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We study the stability of neutron stars with toroidal magnetic fields by magnetohydrodynamic

simulation in full general relativity under the assumption of axial symmetry. Nonrotating and rigidly

rotating neutron stars are prepared for a variety of magnetic field configuration. For modeling the neutron

stars, the polytropic equation of state with the adiabatic index � ¼ 2 is used for simplicity. It is found that

nonrotating neutron stars are dynamically unstable for the case where toroidal magnetic field strength

varies / $2k�1 with k � 2 (here $ is the cylindrical radius), whereas for k ¼ 1 the neutron stars are

stable. After the onset of the instability, unstable modes grow approximately in the Alfvén time scale and,

as a result, a convective motion is excited to change the magnetic field profile until a new state, which is

stable against axisymmetric perturbation, is reached. We also find that rotation plays a role in stabilization,

although the instability still occurs in the Alfvén time scale when the ratio of magnetic energy to rotational

kinetic energy is larger than a critical value �0:2. Implication for the evolution of magnetized proto-

neutron stars is discussed.
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I. INTRODUCTION

Neutron stars observed in nature are magnetized with the
typical magnetic field strength�1011–1013 G [1]. The field
strength is often much larger than the canonical value as
�1015 G for a special class of the neutron stars such as
magnetars [2]. The field strength at the birth of neutron
stars may be also much larger than the canonical value,
because in the supernova gravitational collapse, rapid and
differential rotation of the collapsing core could amplify
the magnetic field. In the presence of a radial magnetic
field B$, the toroidal field BT is amplified by winding in
the presence of differential rotation, and the field strength
increases with time approximately according to (see, e.g.,
[3,4])

BT � B$�t ¼ 1015
�

B$

1012 G

��
�

102 rad=s

��
t

10 s

�
G; (1)

where we adopt the typical magnitude of the angular
velocity and the typical cooling time of the protoneutron
star for � and t. The large field strength of the magnetars
may be generated by such a process and subsequently be
confined inside the neutron star for thousands of years [5].
This suggests that even for the normal pulsar, the toroidal
field strength inside the neutron star may be much larger
than the canonical value. Thus, strongly magnetized neu-
tron stars may be common in nature. In particular, the
toroidal field is likely to be much stronger than the poloidal
fields inside neutron stars. In this paper, we focus on the
effect of such strong toroidal magnetic fields for the dy-
namical evolution of neutron stars.

Stars with purely toroidal magnetic fields in a stably
stratified structure are known to be unstable against the
Tayler instability [6–9] (see also the Appendix). According
to a perturbative study in [6–9], the most unstable motions
are driven by axisymmetric (m ¼ 0) and nonaxisymmetric
m ¼ 1 modes with nearly horizontal displacement. The
unstable modes are predicted to grow approximately on
an Alfvén time scale. The Alfvén time scale of magnetized
neutron stars is estimated to be very short as

�A � R

vA

� 30

�
R

10 km

��
�

1014 g=cm3

�
1=2

�
BT

1015 G

��1
ms;

(2)

where R and � are the characteristic radius and density of

the neutron star, vA is the Alfvén speed, and we use vA ¼
BT=ð4��Þ1=2. The time scale for the growth of the Tayler
instability is only by 1 order of magnitude longer than the
dynamical time scale of neutron stars which is �1 ms.
Thus, the instability associated with the strong magnetic
fields may affect even early evolution of the protoneutron
star and, consequently, supernova explosion. However,
perturbative studies do not clarify anything in the nonlinear
evolution stage reached after a sufficient growth of the
instability.
To understand roles of strong toroidal fields on the

evolution of neutron stars and protoneutron stars, numeri-
cal simulation is probably the best approach. In this paper,
we present our new numerical results obtained by general
relativistic magnetohydrodynamic (GRMHD) simulation,
for which our GRMHD code recently developed [10] is
used. We prepare neutron stars with purely toroidal mag-
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netic fields in axisymmetric equilibria computed by a
method described in [11]. As a first step toward a deep
understanding of the Tayler instability, we focus on the
m ¼ 0 mode imposing axial symmetry. As shown in [9],
neutron stars are unstable if a certain condition is satisfied
for the magnetic field profile and for the rotation rate. We
confirm this fact in the present numerical simulation. In
addition, we follow the evolution of the unstable stars after
the onset of the Tayler instability and show that associated
with the growth of this instability, a convective motion is
driven inside the neutron star. Then, the magnetic fields are
redistributed and eventually their profile relaxes to a new
state which is stable against axisymmetric perturbation.

The remainder of this paper is organized as follows. In
Sec. II, we briefly review formulation and numerical meth-
ods for our GRMHD simulations. Section III presents
numerical results for nonrotating and rotating neutron stars
separately. Section IV is devoted to a summary and dis-
cussion about implication of the present results on the
evolution of neutron stars. In the Appendix, we present
the results of a linear perturbative study for neutron stars of
purely toroidal magnetic fields, which validates our nu-
merical results qualitatively. Throughout this paper, we
adopt geometrical units in which G ¼ 1 ¼ c, where G
and c denote the gravitational constant and speed of light,
respectively. Cartesian coordinates are denoted by xk ¼
ðx; y; zÞ. The coordinates are oriented so that the symmetric
axis is along the z direction. We define the coordinate

radius r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, cylindrical radius $ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

, and azimuthal angle ’ ¼ tan�1ðy=xÞ.
Coordinate time is denoted by t. Greek indices �; �; . . .
denote spacetime components, and small Latin indices
i; j; . . . denote spatial components.

II. METHOD FOR NUMERICAL SIMULATION

A. Formulation and methods

The stability of magnetized neutron stars and the fate of
unstable neutron stars are investigated by GRMHD simu-
lation assuming that the ideal MHD condition holds. In this
paper, we assume the axial symmetry and focus only on the
Tayler instability against axisymmetric perturbation. The
simulation is performed by a GRMHD code for which the
details are described in [10]. This code makes long-term
numerical evolutions of relativistic magnetized neutron
stars possible. It solves the Einstein-Maxwell MHD system
of coupled equations, both in axial symmetry and in 3þ 1
dimensions, without approximation. The code evolves the
spacetime metric using the Baumgarte-Shapiro-Shibata-
Nakamura formulation [12]; we evolve the conformal

three-metric ~�ij ¼ ��1=3�ij, a conformal factor � ¼
lnð�Þ=12, a trace-free extrinsic curvature ~Aij ¼
e�4�ðKij � �ijK

k
k=3Þ, trace of the extrinsic curvature

Kk
k, and an auxiliary three variable Fi ¼

P
j@j ~�ij. Here,

�ij is the three-metric and � ¼ detð�ijÞ. For axisymmetric

simulation, the Cartoon method is employed [13,14]:
Namely, the Einstein equation is solved in the Cartesian
coordinates imposing an axisymmetric boundary condition
and the hydrodynamic equation is in the cylindrical
coordinates.
As in previous axisymmetric simulations (e.g., [10,15]),

the following dynamical gauge condition is employed:

@t� ¼ ��Kk
k; (3)

@t	
i ¼ ~�ijðFj þ �t@tFjÞ; (4)

where � is the lapse function, 	i the shift vector, and �t
the time step in numerical computation.
A conservative shock-capturing scheme is employed to

integrate the GRMHD equations. Specifically we use a
high-resolution central scheme [16,17] with the third-order
piecewise parabolic interpolation and with a steep min-
mod limiter in which the limiter parameter b is set to be 2.5
(see Appendix A of [14]). Multiple tests have been per-
formed with these codes, including MHD shocks, MHD
wave propagation, magnetized Bondi accretion, and mag-
netized accretion onto a neutron star [10]. This code has
been already applied to the evolution of magnetized hyper-
massive neutron stars to a black hole [18,19] and to a
supernova gravitational collapse of a strongly magnetized
and rotating core [4], and derived reliable numerical
results.
In the present paper, we initially give a purely toroidal

magnetic field. In such a case, poloidal magnetic fields are
never generated in the axisymmetric spacetime. Thus, we
only solve the toroidal field component.
As initial conditions for the numerical simulation, we

prepare magnetized neutron stars in equilibrium [11]. For
computing the equilibrium, we give the polytropic equa-
tion of state as

P ¼ 
��; (5)

where P, �, 
, and � are the pressure, rest-mass density,
polytropic constant, and adiabatic constant. In this work,
we choose � ¼ 2. Because 
 is arbitrarily chosen or else
completely scaled out of the problem, we adopt the units of

 ¼ 1 in the following (i.e., the units of c ¼ G ¼ 
 ¼ 1).
In numerical simulation, we adopt the �-law equation of

state

P ¼ ð�� 1Þ�"; (6)

where " is the specific internal thermal energy.

B. Diagnostics

We monitor the total baryon rest mass M�, ADM
(Arnowitt-Deser-Misner) massM, and angular momentum
J, which are computed, in axial symmetry, by

M� ¼
Z

�ut
ffiffiffiffiffiffiffi�g

p
d3x; (7)
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M ¼
Z

�ADM

ffiffiffiffi
�

p
d3x; (8)

J ¼
Z

�hutu’
ffiffiffiffiffiffiffi�g

p
d3x; (9)

where u� is the four velocity, g is the determinant of the
spacetime metric, h is the specific enthalpy (h ¼ 1þ "þ
P=�), and

�ADM ¼ ½�hð�utÞ2 � P�e��

þ e��

16�
½KijK

ij � ðKk
kÞ2 � ~Re�4��: (10)

Here, ~R is the Ricci scalar with respect to ~�ij. Hereafter,

initial ADM mass is denoted by M0.
In addition to the above quantities, we monitor the

internal thermal energy Eint, rotational kinetic energy
Trot, total kinetic energy Tkin, and electromagnetic energy
EEM, written by

Eint ¼
Z

�ut"
ffiffiffiffiffiffiffi�g

p
d3x; (11)

Trot ¼ 1

2

Z
�hutu’�

ffiffiffiffiffiffiffi�g
p

d3x; (12)

Tkin ¼ 1

2

Z
�hutuiv

i ffiffiffiffiffiffiffi�g
p

d3x; (13)

EEM ¼ 1

2

Z
b2ut

ffiffiffiffiffiffiffi�g
p

d3x; (14)

where b2 ¼ b�b�, b
� is a magnetic vector in the frame

comoving with fluid elements (e.g., [10]), and vi ¼ ui=ut.

In this paper, magnetic field strength is defined by
ffiffiffiffiffiffiffiffiffiffiffi
4�b2

p
.

We note that EEM is defined originally by

EEM ¼
Z

T
��
EMn�u�

ffiffiffiffi
�

p
d3x; (15)

where T��
EM is the electromagnetic part of the energy mo-

mentum tensor and n� is the hypersurface normal, and
hence, the definition is different from that in [19]. This
definition is based on mimicking the definition of Eint,
which is

Eint ¼
Z

T��
hydron�u�

ffiffiffiffi
�

p
d3x�M�; (16)

where T
��
hydroð¼ �hu�u� þ Pg��Þ is the nonelectromag-

netic part of the energy momentum tensor.
Once each energy component is obtained, the gravita-

tional potential energy is defined by

W ¼ M� þ Eint þ EEM þ Tkin �M: (17)

The Alfvén speed in relativity is defined by

vA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2

�hþ b2

s
: (18)

The associated Alfvén time scale is

�A ¼ L

vA

; (19)

where L is a characteristic length scale and in the present
context, it is approximately equal to the stellar radius.
Usually, the Alfvén time scale denotes a characteristic
time during which Alfvén waves propagate for the charac-
teristic length scale. In the present case, we assume the
axial symmetry and the presence of a purely toroidal
magnetic field, and hence, Alfvén waves play no role.
Nevertheless, a dynamical instability analyzed in this paper
grows in the time scale of order �A. For this reason, we here
define an averaged Alfvén time scale from global quanti-
ties as

�v A �
� R

b2ut
ffiffiffiffiffiffiffi�g

p
d3xRð�hþ b2Þut ffiffiffiffiffiffiffi�g

p
d3x

�
1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EEM

M� þ �Eint þ 2EEM

s
; (20)

where we use the relation h ¼ 1þ �" which holds in the
�-law equation of state. Then, we define the averaged
Alfvén time scale as

�� A ¼ R

�vA

; (21)

where R is the equatorial stellar radius.

C. Initial condition

We prepare a variety of neutron stars in equilibrium
changing the compactness, profile and strength of toroidal
magnetic fields, and rotational kinetic energy. The initial
conditions are derived in the same method as that described
in [11]. In the present case, we give the toroidal magnetic
field according to the relation

b’ ¼ B0u
tð�h�2�’’Þk; (22)

where k and B0 are constants which determine the field
profile and field strength, respectively. Because of the
regularity condition along the symmetric axis, k has to be
a positive integer. �’’ is the ’’ component of �ij and

approximately proportional to$2 near the symmetric axis.
Because b’ is a function of �, the magnetic field is con-

fined inside the neutron star.
In this work, we choose k ¼ 1, 2, and 3. Because b’ is

proportional to $2k near the symmetric axis, the toroidal

field strength defined by BT � b’�
�1=2
’’ =

ffiffiffiffiffiffiffi
4�

p
is propor-

tional to$2k�1. Namely, for small values of k, the fields are

EVOLUTION OF NEUTRON STARS WITH TOROIDAL . . . PHYSICAL REVIEW D 78, 024029 (2008)

024029-3



confined near the symmetric axis. References [5–8] (and
also the Appendix) predict that stars with k ¼ 1 are stable
against axisymmetric perturbation, whereas those with k �
2 are unstable, although rotation could stabilize the un-
stable mode.

Several key quantities which characterize the magne-
tized neutron stars are listed in Table I. B0 is chosen so as to
get 10�3 & EEM=W & 4� 10�2. For typical neutron stars
of mass �1:4M�, W � 6� 1053 erg. The electromagnetic
energy is approximately written as EEM � ðBTÞ2R3=3, and
hence, the magnetic field strength we consider here is
extremely large as 1016–1017 G for R 	 10 km. Such a
choice is done simply to save computational time [note that
the time scale for the growth of unstable modes is propor-
tional to ðBTÞ�1; see below]. In all the cases, the magnetic
field is strong but not strong enough to modify the stellar

structure significantly; e.g., for the nonrotating case, the
shape of the neutron stars is approximately spherical.
Even from this extreme setting, we can derive a generic

physical essence because the scaling relation, associated
with the magnetic field strength, holds for the evolution of
the unstable neutron star. Namely, if the magnetic field
strength becomes half, the growth time scale for the Tayler
instability becomes approximately twice as long, although
the qualitative properties about the evolution of the un-
stable star are essentially the same. Hence, the artificial
choice of the large magnetic field is acceptable for deriving
generic physical properties.
Compactness of the neutron stars is determined from the

conditions where the central density, �c, is 0.300 or 0.200
(in units of 
 ¼ 1). We note that the maximum rest mass
and gravitational mass of spherical neutron stars for � ¼ 2

TABLE I. A list of characteristic quantities for neutron stars with toroidal magnetic fields: value of k, central density, �c, baryon
rest mass, M�, ADM mass, M, ratio of equatorial circumferential radius R to M, ratio of the rotational kinetic energy to the
gravitational potential energy, Trot=W, ratio of the internal thermal energy to W, Eint=W, ratio of the electromagnetic energy to W,
EEM=W, nondimensional angular momentum parameter, J=M2, central value of the lapse function, �c, angular velocity, �, and
Alfvén time scale defined by Eq. (21). All the quantities are shown in units of c ¼ G ¼ 
 ¼ 1. For models AXY, BXY, and CXY,
k ¼ 1, 2, and 3, respectively. ‘‘X’’ denotes the value of 10�c and ‘‘Y’’ ( ¼ H, M, L) denotes the relative strength of the magnetic field.
Models RAXY and RBXY denote rapidly rotating neutron stars (meaning of A, B, X, and Y is the same as above). Models MBXy
denote moderately rapidly rotating neutron stars. Models EBXy and SBXy denote rotating models with very strong and strong
magnetic fields, respectively. y approximately denotes 100T=W. In the last column, the stability determined by the numerical
simulation is described.

Model k �c M� M R=M Trot=W Eint=W EEM=W J=M2 �c � ��A=M Stable?

A3H 1 0.3000 0.1793 0.1637 4.821 0 0.5858 0.0146 0 0.4786 0 67.8 Yes

A3L 1 0.3000 0.1798 0.1637 4.749 0 0.5931 9:8� 10�4 0 0.4756 0 256 Yes

A2H 1 0.2000 0.1715 0.1574 5.599 0 0.5148 0.0135 0 0.5732 0 89.6 Yes

B3H 2 0.3000 0.1794 0.1637 4.783 0 0.5880 0.0122 0 0.4772 0 73.4 No

B3M 2 0.3000 0.1797 0.1637 4.750 0 0.5927 2:05� 10�3 0 0.4757 0 177 No

B3L 2 0.3000 0.1798 0.1637 4.747 0 0.5932 9:3� 10�4 0 0.4755 0 263 No

B2H 2 0.2000 0.1714 0.1573 5.543 0 0.5168 0.0108 0 0.5715 0 98.5 No

B2M 2 0.2000 0.1717 0.1573 5.516 0 0.5201 3:11� 10�3 0 0.5703 0 182 No

B2L 2 0.2000 0.1717 0.1574 5.505 0 0.5210 1:16� 10�3 0 0.5700 0 297 No

C3L 3 0.3000 0.1798 0.1638 4.747 0 0.5931 1:16� 10�3 0 0.4755 0 236 No

C2H 3 0.2000 0.1714 0.1573 5.537 0 0.5169 0.0108 0 0.5713 0 98.5 No

RA2H 1 0.2000 0.1986 0.1821 6.732 0.0808 0.4555 0.0145 0.5667 0.5383 0.3159 99.5 Yes

RA2L 1 0.2000 0.2021 0.1848 6.491 0.0866 0.4577 1:78� 10�3 0.5894 0.5318 0.3271 272 Yes

RB2S 2 0.2000 0.1981 0.1817 6.283 0.0796 0.4559 0.0176 0.5614 0.5382 0.3144 84.4 No

RB2H 2 0.2000 0.2002 0.1835 6.594 0.0839 0.4549 0.0126 0.5783 0.5352 0.3211 104 Yes

RB2L 2 0.2000 0.2023 0.1850 6.478 0.0869 0.4575 1:78� 10�3 0.5906 0.5315 0.3276 271 Yes

MB2H 2 0.2000 0.1908 0.1751 5.863 0.0611 0.4708 0.0163 0.4870 0.5460 0.2852 82.6 No

MB2M 2 0.2000 0.1906 0.1747 5.797 0.0597 0.4744 0.0108 0.4817 0.5456 0.2832 99.9 No

MB2L 2 0.2000 0.1903 0.1743 5.738 0.0581 0.4780 5:66� 10�3 0.4758 0.5453 0.2809 137 Yes

MB2L’ 2 0.2000 0.1856 0.1700 5.649 0.0447 0.4882 4:66� 10�3 0.4151 0.5512 0.2512 149 Yes

EB27 2 0.200 0.1915 0.1765 6.251 0.0659 0.4550 0.0427 0.5040 0.5492 0.2886 54.8 No

EB25 2 0.200 0.1858 0.1713 5.995 0.0502 0.4667 0.0433 0.4353 0.5559 0.2592 52.6 No

EB23 2 0.2000 0.1793 0.1653 5.798 0.0302 0.4833 0.0392 0.3343 0.5635 0.2078 53.9 No

EB21 2 0.2000 0.1745 0.1610 5.744 0.0144 0.4922 0.0443 0.2286 0.5708 0.1465 50.6 No

SB24 2 0.2000 0.1845 0.1692 5.702 0.0430 0.4854 0.0137 0.4052 0.5536 0.2459 88.0 No

SB23 2 0.2000 0.1805 0.1656 5.629 0.0305 0.4955 0.0111 0.3400 0.5586 0.2109 97.2 No

SB21 2 0.2000 0.1744 0.1601 5.572 0.0108 0.5091 0.0116 0.2005 0.5671 0.1286 95.1 No
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are 0.1799 and 0.1637, and the corresponding central den-
sity is 	 0:318. This implies that the nonrotating neutron
stars with �c ¼ 0:300 are close to the marginally stable
point against gravitational collapse. Indeed, the rest mass
and the ADM mass for such models are close to the values
of marginally stable stars (cf. Table I). We will show that
our code can follow such extremely compact stars stably
for a long time* 3000M0. By contrast, with �c ¼ 0:2, the
ratio of the stellar radius to the ADM mass becomes �5:5
for the nonrotating neutron stars, which is a typical mag-
nitude for neutron stars (for a hypothetical value of ADM
mass 1:35M�, R 	 11 km). Thus, in this paper, we con-
sider very compact and reasonably compact neutron stars.

We also prepare a variety of rotating neutron stars. In
this paper, we focus only on rigidly rotating neutron stars
with a moderate compactness; �c is fixed to be 0.200. For
neutron stars with � ¼ 2 polytrope, the maximum ratio of
rotational kinetic energy to gravitational potential energy,
T=W, is �0:09 for compact neutron stars with R=M 	 6
[20]. Here, at the maximum ratio, the velocity at the
equatorial surface of the star is equal to the Kepler velocity.
Taking into account this fact, we prepare rotating stars with
0< T=W & 0:09. Specifically, we consider the following
four sequences for studying the dependence of stability on
the rotation rate. First we consider rapidly rotating stars
with T=W ¼ 0:08–0:09 or T=W 	 0:06 and with 0:001 &
EEM=W & 0:02. The models in these categories are speci-
fied with models R��� and M��� (see the caption of Table I
for the meaning of ***). In the third and fourth sequences,
we approximately fix the values of EEM=W as 0.04 and 0.01
but change the values of T=W for a wide range. The models
in these categories are specified with model E��� and S���.
By studying the stability of these models, the dependence
of the stability criterion on T=W and EEM=W is clarified.

III. NUMERICAL SIMULATION

A. Choosing the grid points and atmosphere

Numerical simulation was performed assuming the axial
symmetry as well as the equatorial (z ¼ 0) plane symme-
try. For covering computational domain, a nonuniform grid
of the following grid structure is adopted for $ and z:

xkðiÞ ¼
8<
:
i�x 1 
 i 
 N0

i�xþ ��i�x
� log½coshfði� N0Þ=�ig� N0 < i 
 N:

(23)

Here, xk denotes$ or z, �x is the grid spacing in the inner
region, andN0,N,�i, and � are constants which determine
the grid structure of the outer part. In this grid setting, the
inner domain with 0 
 $ 
 N0�x and 0 
 z 
 N0�x is
covered by a uniform grid. Neutron stars are always cov-
ered in an inner region with r < 2N0�x=3. N0 is chosen to
be 150 in this paper.

In the present simulation, mass ejection and expansion
of stars do not occur in a remarkable manner, and hence, it
is not necessary to resolve the outer region as accurately as
the inner region where neutron stars are located. Thus, we
prepare a rather large grid spacing for the outer region
choosing �i ¼ 50 and � ¼ 10. N is set to be 240. In the
following, we present results with this grid setting for all
the cases. With this setting, outer boundaries along each
axis are located at L 	 800�x which is approximately
equal to eight stellar radii ( 	 8R). These are large enough
for excluding spurious effects from outer boundaries at
least for t & 3000M0. Indeed, we performed a simulation
for N ¼ 220 (i.e., L 	 600�x) while fixing other parame-
ters for the grid structure, and found that results depend
very weakly on N (i.e., L; see Fig. 9). Nevertheless, for
smaller values of L, the spurious effects coming from the
outer boundaries are serious: For L ¼ 300�x 	 3R and
600�x 	 6R, the computation crashes eventually at t�
2000M0 and 2700M0, respectively, in the chosen nonuni-
form grid. However, note that the time at which computa-
tion crashes depends on the grid structure and for the
uniform-grid case, the computation does not crash at t ¼
3500M0 even for L ¼ 3R.
For a convergence test, we performed additional simu-

lations for model B3H, choosing a uniform grid with N ¼
240, 300, and 360. For each case, the equatorial radius of
the neutron star is covered by 80, 100, and 120 grid points,
respectively. Thus, for N ¼ 300, the grid resolution for the
inner region with i 
 150 is the same as that for the
nonuniform grid. In these uniform grids, outer boundaries
are located at three stellar radii (L ¼ 3R), but in these
cases, the computation does not crash until t ¼ 3500M0.
A simulation was also performed in the nonuniform grid
with N ¼ 220, in which L 	 600�x, as mentioned above.
Comparison of the results for five simulations indicates
that the resolution of our typical grid setting and the
location of outer boundaries are fine enough to derive
quantitative results within 20%–30% error (see the last
two paragraphs of Sec. III B 1).
Because any conservation scheme of hydrodynamics is

unable to evolve a vacuum, we have to introduce an
artificial atmosphere outside neutron stars. We initially
assign a small rest-mass density of magnitude �at ¼
�max � 10�8 where �max is the maximum rest-mass den-
sity of the neutron star. With such a choice, the total
amount of the rest mass of the atmosphere is about 10�5

of the rest mass of the neutron star. Thus, the accretion of
the atmosphere onto the neutron star plays a negligible role
for their evolution.

B. Numerical results

1. Nonrotating case

We performed numerical simulations for all the models
listed in Table I. All the simulations stably proceeded for a
sufficiently long time to more than 3000M0. For the case
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where unstable MHDmodes grow in the Alfvén time scale,
the simulation time is long enough to determine the stabil-
ity of each neutron star and to follow subsequent evolution
after the onset of the instability for our chosen models.

By the numerical simulations, we find that all the models
with k ¼ 1 are stable and the profiles of density and
magnetic field do not change significantly during evolu-
tion. By contrast, all the nonrotating models with k � 2 are

unstable irrespective of the magnetic field strength. In this
case, the magnetic fields are redistributed, and as a result, a
convective motion is excited inside the neutron star. The
unstable stars slightly expand and the central density de-
creases (cf. Fig. 1). Eventually, the star relaxes to a new
state which is stable against axisymmetric perturbations.
These conclusions hold irrespective of the magnetic field
strength and compactness of the neutron stars. In the

FIG. 1 (color online). Evolution of central density and central value of the lapse function for models A3H (solid curves), B3H (long-
dashed curves), A2H (dashed curves), and B2H (dash-dotted curves). The units of time are initial ADM mass M0.

FIG. 2 (color online). Snapshots for profiles of rest-mass density and magnetic pressure, b2=2, for model A3H which is dynamical
stable.
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following, we describe characteristic features for stable
and unstable stars showing numerical results for specific
models.

Figure 1 plots the evolution of central density and cen-
tral value of the lapse function for models A3H, B3H,
A2H, and B2H. This illustrates that for models A3H and
A2H, the neutron stars simply oscillate around their hypo-
thetical equilibrium states. The oscillation is excited be-
cause the initial model deviates slightly from the true
equilibrium. The oscillation amplitude is larger for �c ¼
0:3 than that for �c ¼ 0:2. This reflects the fact that the
neutron stars with �c ¼ 0:3 are close to the marginally
stable point against gravitational collapse, and a small
perturbation induces a large deviation from the equilibrium
state. In contrast to models A3H and A2H, for models B3H
and B2H, the central density and lapse quickly change at
t� 500M0, implying that the stars expand. This is due to

the fact that the profile of magnetic fields is modified
during the evolution.
Figures 2 and 3 display snapshots for the profiles of

density and magnetic pressure for models A3H and B3H
at selected time slices. For model A3H in which the
neutron star is stable, the profiles remain approximately
static besides a slight oscillation. By contrast, model B3H
is dynamically unstable against redistribution of magnetic
fields: For t & 400M0, the profile of the magnetic pressure
distribution gradually varies, and then, for 400 & t=M0 &
1000, the magnetic fields are redistributed violently. As
described in the Appendix, unstable modes grow near the
equatorial plane as well as in a high latitude of z�M0 and
$� 2M0. For t * 1000M0, the profile approaches a new
state which is stable against axisymmetric perturbation.
The maximum magnetic pressure decreases after the onset
of the instability. As a result, the pinching effects by the

FIG. 3 (color online). Snapshots for profiles of rest-mass density and magnetic pressure for model B3H.
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toroidal magnetic fields are weakened. This is the reason
that the star slightly expands and the central density
decreases.
Figure 4 plots the square root of magnetic pressure,ffiffiffiffiffiffiffiffiffiffi
b2=2

p
, along the cylindrical axis ($ axis) at selected

time slices (t=M0 ¼ 0, 920, and 1849.1) for model B3H.
For comparison, the profile for model A3H at t ¼ 0 is
shown together. For model B3H in which k ¼ 2, the mag-
netic field strength initially distributes approximately in
proportion to$3 for $ & M0. As a result of the growth of
an instability, this profile changes, and eventually, the
magnetic field strength becomes approximately propor-
tional to $ for $ & M0. Indeed, in the relaxed state, the
profile is similar to that for model A3H in which k ¼ 1 andffiffiffiffiffiffiffiffiffiffi
b2=2

p / $ for $<M0. This indicates that magnetized
stars with k ¼ 1 are attractors for the unstable star in axial
symmetry.

FIG. 4 (color online). Profile of the square root of magnetic

pressure,
ffiffiffiffiffiffiffiffiffiffi
b2=2

p
, along the $ axis at selected time slices,

t=M0 ¼ 0, 920, and 1849.1 for model B3H. For comparison, the
profile for model A3H at t ¼ 0 is shown together.

FIG. 5 (color online). Snapshots of velocity fields for model B3H at selected time slices, t=M0 ¼ 362:4, 641.1, 919.9, and 1849.1
(cf. Fig. 3 for the magnetic field profile at the same time slices). For each time, the maximum velocity (the maximum value offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðv$Þ2 þ ðvzÞ2p

) is 0.039, 0.047, 0.041, and 0.037, respectively.
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Figure 5 plots velocity vector fields ðv$; vzÞ at selected
time slices for model B3H. As shown in this figure, con-
vective motion and circulation are excited during the non-
linear evolution after the onset of instability. The velocity
of the convective motion becomes maximum during the
nonlinear evolution of the instability at t� 600–700M0

and the maximum velocity of this motion is �5% of the
speed of light. It is interesting to point out that the con-
vective motion is present even after the magnetic field
profile approximately relaxes to a stable state.

Figure 6 plots the evolution of the ADM mass, internal
thermal, kinetic, and electromagnetic energies for model
B3H. This shows that the ADM mass is approximately
constant, and internal thermal energy does not vary sig-
nificantly. By contrast, the electromagnetic energy de-
creases significantly after the onset of dynamical
instability, and with the quick decrease, the kinetic energy
increases steeply. This is because the convective motion is

induced by the dynamical instability. In other words, the
electromagnetic energy is transformed into the kinetic
energy.
The kinetic energy increases up to �30% of the elec-

tromagnetic energy for model B3H. (A possible error size
of the kinetic energy is 20%–30% as we discuss later;
cf. Fig. 9.) This holds for models with �c ¼ 0:3 and k ¼
2. For �c ¼ 0:2 and k ¼ 2, Tkin increases to �0:5EEM and
for models with k ¼ 3, Tkin increases to �0:6EEM. All
these results indicate that the kinetic energy of the con-
vective motion can reach a value approximately as large as
the electromagnetic energy for the case where the insta-
bility grows.
This result suggests that for a protoneutron star with

strong toroidal magnetic fields (see Sec. I for discussion),
the kinetic energy of the convective motion may reach

Tkin � 1050
�

BT

1016 G

�
2
�

R

15 km

�
3
erg: (24)

FIG. 6 (color online). Evolution of the ADM mass, internal thermal, kinetic, and electromagnetic energies for model B3H (left
panel) and model B2H (right panel).

FIG. 7 (color online). Left panel: Evolution of electromagnetic energy for models B3H, B3M, B3L, and A3H. Right panel: The same
as the left panel but for models B2H, B2M, B2L, and A2H.
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Because the kinetic energy could reach such a large value,
the convective motion triggered by this type of instability
inside a protoneutron star may affect supernova explosion.

As mentioned above, this instability always sets in for
k � 2 irrespective of magnetic field strength and compact-
ness of the neutron stars. However, the growth time scale of
this instability depends strongly on the magnetic field
strength. Figure 7 plots electromagnetic energy as a func-
tion of time for several models with k ¼ 1 (left panel) and
k ¼ 2 (right panel). For models A3H and A2H which are
stable models, it remains approximately constant, whereas
for models with k ¼ 2, it always decreases during the
evolution and the decreased time scale is shorter for the
larger electromagnetic energy.

To determine the growth rate of the dynamically un-
stable mode, it is convenient to see Tkin because it is
initially zero and increases purely due to excitation of the
unstable modes. Figure 8 plots Tkin=M� as a function of
time for models B3H, B3M, and B3L (left panel) and for
models B2H, B2M, and B2L (right panel). Note that for
other unstable models, the behavior of the curve is quali-
tatively the same. This figure shows that after the onset of
the instability, the kinetic energy increases approximately

in an exponential manner with time as / et=�, where � is a
constant. This indicates that the instability is dynamical.
This exponential growth holds for all the unstable models
irrespective of the value of k and magnetic field strength.
Thus, we refer to � as the growth time scale.

Table II lists approximate values of � for all the unstable
models. It is found that � increases systematically with the
decrease of magnetic field strength. In Table I, we also
describe the values of ��A calculated using Eq. (21). We find
that the order of magnitude of � agrees with ��A well, and
furthermore, the relation �= ��A 	 0:3–0:6 holds irrespec-
tive of the value of k and the magnetic field strength. This
indicates that the dynamical instability grows in the Alfvén
time scale.

As we have reported, the instability sets in only for k �
2 and the growth time scale is approximately proportional
to the Alfvén time scale. These imply that this instability is
indeed the Tayler instability [5,6]. Hereafter, we refer to
this instability as the Tayler instability.
In this paper, we input a very high magnetic field

strength of �1016–1017 G. Because the scaling holds as
shown above, the present result may be applied for neutron
stars of canonical field strength�1012–1013 G or magnetar
field strength �1014–1015 G. As shown in Eq. (2), the
Alfvén time scale is �10–100 ms for the magnetar field
strength and �1–10 s for the canonical field strength.
Thus, the growth time scale of the Tayler instability is
& 10 s for the field strength larger than �1012 G. If this
instability sets in for a neutron star, the electromagentic
energy will be redistributed and transformed into kinetic
energy in a short time scale (as short as or shorter than the
rotation period).
For illustrating the fact that the results presented so far

depend only weakly on grid resolution, we show numerical

TABLE II. The growth time, �, of the Tayler instability for the
unstable models. The third column denotes the time span of the
data set which is used for deriving the growth time. The fourth
column denotes the ratio of � to the averaged Alfvén time scale
derived from Eq. (21). The error size of the evaluated value of �
is �3M0.

Model �=M0 t=M0 �= ��A

B3H 	 35 200–400 	 0:48
B3M 	 95 200–600 	 0:54
B3L 	 160 200–800 	 0:61
B2H 	 40 200–400 	 0:41
B2M 	 90 200–800 	 0:49
B2L 	 170 200–1000 	 0:57
C3L 	 115 200–700 	 0:49
C2H 	 32 150–350 	 0:32

FIG. 8 (color online). Tkin=M� as a function of time for models B3H, B3M, and B3L (left panel) and for models B2H, B2M, and
B2L (right panel).
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results with different grid resolutions and grid structures
for model B3H. The chosen grid structure is described in
Sec. III A. Figure 9 plots the evolution of the central
density, the central value of the lapse function, the electro-
magnetic, and kinetic energies, respectively. We also show
violation of the Hamiltonian constraint and conservation of
the ADM mass. Here the definition of the violation of the
Hamiltonian constraint is the same as that shown in
Eq. (43) of [14]; an averaged Hamiltonian constraint is
defined by using the rest-mass density as a weight. We note
that the ADM mass does not have to be conserved in axial
symmetry, but in the present context with negligible gravi-
tational radiation, it should be approximately conserved.

We find that the numerical results are qualitatively the
same irrespective of the grid setting and also depend
quantitatively weakly on it: At approximately the same
time, the neutron star expands due to the nonlinear growth
of the Tayler instability, and then, the density, the lapse
function, and the electromagnetic energy relax to a stable
state (besides oscillation around new equilibrium values).
The minimum electromagnetic energy and the maximum
kinetic energy achieved depend weakly on the grid resolu-
tion and differences among five runs are at most �20%.
For& 1000M0, the violation of the Hamiltonian constraint
is larger for the case where the nonuniform grid is em-
ployed, but this is purely due to the grid structure chosen
[21] and magnitude of the violation eventually relaxes to be
small. These facts demonstrate that our choice for the grid
resolution and the grid structure is appropriate for studying

this type of instability. One caution is that the kinetic
energy in late time depends strongly on the grid resolution.
The likely reason is that with poorer grid resolutions,
numerical viscosity dissipates the circulation, resulting in
the suppression of the convective energy. This is illustrated
by the fact that for the case of ‘‘360H, ’’the kinetic energy
is largest among five runs. Thus, in reality, the convective
motion may be approximately constant for a time much
longer than the Alfvén time scale. However, accurately
following the convective motion for a long time is not
the main subject of this paper, and hence, we do not
address this problem in detail.

2. Rotating case

Numerical simulations for rigidly rotating neutron stars
were performed for all the models listed in Table I. We find
that the stability criteria for the rotating stars are different
from those for nonrotating stars. As in the nonrotating case,
stars with k ¼ 1 are always stable against axisymmetric
perturbation irrespective of magnetic field strength. Also,
for many of the stars with k ¼ 2, the Tayler instability
occurs and grows approximately in the Alfvén time scale.
In contrast to the nonrotating case, however, stars with k �
2 may be stable for the rapidly rotating case; at least, for
the first �10 Alfvén time scales, we do not find evidence
for occurring the Tayler instability. Figure 10 plots the
evolution of electromagnetic and convective kinetic ener-
gies (defined by Tkin � Trot) for models RA2H, RB2H,
RB2S, EB21, and EB27. This shows that for the rapidly

FIG. 9 (color online). Evolution of central density, central value of the lapse function, electromagnetic energy, kinetic energy,
violation of the Hamiltonian constraint, and violation of conservation of the ADM mass for model B3H with five different grid
structures. ‘‘240I,’’ ‘‘220I,’’ ‘‘240H,’’ ‘‘300H,’’ and ‘‘360H’’ imply a nonuniform grid with N ¼ 240 and N ¼ 220, uniform grid with
N ¼ 240, 300, and 360, respectively. The units of time are initial ADM mass M0. Numerical results for �c and �c are not shown for
run 220I because they are approximately the same as those for run 240I for t & 2500M0. Computation for run 220I crashes at
t� 2700M0.
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rotating models, RA2H and RB2H, the electromagnetic
energy remains approximately constant and indicates that
they are stable, at least, in the time scale of t ¼ 2000M0,
more than 10 ��A [22]. It is worth noting that for model
RB2H, k ¼ 2 and the electromagnetic energy is strong as
EEM=W � 0:01. Nevertheless, it is a stable model: This
illustrates the fact that rapid rotation suppresses the Tayler
instability. By contrast, models RB2S and EB27, which
have even larger electromagnetic energy EEM=W �
0:02–0:04, are unstable even for a large value of Trot=W �
0:07.

These results indicate that the stability is determined by
the ratio EEM=Trot; i.e., the Tayler instability grows in the
Alfvén time scale only when EEM=Trot is larger than a
critical value �0:2. To clarify this fact, we generate
Fig. 11 which summarizes the stability properties for rotat-
ing models with k ¼ 2. This figure indeed suggests that the
Tayler instability grows only for EEM=Trot * 0:2 (note that
the dashed line denotes EEM=Trot ¼ 0:16). This result is in
qualitative agreement with the Newtonian analysis of the
Appendix.

As seen in Fig. 10, the fraction of the decrease in the
electromagnetic energy during evolution is smaller for a
larger value of Trot=W. Also shown is the fact that for a
larger ratio of Trot=EEM, the maximum value of convective
kinetic energy, Tkin � Trot, is smaller and the convective
motion damps more quickly for the rotating models. In
particular, for the rapidly rotating case, the convective
kinetic energy is smaller than the electromagnetic energy
by 2 or 3 orders of magnitude. As mentioned in the
previous section, the damping is partly due to the numeri-
cal dissipation. However, a significant difference in the
damping rates between nonrotating and rotating models
suggests that the damping is primarily due to a rotational
effect. All these facts indicate that rotation plays a role for
stabilizing the axisymmetric unstable mode.

As discussed in [5,8], the Tayler instability induces a
motion perpendicular to the rotation axis, and stabilization
by rapid rotation is due to the presence of the Coriolis
force. The Coriolis force pushes a fluid element, which
deviates from its equilibrium location to the positive
cylindrical-radial direction, to the counterrotation direc-
tion. As a result, the centrifugal force of the fluid element
is weakened, and it is forced to return to its equilibrium
position. Thus, it is natural that the Coriolis force sup-
presses the onset of the Tayler instability as well as con-
vective motion in the meridian plane.

FIG. 11 (color online). Results of stability properties for rotat-
ing models with k ¼ 2. All the +’s above the dashed line are
unstable, and the instability grows in the time scale of & ��A. For
the �’s below the dashed line, instability does not grow in the
Alfvén time scale, although we cannot exclude the possibility
that the �’s are unstable and the unstable modes grow for a time
scale � ��A.

FIG. 10 (color online). EEM=M� and ðTkin � TrotÞ=M� as functions of time for models RA2H, RB2H, RB2S, EB21, and EB27. For
comparison, results for model B2H are plotted together. For models RA2H and RB2H, ðTkin � TrotÞ=M� remains to be smaller than
5� 10�7.
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IV. SUMMARY

In this paper, we have reported the stability of neutron
stars with purely toroidal magnetic fields. The stability is
determined by performing a GRMHD simulation. For the
simulation, we prepare a variety of equilibrium neutron
stars changing their compactness, strength and profile of
toroidal magnetic fields, and rotational kinetic energy. The
following is the summary of the numerical results.

(i) Magnetized stars with k ¼ 1 are stable against axi-
symmetric perturbation irrespective of the magnetic
field strength and the rotational kinetic energy.

(ii) For the nonrotating case with k ¼ 2, magnetized
stars are dynamically unstable irrespective of the
magnetic field strength, and the magnetic field is
redistributed approximately in the Alfvén time
scale. The resulting profile of the magnetic fields
is similar to that for k ¼ 1, indicating that stars with
k ¼ 1 are attractors if only the axisymmetric per-
turbation is taken into account.

(iii) During the growth of the dynamically unstable
modes, electromagnetic energy is transported to
the kinetic energy via the Tayler instability, and
as a result, a convective motion is excited. The
magnitude of the convective kinetic energy be-
comes approximately as large as the electromag-
netic energy at the time when the nonlinear growth
saturates, for not-rapidly rotating neutron stars.

(iv) For the case in which a neutron star is rapidly
rotating, the Tayler instability is suppressed and
the star with k ¼ 2 may be dynamically stable
against axisymmetric perturbation at least in about
ten Alfvén time scales. The numerical results sug-
gest that if the rotational kinetic energy is more than
�6 times larger than the electromagnetic energy,
the star is stabilized.

(v) Even for the unstable rotating models, convective
motion is not induced as remarkably as in the non-
rotating case. For the rapidly rotating case in which
the rotational kinetic energy is larger than the elec-
tromagnetic energy by a factor of * 2, the maxi-
mum convective energy is smaller than the
electromagnetic energy by 2 or 3 orders of magni-
tude. This indicates that rotation in general plays a
role in stabilizing the axisymmetric Tayler
instability.

As mentioned in Sec. I, protoneutron stars are likely to
have strong toroidal magnetic fields if the progenitor of
supernova gravitational collapse is rotating. Indeed, a num-
ber of recent MHD simulations of supernova collapse of
magnetized rotating stars have shown that the toroidal
magnetic field is amplified by many orders of magnitude
during collapse and during the subsequent relaxation stage
of the formed protoneutron star [4,23–32]. The key mecha-
nism in this amplification is the transport of the rotational
kinetic energy to the electromagnetic energy via winding

induced by differential rotation. As indicated in [4], the
electromagnetic energy could be comparable to the rota-
tional kinetic energy at the end of the amplification. Our
present numerical experiment suggests that when the con-
dition EEM=Trot * 0:2 is achieved, the protoneutron star
may be subject to the Tayler instability.
Many of the MHD studies for supernova collapse focus

on the amplification of magnetic pressure associated with
the amplification of the toroidal magnetic field strength,
which increases the pressure behind shock waves and can
help supernova explosion or drive a strong outflow along
the rotational axis. Our present study suggests that the
strong toroidal magnetic field may play a role not only in
increasing the pressure for pushing shock waves but also in
exciting a convective motion through the Tayler instability.
After the onset of this instability, a large fraction of elec-
tromagnetic energy may be transported into the convective
kinetic energy. Then the convection may help to carry a hot
material near the surface of a protoneutron star toward the
gain region and push stalled shock waves outward [33]. As
Eq. (24) indicates, the kinetic energy of the convective
motion may increase to �1050 erg if the toroidal field
strength becomes 1016 G and the electromagnetic energy
becomes as large as the rotational kinetic energy. This
value of the kinetic energy amounts to�10% of the energy
required to drive supernova explosion. As we show in
Fig. 5, vorticity is generated associated with the convective
motion. If this vorticity is dissipated by viscosity, a large
thermal energy is also generated. Such thermal energy may
also contribute to pushing stalled shock waves (see a
similar discussion in [34]). All of these possibilities sug-
gest that the Tayler instability should be taken into account
in magnetorotational explosion scenarios for supernova
explosion.
In reality, electromagnetic energy in a protoneutron star

at birth is likely to be much smaller than rotational kinetic
energy. Thus, at its birth, the protoneutron star will be
stable against the Tayler instability. Subsequently, the to-
roidal magnetic fields are amplified by winding caused by
differential rotation, and as a result, the electromagnetic
energy will reach a magnitude comparable to the rotational
kinetic energy. Then, the protoneutron star could be un-
stable against the Tayler instability. This suggests that this
instability may play a role for stopping the growth of the
toroidal field strength. At the end of the toroidal field
amplification, the resulting electromagnetic energy is
likely to be at most comparable to the rotational kinetic
energy, and hence, the instability may not be as strong as
that in the nonrotating stars, as illustrated in Sec. III B.
Also, the convective energy driven by the instability is
likely to depend strongly on the amplification process of
the toroidal magnetic fields via winding. For example, if
the degree of differential rotation is largest near the rota-
tion axis, the instability will not be strong because the
configuration is likely to be similar to that of k ¼ 1. On
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the other hand, if the degree of differential rotation is
largest at the interior of a protoneutron star far from the
rotation axis, the Taylor instability will occur. The effi-
ciency of the winding depends strongly on the magnetic
field profile and the rotational profile of the progenitor. To
understand the role of the Tayler instability, well-resolved,
long-termMHD simulations of stellar core collapse have to
be systematically performed for a number of initial
conditions.

Neutron stars, observed as ordinary pulsars, typically
have a rotation period of 0.1–1 s and magnetic field
strength of 1011–1013 G. This class of neutron stars is not
subject to the Tayler instability. This is because the ratio of
electromagnetic energy to rotational kinetic energy is
much smaller than unity as

EEM

Trot

� B2R3=3

I�2=2
	 7� 10�3

�
B

1013 G

�
2
�

R

10 km

�
3

�
�

I

1045 g cm2

��1
�

�

10 rad=s

��2
;

(25)

where I is the moment of inertia.
By contrast, magnetars of rotation period 5–12 s and of

magnetic field strength 1014–1015 G [2] are subject to the
Tayler instability. Present numerical results imply that
stable magnetars should have a magnetic field profile
which is at least stable against axisymmetric perturbation.

In this paper, we focus only on the stability against
axisymmetric perturbations. This work should be regarded
as the first step toward deeper understanding of the Tayler
instability in magnetized neutron stars. As shown in [5–8],
neutron stars with toroidal magnetic fields are also unstable
against nonaxisymmetric perturbation. Nonaxisymmetric
Tayler instability may grow in a different manner from an
axisymmetric one, and hence, the dynamical evolution
process of neutron stars during the growth of the unstable
modes as well as the final fate could also be different.
Furthermore, this instability will occur even for k ¼ 1. In
the axisymmetric simulation, only the stars with k � 2 are
unstable and the magnetic field profile of such an unstable
star eventually relaxes to a profile similar to that with k ¼
1. However, in three dimensions, such a star will still be
unstable. This suggests that stars may never reach a sta-
tionary state. To answer this question, a GRMHD simula-
tion in full three dimensions is required. We plan to
perform three-dimensional simulation in the next step.
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APPENDIX: PERTURBATIVE ANALYSIS

In this Appendix, we present a result of perturbative
analysis on criteria for the onset of axisymmetric instabil-
ities of neutron stars with toroidal magnetic fields. For the
analysis, we follow Ref. [7]. Newtonian gravity is assumed
for the sake of clarity and simplicity, and thus, our purpose
is to derive an approximate criterion for the instabilities
[35].
Basic equations describing ideal MHD are given by

@t�þrið�viÞ ¼ 0; (A1)

�ð@tvi þ vjrjviÞ ¼ �ri

�
Pþ 1

8�
BjBj

�

þ 1

4�
BjrjBi � �g�i ; (A2)

@tB
i ¼ rjðviBj � vjBiÞ; (A3)

riB
i ¼ 0; (A4)

where � denotes the rest-mass density, vi the fluid velocity,
P the pressure, Bi the magnetic field, g�i the gravitational
acceleration, andri the covariant derivative with respect to
xi.
We derive linear perturbation equations for rigidly rotat-

ing stars with purely toroidal magnetic fields in equilib-
rium. The velocity and the magnetic field for the
equilibrium stars are written as

vi ¼ ð0;�; 0Þ; (A5)

Bi ¼ ð0; $�1Bð$; zÞ; 0Þ; (A6)

where � and Bð$; zÞ are the angular velocity and the
magnetic field strength, respectively. Here, we used the
cylindrical polar coordinates ð$;’; zÞ.
In order for the stability analysis to be tractable, we only

consider axisymmetric perturbations of very short wave-
length both in the $ and z directions. Here, the short
wavelength implies that the wavelength, �, of an oscilla-
tion mode is smaller than 
v�, where 
v is a typical
magnitude of the perturbed velocity field and � is a typical
change time scale of stellar structure. In other words, we
perform the local analysis. We also employ the Cowling
approximation, in which perturbations of the gravity are
omitted.
In the short-wavelength approximation, the linear per-

turbation equation for the mass conservation equation (A1)
is

@$
v
$ þ @z
v

z ¼ 0; (A7)

where 
Q denotes the Euler perturbation of the physical
quantity Q and we assume that j@$
v$j � j
v$=$j
because of the short-wavelength approximation.
Equation (A7) implies that the effect of the density pertur-
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bation does not play a role. This is also because of the
short-wavelength approximation imposed. Thus, sound
waves or p modes are filtered out in this analysis.

In the short-wavelength approximation, the $ and
z components of Eq. (A2) become the following same
equation:


Pþ 1

4�
$B
B’ ¼ 0: (A8)

The other pieces of independent information extracted
from Eq. (A2) are given by

@t
v’ þ 2$�
v$ ¼ 1

4�

Bj@jð$BÞ; (A9)

�½@tð@z
v$ � @$
vzÞ � 2$�@z
v
’�

¼ 1

4�
ð�2B@z
B

’Þ � g$@z
�þ gz@$
�; (A10)

where gi is the apparent gravity, defined by

gi � g�i þ ujrjui ¼ ðg�$ �$�2; 0; g�zÞ: (A11)

The induction equation (A3) gives

@t
B
$ ¼ 0; @t
B

z ¼ 0; (A12)

@t
B
’ ¼ B

$�
@t
�� �
vj@j

�
B

$�

�
: (A13)

In this study, we focus on adiabatic oscillations. Then, the
relationship between 
P and 
� is


Pþ �i@iP ¼ P�

�
ð
�þ �i@i�Þ; (A14)

where � denotes the adiabatic index, defined by

� �
�
lnP

ln�

�
ad
; (A15)

and �i the Lagrangian displacement, which obeys


vi ¼ @t�
i þ vj@j�

i � �j@jv
i: (A16)

For the axisymmetric perturbation with vj ¼ �
’
j,

Eq. (A16) reduces to


vi ¼ @t�
i: (A17)

Then, Eq. (A14) becomes

1

v2
s�

@t
P ¼ 1

�
@t
�þ 
viAi; (A18)

where vs is the adiabatic sound speed, defined by

vs �
�
P�

�

�
1=2

; (A19)

and Ai the Schwarzschild discriminant,

Ai � @i ln�� 1

�
@i lnP: (A20)

As shown in Eq. (A12), we have 
B$ ¼ 0 ¼ 
Bz be-
cause we are not interested in time-independent perturba-
tions. Thus, Eqs. (A7)–(A10), (A13), and (A18) are six
independent equations for the six independent components

vi, 
B’, 
�, and 
P. In the local analysis, axisymmetric
perturbations can be written as


Qðt;$; zÞ ¼ Q0 expfið��tþ l$þ nzÞg; (A21)

where Q0 is a constant, � the oscillation frequency, and
ðl; nÞ the meridional wave number vector.
Substituting Eq. (A21) into the perturbation equations,

we obtain the following dispersion relation for �:�
1þ v2

A

v2
s

�
s2

n2
�2 ¼ 4�2

�
1þ v2

A

v2
s

�
�

�
ĝþ 2v2

A

$

�
Ah

þ
�
ĝ� 2v2

s

$

�
v2
A

v2
s

@

@q
ln

�
B

$�

�
: (A22)

Here, vA denotes the Alfvén speed

vA �
�
B2

4��

�
1=2

; (A23)

s is the total meridional wave number

s � ðl2 þ n2Þ1=2; (A24)

ĝ is the apparent gravity along the constant phase or crests

ĝ � g$ � l

n
gz; (A25)

Ah is the Schwarzschild discriminant along the constant
phase or crests

Ah � A$ � l

n
Az; (A26)

and @=@q is the derivative along the constant phase or
crests

@

@q
� @

@$
� l

n

@

@z
: (A27)

The first, second, and third terms on the right-hand side of
Eq. (A22) are related to effects of the rigid rotation, the
stratification (the buoyancy), and the magnetic buoyancy,
respectively. Here, it should be emphasized that the effect
of rigid rotation operates as a stabilizing agent because the
first term on the right-hand side of Eq. (A22) is always
positive.
The stabilities are determined by the dispersion relation

(A22). Specifically, the sign of its right-hand side deter-
mines the local stabilities; the stars are locally stable
(unstable) if �2 > 0ð�2 < 0Þ. From Eqs. (A25)–(A27),
we find that the right-hand side of Eq. (A22) is a quadratic
in l=n, given by
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�
1þ v2

A

v2
s

�
s2

n2
�2 ¼ a

�
l

n

�
2 þ b

�
l

n

�
þ c; (A28)

where

a � gz

�
�Az þ v2

A

v2
s

@

@z
ln

�
B

$�

��
; (A29)

b �
�
g$ þ 2v2

A

$

�
Az þ gzA$

�
�
g$ � 2v2

s

$

�
v2
A

v2
s

@

@z
ln

�
B

$�

�
� gz

v2
A

v2
s

@

@$
ln

�
B

$�

�
;

(A30)

c � 4�2

�
1þ v2

A

v2
s

�
�

�
g$ þ 2v2

A

$

�
A$

þ
�
g$ � 2v2

s

$

�
v2
A

v2
s

@

@$
ln

�
B

$�

�
: (A31)

We therefore see that the stability condition �2 > 0 for any
value of l=n is equivalent to the condition where the three
inequalities a > 0, c > 0, and b2 � 4ac < 0 are simulta-
neously satisfied. Contrapositively, it is found that the star
is unstable if any of the following three conditions are
satisfied:

4�2

�
1þ v2

A

v2
s

�
�

�
g$ þ 2v2

A

$

�
A$ þ

�
g$ � 2v2

s

$

�
v2
A

v2
s

@

@$

� ln

�
B

$�

�
< 0; (A32)

gz

�
�Az þ v2

A

v2
s

@

@z
ln

�
B

$�

��
< 0; (A33)

gz

�
v2
A

�
Az

@

@$
ln

�
B

$�

�
� A$

@

@z
ln

�
B

$�

��

þ 2$�2

�
v2
A

v2
s

@

@z
ln

�
B

$�

�
� Az

��
< 0: (A34)

Here, the final equation (A34) is equivalent to the condition
b2 � 4ac > 0.

Neutron stars are likely to be stably stratified because of
their strong composition gradient [36]. As a result, the
buoyancy inside the neutron star exerts as a stabilizing
force as shown in Eqs. (A32) and (A33). Equation (A32)
also shows that the criterion of the magnetic instability
depends on whether the region considered is located inside
or outside the critical surface whose cylindrical radius is
defined by

$c � 2v2
s

g$
: (A35)

Inside (outside) the critical surface, if @
@$ lnðB=$�Þ> 0

[ @
@$ lnðB=$�Þ< 0], the third term of Eq. (A32) becomes

negative and the instability is promoted.
Finally, we examine the magnetic stability of a particular

model, a slowly rotating star containing toroidal magnetic
fields. We assume that matter distribution of the star is
spherical (namely the magnetic and centrifugal forces are
not strong enough to modify this spherical shape). As an
example, an n ¼ 1 polytropic sphere is considered because
the analytic solution is available. Its matter distribution is
given by

� ¼ �0

�
sinðr=r0Þ
ðr=r0Þ

�
; (A36)

P ¼ P0

�
sinðr=r0Þ
ðr=r0Þ

�
2
; (A37)

where �0 and P0 are the central values of the density and
the pressure, respectively, and r0 is stellar radius

r0 �
�

2P0

4�G�2
0

�
1=2

:

For the magnetic field distribution, we take a simple form,
as in [11], as

B ¼ b0ð�=�0Þkðr sin�=r0Þ2k�1; (A38)

where b0 and k are constants. Regularity of the magnetic
fields around the magnetic axis requires that k is a positive
integer. Here, we used the polar coordinates ðr; �; ’Þ. Note
that this magnetic field distribution is the Newtonian limit
of that used in the present GRMHD simulation. In this
analysis, we omit the buoyancy, i.e., take Ai ¼ 0 to focus
on the magnetic instability.
First, we pay attention to the nonrotating case. Then, the

instability conditions (A32) and (A33) are written as

D1ðr; �Þ � r20
v2
A;0

�
g$ � 2v2

s

r sin�

�
v2
A

v2
s

�
sin�

@

@r
þ cos�

r

@

@�

�
ln

�
�

B

�r sin�

�
< 0; (A39)

D2ðr;�Þ � r20
v2
A;0

gz
v2
A

v2
s

�
cos�

@

@r
� sin�

r

@

@�

�
ln

�
B

�r sin�

�
< 0:

(A40)

Note that by definition, D1 and D2 are dimensionless
quantities and are independent of the magnetic field
strength b0. The left-hand side of Eq. (A34) vanishes in
the present situation and this third instability condition
cannot give any useful information. For the case of k ¼
1, it can be seen that D1 ¼ 0 ¼ D2 because
@i lnðB=�r sin�Þ / k� 1. Thus, the star is neutrally stable
for k ¼ 1. In Fig. 12, we give the distributions of D1 and
D2 on the meridional cross section for the case of k ¼ 2. In
this figure, the darker regions have locally larger growth
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rates of the unstable mode, whereas the white regions
correspond to neutrally stable ones (regions of D1 	 0
and D2 	 0). We then see that the magnetized stars with
k ¼ 2 are indeed locally unstable. In Fig. 12, we confirm
that the unstable regions determined by the criterionD1 are
separated by the critical surface.

The instability determined by D1 occurs primarily near
the equatorial plane and relatively high-density region. By
contrast, the instability determined by D2 occurs near the
surface and for the region of relatively weak magnetic
field, and this indicates that this mode plays a minor role
for redistribution of the magnetic field and for inducing
convection. The instability found in our numerical simula-
tion is likely to be associated with the mode determined by
D1. Hence, in the following, we focus primarily on this
mode.

The modes associated with D1 and D2 determine the
instability, in particular, for l=n ! 0 and l=n ! 1, respec-
tively. Thus, we focus on the case for small values of l=n.
As discussed in [5,8], the Tayler instability is associated
with a motion perpendicular to the magnetic axis. This type
of motion corresponds to the limit of l=n ! 0 in this
analysis because 
vz ¼ �ðl=nÞ
v$ [see Eq. (A7)].
Thus, from this point of view, it is reasonable to pay
attention to the mode associated with D1.

Because the Tayler instability occurs for the magnetic
field with k ¼ 2 as discussed above, henceforth, we only
consider the case of k ¼ 2. For this model, the averaged
Alfvén speed �vA is given by

�v A ¼
� R

B2d3x

4�
R
�d3x

�
1=2

¼
�

3

2800
ð315� 200�2 þ 32�4Þ

�
1=2

vA;0 	 1:25vA;0;

(A41)

where vA;0 is defined as

vA;0 � b0ffiffiffiffiffiffiffiffiffiffiffiffi
4��0

p :

The growth time � for the Tayler instability defined in
Sec. III is associated with the increase in the kinetic energy.
The growth time � for the most unstable mode is therefore
given by

�= ��A ¼ ð2� ��AÞ�1 	 0:199min

�
vA;0

r0�

�
; (A42)

where minðQÞ denotes the minimum value of Qðr; �Þ. In
the weak magnetic field approximation assumed,
vA;0ðr0�Þ�1 is given by

vA;0

r0�
¼

�
1þ ð lnÞ2

jD2ð lnÞ2 þ ~bð lnÞ þD1j
�
1=2

; (A43)

where ~b ¼ ðr20v�2
A;0Þb. In Fig. 13, we show the growth time

�= ��A obtained by the local analysis as a function of l=n. As
mentioned above, we focus on the case where l=n is small.
Then, Fig. 13 shows that the unstable mode characterized
by l=n ¼ 0 is the most unstable one, whose growth time is
given by

�= ��A 	 0:089: (A44)

Thus, the minimum growth time is by a factor of 3–5
shorter than that obtained by the GRMHD simulations
(compare with Table II), but the order of magnitude agrees.
For modes with a moderate value of l=n, as shown in
Fig. 13, the growth time �= ��A increases. For a mode with
l=n 	 2, for example, �= ��A 	 0:2, which is 1/3–2/3 of the
growth time shown in Table II. This result is reasonable
because we here assume a Newtonian model whereas in the
simulations, we adopt highly general relativistic neutron
stars for which the profiles of density and magnetic field
are significantly different from the Newtonian ones.
Next, we consider the slowly rotating model. In the slow

rotation and weak magnetic field approximation, the crite-
rion of the Tayler instability becomes

r20�
2

v2
A;0

þ 1

4

�
D2

�
l

n

�
2 þ ~b

�
l

n

�
þD1

�
< 0: (A45)

For the k ¼ 2 model, the rotational kinetic energy Trot and
the electromagnetic energy EEM are, respectively, given by

FIG. 12. Contours curves (solid curves) of D1 (left panel) and
D2 (right panel) on the meridional cross section for the n ¼ 1
polytropic star containing weak toroidal magnetic fields with
k ¼ 2. The darker regions are locally more unstable, whereas the
white regions correspond to neutrally stable ones (regions with
D1 	 0 	 D2). The contours of equi-D are linearly spaced; the
difference between two adjacent contours is one-sixth of the
difference between the maximum and minimum values of D1

and D2. The maximum value is zero and the minimum values
are �4:96 and �1:07 for D1 and D2, respectively. The thick
quarter circle denotes the surface of the star. Inside the star, the
dashed curves and the dash-dotted curve show equi-B contours
and the critical surface, respectively.
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Trot ¼ 1

2

Z
�r2sin2��2d3x

¼ 4

3
�2ð�2 � 6Þ�0r

5
0�

2

	 50:9�0r
5
0�

2; (A46)

EEM ¼ 1

8�

Z
B2d3x

¼ 3�

5600
ð315� 200�2 þ 32�4Þr30b20

	 2:45r30b
2
0: (A47)

The ratio of the electromagnetic energy to the rotational
kinetic energy is then written as

EEM=Trot 	 0:605
v2
A;0

r20�
2
: (A48)

In terms of EEM=Trot, thus, Eq. (A45) is rewritten as

EEM=Trot > ðEEM=TrotÞc � min

� �2:42

D2ð lnÞ2 þ ~bð lnÞ þD1

�
:

(A49)

For the polytropic models with n ¼ 1 and k ¼ 2, numeri-
cal values of ðEEM=TrotÞc are shown as a function of l=n in
Fig. 14.

From this figure, it is found that for the most unstable
mode, whose value of l=n is zero, the Tayler instability sets
in if the condition,

EEM=Trot > 0:49; (A50)

is satisfied. For modes with a moderate value of l=n, values
of ðEEM=TrotÞc decreases, e.g., ðEEM=TrotÞc 	 0:21 for a
mode with l=n 	 2. As argued in Sec. III, the instability
condition obtained by the GRMHD simulation is
EEM=Trot * 0:2, which is the same order as that of
Eq. (A50).
For the small values of EEM=Trot, the unstable modes

should have larger values of l=n, and correspondingly, the
growth time scale becomes longer. This suggests that even
if a model star appears to be stable in a numerical simula-
tion for a finite duration, the star might become unstable for
a sufficiently long run.
As found in Fig. 14, a magnetized star is always unstable

for modes with jl=nj 	 1 irrespective of the rotation rate.
As mentioned previously, however, these modes are asso-
ciated with D2. This instability occurs near the stellar
surface and its effect would not be significant for global
redistribution of the magnetic field profile. Thus, although
all the magnetized stars with k ¼ 2 are unstable strictly
speaking, this type of instability does not seem to play a
significant role.
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