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Scenarios of large extra dimensions have enhanced the importance for the study of black holes in higher
dimensions. In this paper, we analyze an axisymmetric system of two black holes. Specifically, the
Bowen-York method is generalized for higher dimensions in order to calculate the initial data for head-on
collision of two equal-mass black holes. Then, the initial data are evolved adopting the close-slow
approximation to study gravitational waves emitted during the collision. We derive an empirical formula
for radiation efficiency, which depends weakly on the dimensionality. Possible implications of our results
for the black hole formation in particle colliders are discussed.
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I. INTRODUCTION

Motivated by scenarios of large extra dimensions [1–3],
the study of black holes in higher dimensions has attracted
attention. In these scenarios, extradimensional effects play
an important role for the properties of black holes with
radius smaller than the size of extra dimensions. An inter-
esting phenomena is mini–black hole production in
planned accelerators. If the Planck energy is of O (TeV)
as suggested in scenarios of [1,2], phenomena associated
with quantum gravity will be observed at the CERN Large
Hadron Collider (LHC) through black hole production
[4,5]. At the LHC, the produced black hole is expected to
settle down to a higher-dimensional Kerr black hole after
emission of gravitational waves. The formed black hole
will be subsequently evaporated by the Hawking radiation,
for which high-energy particles are emitted and may be
detected. To know the parameters of the formed Kerr black
hole which determines the feature of the Hawking radiation
observed, studies for gravitational radiation are an impor-
tant issue.

In this paper, we study axisymmetric collision of two
black holes in higher dimensions as a first step for the
investigations on the black holes formed in particle col-
liders.1 This is an extension of our previous study [6] of the
higher-dimensional Brill-Lindquist initial data and its tem-
poral evolution by the close-limit approximation. In four
dimensions, there is the well-known Bowen-York method
[7] for generating initial data of several moving black
holes. We generalize this method for higher dimensions.
Similarly to the four-dimensional case, the conformally
transformed extrinsic curvature is given analytically and

the conformal factor should be calculated numerically. We
perform numerical calculation for the conformal factor in
the case of the head-on collision of two equal-mass black
holes and then determine the location of apparent horizon
(AH) that encloses two black holes (the common AH). We
clarify the parameter space for common AH formation.

Then, the initial data is evolved adopting the close-slow
approximation. In this approximation, the distance be-
tween two black holes and the linear momentum of each
black hole are regarded as small parameters compared to
the black hole size and the gravitational mass of the
system, respectively. In this case, the system may be con-
sidered to be a perturbed single Schwarzschild black hole.
In the four-dimensional case, the results in the close-slow
approximation agree with those in the fully nonlinear
analysis (see [8,9] and references in [6]), and hence, it is
natural to expect that this is also the case in the higher-
dimensional case. We provide a formula for the radiation
efficiency (i.e., the ratio of the radiated energy to the
system energy) and discuss their dependence on the
dimensionality.

The purpose of this paper is twofold. One is to present a
formulation for providing the initial condition of colliding
black holes in higher dimensions. Gravitational waves at
the collision of two black holes are accurately computed
only by a fully nonlinear numerical relativity simulation.
Although such a simulation has not been done yet for
higher-dimensional spacetime, several groups have devel-
oped robust techniques for numerically computing merger
of binary black holes in four dimensions [10]. The methods
used in four dimensions can be applied for higher-
dimensional problems and, hence, the simulation will be
done in the near future. For such future simulations, a
method for providing the initial condition we present
here will be useful.

The second purpose is to approximately evaluate gravi-
tational radiation in the collision of two black holes in the

1Here, the incoming black holes are regarded as substitutes for
the incoming particles. We do not consider the collision of
produced black holes, since they are evaporated within the
time scale of 10�27 s but only one black hole is produced per 1 s.
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higher-dimensional case. Since we adopt a linear perturba-
tive method, a reliable result is derived only for a small
parameter space. However, our result for such parameters
will be useful for calibrating fully nonlinear results in the
near future.

This paper is organized as follows. In the next section,
we derive a generalized Bowen-York formulation [7] for
higher-dimensional space. Applying the formulation, we
construct the initial data for the head-on collision of two
equal-mass black holes in Sec. III. The ADM mass and the
common AH are analyzed. In Sec. IV, we evolve the initial
data adopting the close-slow approximation. The master
variable of the linear perturbation around a D-dimensional
Schwarzschild black hole is calculated numerically and the
formula for radiation efficiency is derived. The radiation
efficiency is shown to depend weakly on the dimension-
ality. Section V is devoted to a discussion on the possible
implication of our results for the radiation efficiency in the
particle collision. In Appendix A, we present some solu-
tions of the extrinsic curvature in the generalized Bowen-
York formulation that were not introduced in Sec. II. In
Appendix B, the method for imposing the initial condition
for the master variable is explained.

II. HIGHER-DIMENSIONAL BOWEN-YORK
METHOD

In this section we generalize the Bowen-York formula-
tion for higher dimension space and present a method for
generating the initial condition ofN black holes with linear
momenta.

A. Formulation

Let ��h��; K��� be a �D� 1�-dimensional spacelike
hypersurface � with the metric h�� and the extrinsic
curvature K�� in a D-dimensional spacetime. We intro-
duce a number n � D� 2. The Hamiltonian and momen-
tum constraints are

 

�n�1�R� K��K�� � K2 � 0; (1)

 r��K�� � h��K� � 0; (2)

where �n�1�R denotes the Ricci scalar of � and r� is the
covariant derivative with respect to h��. Introducing ĥ��
defined by

 ĥ �� � ��4=�n�1�h��; (3)

the Hamiltonian and momentum constraints are rewritten
as

 r̂ 2� �
n� 1

4n
��n�1�R̂����n�3�=�n�1��K��K�� � K

2��;

(4)

 

r̂���2�n�1�=�n�1�K�
�� ��2�n�1�=�n�1�r̂�K

�
2

n� 1
K��n�3�=�n�1�r̂�� � 0; (5)

where �n�1�R̂ and r̂� denote the Ricci scalar and the
covariant derivative with respect to ĥ��, respectively.
Here the index is raised and lowered with h��.

In the following, we assume the conformal flatness on �,
ĥ�� � ���, and impose the maximal slicing condition,
K � 0. Aweighted extrinsic curvature is defined by K̂�� �

�2K�� and hereafter its index is raised and lowered by ���
(i.e., K̂�

� � �2�n�1�=�n�1�K�
� and K̂�� �

�2�n�3�=�n�1�K��). Then the Hamiltonian and momentum
constraints become

 r2
f� � �

n� 1

4n
K̂��K̂

�����3n�1�=�n�1�; (6)

 @�K̂�� � 0; (7)

where @� denotes the ordinary derivative with respect to
the Cartesian coordinate �x�� and r2

f � @�@�. Following
Bowen and York [7], we assume that K̂�� does not have the
tensor mode and thus takes the following form:

 K̂ �� � @�W� � @�W� �
2

n� 1
���@�W�: (8)

Substituting this formula into the momentum constraint
(7), we obtain

 r2
fW� �

n� 1

n� 1
@�@�W� � 0: (9)

Introducing auxiliary functions B� and �, we decompose
W� as

 W� �
3n� 1

n� 1
B� � �@��� x�@�B��: (10)

Then the equation becomes

 0 �
3n� 1

n� 1
r2

fB� �
2n
n� 1

@�r2
f�� x

�@�r2
fB�

�
n� 1

n� 1
@��x�r2

fB��: (11)

Hence, the momentum constraint is satisfied if
 r2

fB� � 0; (12)

 r2
f� � 0: (13)

Since the solutions of Eqs. (12) and (13) are analytically
given, solutions for K̂ab are easily provided.

B. N-black-hole solutions

To give linear momenta of black holes, we choose the
solution

 B� � �
2�GP�
n�nRn�1 ; � � 0; (14)

where P� is a constant vector,G the gravitational constant,
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�n the n-dimensional area of a unit sphere, and R � jx�j.
Then, we obtain
 

K̂�� �
4��n� 1�G
n�nR

n fP�n� � P�n�

� P�n
���n� 1�n�n� � ����g; (15)

where n� � x�=R. This solution provides the extrinsic
curvature for one boosted black hole located at R � 0.
Actually, P� agrees with the ADM momentum:

 P� �
1

8�G

Z
R!1
�K��n� � Kn��dS: (16)

Since the momentum constraint (7) is a linear equation,
we can superpose N solutions. Denoting the locations of N
black holes as x�a �a � 1; . . . ; N�, a solution of the extrinsic
curvature is written as

 K̂ �� �
XN
a�1

4��n� 1�G
n�nRna

f�Pa���na�� � �Pa���na��

� �Pa���na����n� 1��na���na�� � ����g; (17)

where Ra � jx
� � x�a j, n

�
a � �x� � x

�
a �=Ra, and �Pa��

denotes the momentum of the ath black hole.
The conformal factor � is obtained by solving the

Hamiltonian constraint (6). Following [11], we assume
that � has the following form:

 � � �BL �  ; (18)

where

 � BL � 1�
4�G
n�n

XN
a�1

Ma

Rn�1
a

(19)

and Ma denotes the mass parameter of ath black hole.
Then, the equation for  becomes

 r2
f � �

�n� 1�

4n
K̂��K̂

����BL �  �
��3n�1�=�n�1�: (20)

The solution in this procedure represents the so-called
‘‘puncture’’ space with N Einstein-Rosen bridges and N �
1 asymptotically flat regions (say, one upper sheet and N
lower sheets).

Since the right-hand side of Eq. (20) behaves like
O�Rn�1

a � for Ra ! 0, there is a regular solution for  ,
which can be solved numerically (this fact was first pointed
out in [11] for the four-dimensional case). The ADM mass
MADM is given by

 MADM �
�n

4��n� 1�G

Z
R!1

@��n
�dS: (21)

Using the Gauss law, we find

 MADM �
XN
a�1

Ma �
1

16�G

	
Z

�
K̂��K̂���

��3n�1�=�n�1�dn�1x: (22)

The first and second terms could be interpreted as the sum
of the mass of N black holes and the kinetic energy of the
black holes, respectively.

III. INITIAL DATA FOR HEAD-ON COLLISION OF
TWO BLACK HOLES

In this section, we present initial data of the axisymmet-
ric two-black-hole system following the formalism de-
scribed in the previous section.

A. Calculating conformal factor

We introduce the Cartesian coordinate �z; xk�, (k �
1; . . . ; n) for �n� 1�-dimensional space and write the so-
lution of K̂�� as

 K̂ �� � K̂����� � K̂
���
�� ; (23)

where two black holes �
� are located at �z; xk� � �
z0; 0�
and have momenta P�
�� � ��P; 0�. We assume that the
two black holes have the same mass M� � M� � M0=2.

The gravitational radius of a black hole of mass M0 is
defined by

 rh�M0� �

�
16�GM0

n�n

�
1=�n�1�

: (24)

In the case z0 � 0, the common apparent horizon (AH) that
encloses two black holes is located at R � Rh�M0�, where

 Rh�M0� � 4�1=�n�1�rh�M0�: (25)

Using Rh�M0�, the conformal factor in the puncture frame-
work [11] is given by

 � � �BL �  ; (26)

where

 � BL � 1�
1

2
�Rh�M0��

n�1

�
1

Rn�1
�

�
1

Rn�1
�

�
: (27)

For a numerical solution of  , we introduce the cylin-

drical coordinate �z; ��, where � �
�����������������Pn
k�1 x

2
k

q
. In this co-

ordinate, the equation for  becomes
 

 ;�� �  ;zz �
�n� 1�

�
 ;�

�
n� 1

4n
K̂��K̂

�����3n�1�=�n�1� � 0: (28)

Since the system is axisymmetric and equatorial-plane
symmetric, it is sufficient to solve the equation for the
domain 0 � � � �max and 0 � z � zmax with the bound-
ary conditions  ;� � 0 at the z-axis and  ;z � 0 at the
equatorial plane. For R! 1,  asymptotically behaves as

  ’
4�G�MADM �M0�

n�nRn�1 �O�1=Rn�: (29)
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Thus, we impose the so-called Robin condition,  ;R �
��n� 1� =R, at the outer boundary. In the cylindrical
coordinate, it is rewritten as

  ;���  ;zz � ��n� 1� : (30)

We put the outer boundary at �max � zmax � 5Rh�M0� and
solve the equation for  using a finite difference method
with the grid number �101	 101�. Numerical computation
was carried out for the parameter space 0 � z0=Rh�M0� �
1 and 0 � P=M0 � 1 with the 0:1 interval or the 0.01
interval.

There are two sources for numerical error of the confor-
mal factor: One is associated with the finiteness of the grid
spacing and the other with the finiteness of the outer
boundary location. To evaluate the numerical error by the
grid spacing, we took reference data with sufficiently large
grid number (401	 401 grids) and evaluated following
three characteristic numerical error values:

 �1 �

P
N
j N �  

�ref�
N j

P
N
j �ref�

N j
;

�2 � max�j�N ��
�ref�
N j=j��ref�

N j�;

�3 � max�j N �  
�ref�
N j=j �ref�

N j�;

(31)

where N stands for the label of the grids. Changing the grid
spacing, we confirm that �1 decreases with improving the
grid resolution at second order. All the three error estimates
were found to be small. With our standard choice, �2 is
0.005–0.2% for D � 4–11. Computation was also per-
formed changing the location of the outer boundaries
from �max � zmax � 5Rh�M0� to 20Rh�M0� and the nu-
merical solution converges with increasing the radius of
the outer boundaries. In this case, �3 is found to be rela-
tively large, about 9%–17% for D � 4–11. Such large
differences occur at outer boundaries and come from the
fact that the Robin condition is an approximate boundary
condition. However, because  is small at the outer bound-
ary, the error of the conformal factor� is small. In fact, we
found that �2 is about 0:3% forD � 4 and becomes smaller
asD is increased (less than 0:01% in the caseD � 11). The
error �1 is smaller than �3 by a factor for D � 4 and is
comparable to �2 for D � 11. Because � is used in the
calculations of the ADM mass or the AH, the error for
these calculations is expected to have the order of �2.
Hence, we consider that sufficient accuracy is obtained in
our calculation.

Figure 1 shows the contours of MADM=M0 on the
(z0=Rh�M0�, P=M0)-plane for D � 4–11. The difference
between MADM and M0 indicates the strength of nonline-
arity due to the right-hand side of the Hamiltonian con-
straint (6). We find that the nonlinearity of the system
becomes large as D is increased for fixed values of
z0=Rh�M0� and P=M0.

B. Common apparent horizon

A common AH that covers two black holes is searched

for introducing the spherical coordinate �R; 	� by R �����������������
�2 � z2

p
and tan	 � z=� and assuming that the location

is denoted by R � h�	�. Then the equation for the AH is
given by

 r�s� � K � K��s�s� � 0; (32)

where s� is the unit normal to the surface:

 s� �
��2=�n�1������������������������
1� h2

;	=R
2

q �1;�h;	=R2�: (33)

Then, the equation for the AH reduces to an ordinary
differential equation for h�	�:
 

h;		 � n
�

2

n� 1

�;R

�
�

1

h

�
�h2 � h2

;	� �
h2
;	

h

�

�
2n
n� 1

�;	

�
� �n� 1� cot	

�
h;	

�
1�

h2
;	

h2

�

���2n=�n�1�h
������������������
h2 � h2

;	

q �
K̂RR � 2K̂R	

h;	
h2
� K̂		

h2
;	

h4

�
� 0:

(34)

This equation is solved under the boundary conditions
h;	 � 0 at 	 � 0 and �=2.

Figure 2 shows the critical line for the common AH
formation. Irrespective of the dimensionality, the common
AH is formed if z0=Rh�M0� is sufficiently small. It is
interesting to point out that, for D � 4, the AH formation
is more subject for larger values of P while for D 
 5, the
presence of P tends to prevent formation of the common
AH. This might seem strange because the kinetic energy is
naturally expected to help the AH formation. In order to
obtain a corroboration for this result, we direct attention to
the AH [denoted by R � ĥ�	�] at the critical separation
z0 � z�crit�

0 in the case P � 0. Then we add small P� M0

without changing the value of z0. Because the change in the
conformal factor is O�P2=M2

0� and can be ignored, the
surface R � ĥ�	� is interpreted as a minimal surface on
which r�s� � 0 holds. Now let us consider the expansion
on this minimal surface which is given by 	� � K��s�s�.
Figure 3 shows the behavior of 	�=P in the four- and six-
dimensional cases. In the case D � 4, we find that 	� is
negative and thus the minimal surface is a trapped surface.
This guarantees the existence of an AH outside of the
minimal surface. Hence, the motion helps AH formation
in the four-dimensional case. On the other hand, in the case
D � 6, 	� becomes positive on some part of the minimal
surface. The similar behavior was found for all 5 � D �
11. Therefore, the minimal surface is not a trapped surface
and the motion does not necessarily help the AH formation
in the higher-dimensional cases. We found numerically
that the term K		s	s	 mainly contributes to the positivity
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FIG. 1. The contour line for MADM=M0 on the (z0=Rh�M0�, P=M0)-plane.
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FIG. 2 (color online). The critical line for the common AH formation on the (z0=Rh�M0�, P=M0)-plane.
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of 	�. This is because for high D, the AH at the critical
separation is hourglass shaped in the neighborhood of the
equatorial plane and the value of ĥ;	 is quite large around
	 ’ 1. It enhances the value of K		s	s	 which is propor-
tional to ĥ2

;	=ĥ
4.

The AH massMAH is determined by the AH area AAH as

 MAH �
n�n

16�G

�
AAH

�n

�
1=n
: (35)

The area theorem of black hole constrains that the AH
mass never decrease.2 Thus, the AH mass provides the
lower bound on the black hole mass of the final state. In
other words, the quantity MADM �MAH is the upper bound
on gravitational radiation energy in the collision process.
Table I shows the value of 1�MAH=MADM on the AH
critical line for P=M0 � 0, 0.5, 1.0. As the value of D
increases, 1�MAH=MADM becomes large for fixed values
of P=M0 � 0:5 and 1:0 on the AH critical line. The area
theorem provides a stricter condition for smaller value of
D.

IV. CLOSE-SLOW ANALYSIS

Next we compute gravitational waves in the head-on
collision of two black holes adopting the close-slow ap-
proximation. In this approximation, we assume that z0 �
rh�M0�, P� M0, and z0=rh�M0� � P=M0, and evaluate
gravitational wave energy up to order of �z0=rh�M0��

2

using a linear perturbative approach. In the following, the
gravitational radius of the system rh�M0� is used as the unit
of the length [i.e., rh�M0� � 1] unless specified.

A. Close-slow form of the initial data

Since we analyze gravitational waves in the Regge-
Wheeler–type method, K̂�
��� in the spherical-polar coordi-
nate �R; 	;
��, (
� � 
1; . . . ; 
n�1), should be derived:
 

4M0

�n� 1�P
K̂R�
�
R �

�2

Rn�1



cos	�R� z0 cos	�

�
z0 � R cos	

Rn�3



	 ��n� 1��R� z0 cos	�2 � R2

�; (36)

 

4M0

�n� 1�P
K̂�
�R	

R
�

1

Rn�1



sin	�R� 2z0 cos	�

�
z0 � R cos	

Rn�3



	 �
�n� 1�z0 sin	�R� z0 cos	��; (37)

 

4M0

�n� 1�P
K̂	�
�
	 �

2

Rn�1



z0sin2	�
z0 � R cos	

Rn�3



	 ��n� 1�z2
0sin2	� R2


�; (38)

and

 

4M0

�n� 1�P
K̂
��
�

�

� �
z0 � R cos	

Rn�1



: (39)

For z0 � 1, K�� � K����� � K
���
�� is expanded as

 

K̂R
R � �z0P=M0�

n� 1

2
�n� 2� �n2 � n� 2�cos2	�

	 R��n�1� �O�z2
0P=M0�; (40)

 

K̂	
	 � �z0P=M0�

n� 1

2
��n� 1�cos2	� 1�R��n�1�

�O�z2
0P=M0�; (41)

TABLE I. The values of 1�MAH=MADM evaluated on the AH
critical line for P=M0 � 0:0, 0.5, 1.0. The unit is %.

D 4 5 6 7 8 9 10 11

P=M0 � 0:0 1.2 3.6 5.8 7.2 7.7 7.7 7.4 6.9
P=M0 � 0:5 2.8 9.0 12 14 16 17 18 19
P=M0 � 1:0 5.5 15 19 21 22 24 25 26
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FIG. 3. The expansion 	� of a minimal surface in the P� M0 case at the critical separation z0 � z�crit�
0 . The casesD � 4 (left) and 6

(right) are shown. In the case D � 4, 	� is negative for all 	 and the minimal surface is a trapped surface. But in the case D � 6, there
is a region of 	 where 	� becomes positive, which means that the minimal surface is not a trapped surface.

2Since the proof of the area theorem is not sensitive to the
spacetime dimension, it holds also in the current system as long
as naked singularities do not exist.
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K̂
�

�
� �z0P=M0�

n� 1

2
��n� 1�cos2	� 1�R��n�1�

�O�z2
0P=M0�; (42)

and K̂R	 � O�z3
0P=M0�. The leading-order term of K̂ab is

found to be O�z0P=M0� and hence the right-hand side of
the Hamiltonian constraint (6) is of order O�z2

0P
2=M2

0�. In
the close-slow approximation adopted here, such terms are
higher order and we ignore them. Thus,  � 0 and
MADM � M0 in this approximation.

As a result, the conformal factor is given by the Brill-
Lindquist one:

 � ’ �BL � 1�
1

8

�
1

Rn�1
�

�
1

Rn�1
�

�
: (43)

By transforming from the isotropic coordinate to the
Schwarzschild-like coordinate

 r � R�2=�n�1�
0 ; �0 � 1�

1

4Rn�1 ; (44)

we find that the system is regarded as a perturbed
Schwarzschild black hole
 

ds2 ’

�
�BL

�0

�
4=�n�1�

�
dr2

f�r�
� r2�d	2 � sin2	d�2

n�1�

�
;

f�r� � 1�
1

rn�1 ; (45)

 �
�BL

�0

�
4=�n�1�

� 1�
1=�n� 1�Rn�1

1� 1=4Rn�1

�
z0

R

�
2
C��n�1�=2�

2 �cos	�

�O�z4
0�; (46)

where C���‘ denotes the Gegenbauer polynomials defined
by the generating function

 �1� 2xt� t2��� �
X1
‘�0

C���‘ �x�t
‘: (47)

Note that the metric (45) with (46) is the same as that in our
previous analysis of the time-symmetric initial data [6].
However, the time-asymmetry is present because of the
presence of nonzero K̂��.

As found above, the order of the perturbation of the
initial metric is O�z2

0� and of the extrinsic curvature is
O�z0P=M0�. In the following, we consider the situation
where both z0 and P=M0 have the same order. Under this
condition, we can evolve the system using a standard
perturbation method in the Schwarzschild spacetime.
From Eqs. (40)–(42), (45), and (46), the leading order of
the perturbation contains only the ‘ � 2 mode.

B. Time evolution by the master equation

The gauge-invariant method for the perturbation around
the Schwarzschild black hole was developed by Kodama
and Ishibashi [12]. They derived a master equation for a
variable �, which is related to the gauge-invariant quanti-
ties of the perturbation, as

 

@2�

@t2
�
@2�

@r2
�

� VS� � 0; (48)

where

 VS�r� �
f�r�Q�r�

16r2H2�r�
; (49)

and

 H�r� � m� �1=2�n�n� 1�x; x � 1=rn�1; (50)

 m � k2 � n; k2 � ‘�‘� n� 1�; (51)

 Q�r� � n4�n� 1�2x3 � n�n� 1��4�2n2 � 3n� 4�m

� n�n� 2��n� 4��n� 1��x2 � 12n��n� 4�m

� n�n� 1��n� 2��mx� 16m3 � 4n�n� 2�m2:

(52)

r� denotes the tortoise coordinate defined by

 r� �
Z dr
f�r�

: (53)

Initial values of � and _� (a dot denotes the time
derivative hereafter) are related to the metric perturbation
and K̂ab, respectively. We describe the detail in
Appendix B. The equation for ��0; r� is the same as that
in the Brill-Lindquist case [6] and the solution is given by

 ��0; r� � �z2
0�

n

4�n2 � 1�K�n�2

	

���
r
p
�n2 � 3n� 4� n�n� 3�

���
f
p
�

H�r�R�n�3�=2
; (54)

where the definition of K�n�2 is given in Eq. (B3). This has
the order of z2

0. On the other hand, _��0; r� is proportional to
z0P=M0 and its value is obtained by solving Eq. (B27)
described in Appendix B. The solution is

 

_��0; r� � ��z0P=M0�
2n

�n� 1�K�n�2

���
f
p

rn=2�1

	
2�n� 2� � �n� 1�x

2�n� 2� � n�n� 1�x
: (55)

We show the behavior of _��0; r�� in Fig. 4.
Since Eq. (48) is linear, � is naturally decomposed into

two parts

 � � �z2
0��̂BL � �z0P=M0��̂BY: (56)

The solution for �̂BL is the same as that in the time-
symmetric case derived in our previous paper [6].3 Here,
we show only the computation of �̂BY. For the numerical

3In [6], ��0; r�� was solved numerically. We recalculated the
temporal evolution using the analytic formula (54) of the initial
condition and found that the difference between the two is
�10�5%.
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computation, we use the second-order finite differencing
code developed in [6] and solve the equation in the domain
�200 � r� � 1000 with the grid spacings dr� � 0:01
(D � 4–7) and 0:005 (D � 8–11) and dt � 0:2dr�.
Computation was performed changing the grid spacing
and we confirmed that the numerical results converge at
second order. For the chosen grid spacing, the error eval-
uated with �1 in Eq. (31) is 0.05%–0.9% for D � 4–7 and
0.4%–2% for D � 8–11. The error in the values listed in
Table II is & 0:1%.

C. Numerical results

Figure 5 shows numerical results for the time evolution
of �̂BY. Soon after the onset of the calculation, a quasi-
normal mode is excited irrespective of dimension and,
subsequently, the power-law tail is seen for four and odd
dimensions. We read off the quasinormal frequencies !QN

and checked the consistency with previous results of !QN

listed in [6,13,14]. The behaviors of �̂BL and �̂BY are
compared in Fig. 6 for D � 6 and 10. It is found that
phases of �̂BL and �̂BY disagree and the phase shift is �
�. This implies that two terms interfere each other. This
feature universally holds irrespective of the dimensionality.

From �̂BL and �̂BY, we calculate the radiated energy of
gravitational waves by the following formula (see [6,14]
for a derivation):

 Erad �
k2�n� 1��k2 � n�

32�nG

Z
_�2dt: (57)

Substituting Eq. (56) into the above formula, Erad is re-
written as

 

Erad

M0
� c1z4

0 � c2z
3
0�P=M0� � c3z2

0�P=M0�
2; (58)

where c1, c2, and c3 are constants determined by numerical
integration. These values are listed in Table II. The formula
(58) together with Table II will be used for the benchmark
of the fully nonlinear analysis in numerical relativity as in
the four-dimensional case [8,9].

Figure 7 shows the contours of Erad=M0 on the
(z0=Rh�M0�, P=M0)-plane. For a fixed value of z0, the
radiated energy decreases as the value of P=M0 is in-
creased for small values of P as P=M0 & 0:2	 z0. This
is because the phases of �̂BL and �̂BY disagree by a factor
of � � (cf. Fig. 6). In the range P=M0 * 0:2	 z0, the
amplitude of second term in Eq. (56) exceeds the first term
and Erad increases as P=M0 is increased. The similar
behavior was reported in the four dimension case [9].

D. Dependence on dimensionality

To get some insight for the dependence of radiation
efficiency on the value of D, we evaluate Erad=M0 by
choosing characteristic values of z0 and P for D � 4–11.
In comparison, we fix the value of P=M0 since P=2M0

could be interpreted as the value of momentum divided by
the rest mass, i.e., v=

��������������
1� v2
p

where v is the velocity of
each incoming black hole. We adopt P=M0 � 0, 0.5 and 1
which corresponds to � � 1,

���
2
p
’ 1:41, and

���
5
p
’ 2:24.

Then we recall Fig. 2 and evaluate Erad on the AH critical
line, since the close-slow approximation holds for the
system sufficiently close to the Schwarzschild spacetime
and it is necessary to choose z0 for which the common AH
presents.

Table III shows the values of Erad=M0 evaluated in this
procedure. In the higher-dimensional cases, it is�2%–3%
for P=M0 � 0:5 and�10% for P=M0 � 1:0. These values
do not depend significantly onD in the higher-dimensional
cases. Note that the values in Table III does not contradict
the bounds derived from the AH area shown in Table I.
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− 7.5 − 5 − 2.5 0 2.5 5 7.5 10
r*

− 10

− 8

− 6

− 4

− 2

0

z0P M0

Φ
D=5

D=7

D=11

FIG. 4. Time derivative of the master variable � in the unit of z0P=M0 for D � n� 2 � 4; 6; 8; 10 (left) and for D � 5; 7; 9; 11
(right). For P> 0, _� is negative.

TABLE II. The values of c1, c2, and c3 of Eq. (58) for D � 4–11.

D 4 5 6 7 8 9 10 11

c1 0.0252 0.0245 0.0290 0.0288 0.0258 0.0223 0.0194 0.0172
c2 �0:165 �0:243 �0:294 �0:287 �0:251 �0:213 �0:182 �0:158
c3 0.343 0.671 0.808 0.765 0.647 0.539 0.456 0.396
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The difference between M0 and MADM increases with
increase of P=M0 (cf. Fig. 1). This difference comes from
time asymmetry of the initial data and has the magnitude of
order �z0P=M0�

2. Thus for a large difference with

MADM=M0 � 1 * 0:1, the linear approximation breaks
down. In the four-dimensional case, we know that the
nonlinear effect suppresses Erad=MADM [9]. If this is also
the case for D 
 5, the value of Erad=MADM � 10% for
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FIG. 5. The time evolution of �̂BY for D � 4–11 observed at r� � 100.
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FIG. 6. The time evolution of �̂BY (dashed line) and �̂BL (solid line) for D � 6 (left) and 10 (right) observed at r� � 100.
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FIG. 7. Contours of radiation efficiency Erad=M0 (shown in the unit of %) on the (z0=Rh�M0�, P=M0)-plane for D � 4–11 predicted
by the close-slow analysis. Note that the unit of z0 is Rh�M0� in this figure.
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P=M0 would be an overestimate and would indicate that
gravitational radiation do not significantly contribute to the
loss of the system energy in the head-on collision of two
black holes.

V. DISCUSSION

In this paper, we presented a generalized Bowen-York
formulation for the initial value problem of multi–black
holes in higher-dimensional space. Using this formulation,
we derived analytic solutions of the momentum constraint
equation for extrinsic curvature of moving black holes in
the conformally flat higher-dimensional space. As an ap-
plication, initial data for head-on collision of two equal-
mass black holes were computed numerically solving the
Hamiltonian constraint for the conformal factor. The prop-
erties of the obtained space such as the ADM mass and the
common AH were analyzed. We determined the critical
line for formation of a common AH in the parameter space
of �z0; P�.

Then, we evolved this system using the close-slow ap-
proximation and analyzed gravitational waves. We derived
the formula for the radiated energy for a wide variety of D
[see Eq. (58) together with Table II] and clarified that it
depends weakly on D; irrespective of D the efficiency is
less than �10% for P=M0 � 1 and z0 � rh�M0�.

As we mentioned in Sec. I, one of the motivations of this
study is to clarify the total radiated energy of gravitational
waves in the black hole formation through particle colli-
sions in accelerators. However, there are two shortcomings
in this study. One is that we use the linear perturbation
method which provides a reliable result only for small
values of z0 and P. The other is that the Bowen-York black
holes system does not accurately model the high-energy
particles system.

As for the first problem, we can learn from the four-
dimensional study. In [9], the results of the close-slow
approximation and of the fully nonlinear numerical simu-
lation are compared. It shows that the results in the close-
slow approximation agrees approximately with the fully
nonlinear results for small separation and small momen-
tum. However, the difference becomes larger as separation
or momentum is increased. For P� M0, the nonlinear
numerical results indicate that the radiation efficiency in-
creases as P is increased and approaches to an asymptotic
value, while extrapolation of the linear perturbation results
gives infinity. To know the results for P� M0 in higher-

dimensional spacetime, obviously, fully nonlinear numeri-
cal simulation is necessary.

The difference between the high-energy particles and
the Bowen-York black holes is the other problem. As the
model of a high-energy particle, the metric of Aichelburg-
Sexl [15] is often used. It is obtained by boosting the
Schwarzschild black hole to the speed of light with fixed
energy p � �m and taking lightlike limit �! 1. The
gravitational field is localized in the transverse plane to
the direction of motion and forms a gravitational shock
wave, which is reminiscent of the infinite Lorentz contrac-
tion of the isotropic gravitational field of the original
Schwarzschild black hole. The spacetime is flat except at
the shock wave and this enables us to write down the metric
of two high-energy particles outside of the light cone of
shock collision. Hence, the AH formation at the instant of
collision has been investigated so far [16–18].

Obviously, the gravitational field (the conformal factor
or the extrinsic curvature) is not localized in the case of
Bowen-York black holes. This indicates that the Bowen-
York black holes system cannot be a precise model for the
high-energy particles system even in the case z0 �
Rh�M0� and P� M0. Actually, there exist several discus-
sions [19] about the fact that the Bowen-York black hole
system contains unphysical gravitational waves, i.e., so-
called junk energy. Thus, in the fully nonlinear numerical
calculation with the Bowen-York initial data, one should
take into account the possibility that junk energy changes
the estimate of radiation efficiency. To avoid this, one
should make the junk energy radiate away before the
collision setting the initial separation sufficiently large.

Finally, we comment on the importance of the study of
the grazing collision. In the head-on collision case, the
upper bound on the radiation efficiency ( & 40%) in the
head-on collision of Aichelburg-Sexl particles was ob-
tained [16] by studying the AH area and applying the
area theorem. Although the same discussion was done in
the grazing collision with nonzero impact parameter b
[17,18], the upper bound on the radiation efficiency is
very weak for large b. Hence, the direct calculation of
gravitational radiation in the grazing collision is more
important than the head-on collision case. Also, it is re-
quired to calculate the Kerr parameter of the resultant black
hole. In order to solve these problems, the off-axis collision
of the Bowen-York black holes could be an approximation
and provide several implications. We plan to study this
process using the close-slow approximation as a first step.

TABLE III. The values of Erad=M0 evaluated on the AH critical line for P=M0 � 0:0, 0.5, 1.0.
The unit is %.

D 4 5 6 7 8 9 10 11

P=M0 � 0:0 0.0034 0.059 0.20 0.34 0.44 0.49 0.51 0.52
P=M0 � 0:5 0.30 1.76 2.83 3.01 2.80 2.53 2.28 2.08
P=M0 � 1:0 1.6 7.3 11.5 12.2 12.0 11.4 10.5 9.8
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APPENDIX A: OTHER SOLUTIONS OF
EXTRINSIC CURVATURE

We briefly comment on other solutions of K̂�� for the
momentum constraint (7), which were not introduced in
Sec. II. Since the equations for B� and � are pure Laplace
equations, we can make infinite number of solutions for the
extrinsic curvature. Here, we present solution of low-
multipole momenta.

To make a spinning black hole, we write

 B� �
�n� 1��GJ��n

�

n�nRn
; � � 0 (A1)

where J�� is an antisymmetric tensor. Then, K̂�� is written
as

 K̂ �� � �
4��n� 1�G

�nRn�1 �J��n
�n� � J��n

�n��: (A2)

J�� denotes an angular momentum tensor expressed by

 J�� �
1

8�G

Z
R!1
�x�K�� � x�K���n�dS: (A3)

In the three-dimensional case, we can define the angular
momentum vector by the formula

 J� �
1
2����J

��: (A4)

The conformal factor � can be determined by solving the
Hamiltonian constraint in the same procedure as in Sec. III.

It is possible to derive other solutions, e.g., by setting

 B� �
C��n

�

Rn
; � � 0; (A5)

or

 B� �
C���
Rn�1

�
n�n� �

���
�n� 1�

�
; � � 0; (A6)

where C�� and C��� are symmetric and antisymmetric
tensors, respectively. However, the physical meaning of
these solutions is unclear.

APPENDIX B: INITIAL CONDITION OF THE
MASTER VARIABLE

In this Appendix, we explain how to set the initial
condition of the master variable �. We begin by studying
the initial condition of the following perturbative metric:

 �h�� �

fH0S H1S h0S	 h0S
�
sym: f�1H2S h1S	 h1S
�
sym: sym: 2r2�HL�		S�HTS		� 2r2�HL�	
�S�HTS	
� �

sym: sym: sym: 2r2�HL�
�
�S�HTS
�
� �

0
BBB@

1
CCCA (B1)

where S denotes the hyperspherical harmonics

 S � S�n�‘ � K�n�‘ C
��n�1�=2�
‘ �cos	�; (B2)

 K�n�‘ �
�

4��n�1�=2��n� ‘� 1�

�n� 2‘� 1���‘� 1����n� 1�=2���n� 1�

�
�1=2

;

(B3)

on the unit sphere of which metric is

 �ijdzidzj � d	2 � sin2	d�2
n�1: (B4)

Si and Sij are given by

 S i � �
1

k
D̂iS; (B5)

 S ij �
1

k2 D̂iD̂jS�
1

n
�ijS; (B6)

where D̂i denotes the covariant derivative on the unit
sphere and k is defined in Eq. (51). Since the initial metric
is the Brill-Lindquist one, the values of H2; HL;HT; h1 are
the same as the ones that we have derived in [6]:

 H2 � 2HL � ��r� �
1=�n� 1�Rn�1

1� 1=4Rn�1

�
z0

R

�
2
�K�n�2 �

�1;

(B7)

 h1 � HT � 0: (B8)

Here our purpose is to compute the time derivative of these
variables.

The nonzero components of K̂�� shown in Eqs. (40)–
(42) are rewritten as
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 K̂ RR � ��z0P=M0�

�
�n� 2�

S�n�2

K�n�2

� n
S�n�0

K�n�0

�
R��n�1�;

(B9)

 K̂ ij � �z0P=M0�

�
n� 2

n
S�n�2

K�n�2

�ij �
2�n� 1�

n� 1

S�n�2ij

K�n�2

�
S�n�0

K�n�0

�ij

�
R��n�1�: (B10)

Thus, K�� is composed of ‘ � 0 and 2 modes. Since the
‘ � 0 mode is absorbed in a coordinate transformation, we
omit it hereafter. The extrinsic curvature K�� �
��2K̂�� ’ ��2

0 K̂�� [where �0 is defined in Eq. (44)] in
the �r; 	;
�� coordinate is
 

Krr � ��z0P=M0�

�
�n� 2�

S�n�2

K�n�2

�

	 f�1��2�n�1�=�n�1�
0 R��n�1�: (B11)

 

Kij � �z0P=M0�

�
n� 2

n
S�n�2

K�n�2

�ij �
2�n� 1�

n� 1

S�n�2ij

K�n�2

�

	��2
0 R��n�1�: (B12)

K�� is written as

 K�� � �
1

2

� _h�� �r��� �r���� (B13)

in terms of the lapse function 
 �
���
f
p

and the shift vector
��. Although �� can be freely chosen provided that
O���� � O�z2

0�, we impose �� � 0 for simplicity. This
brings us H1 � h0 � 0 and _h�� � �2

���
f
p
K��. Using

Eqs. (B11) and (B12), we have the explicit formulas of
_hrr and _hij and they are compared with Eq. (B1):

 

_h 1 � 0; (B14)

 

_H 2 � 2�n� 2���r�; (B15)

 

_H L � �
n� 2

n
��r�; (B16)

 

_H T � �
2�n� 1�

n� 1
��r�; (B17)

where

 ��r� �
�z0P=M0�

K�n�2

���
f
p

rn�1 : (B18)

Now we are in a position to derive the equation for �
and _�. Setting

 fab �
fH0 H1

H1 H2=f

� �
; rfa � �h0; h1�; (B19)

the gauge-invariant quantities derived in [12] are

 F � HL � �1=n�HT � �1=r�DarXa; (B20)

 Fab � fab �DaXb �DbXa; (B21)

where

 Xa �
r
k

�
fa �

r
k
DaHT

�
; (B22)

and Da denotes the covariant derivative with respect to the
metric gabdyadyb � �fdt2 � f�1dr2. In our case,

 Xt �
r2

k2
_HT; Xr � 0; (B23)

and

 F � ��r�=2: (B24)

F is related to � and �;r as shown in [12] and we find the
same equation for � as that in our previous paper [6].
Hence, the initial value of � is unchanged. Calculating Frt,
we obtain

 Frt � �
2�n� 1�

n� 1

r2

k2

��
2

r
�
f;r
f

�
��r� � 2�;r�r�

�
; (B25)

where we have substituted Eq. (B17). Since Frt is related to
_� and _�;r as

 Frt � r1�n=2

�
�

PZ
4Hf

_�� r _�;r

�
; (B26)

we find the equation

 

_� ;r �
PZ

4Hrf
_��

2n
n� 1

rn=2�1��r�; (B27)

where PZ is a function of r given in [12] and we used
Eq. (B18). The solution is given by Eq. (55).
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