nature offully reading the manuscript. This work was partly supported
the collapse of supermassive stars: the central part collapsey the Grant-in-Aid for Scientific ReseardNos. 05540,
earlier and subsequently the outer envelope accretes on to th&217, 13740143, and 1404720vom the Japanese Minis-
central black hole. try of Education, Culture, Sports, Science and Technology.
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