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We derive a formalism of numerical relativity for higher-dimensional spacetimes and develop

numerical codes for simulating a wide variety of five-dimensional (5D) spacetimes for the first time.

First, the Baumgarte-Shapiro-Shibata-Nakamura formalism is extended for arbitrary spacetime dimen-

sions D � 4, and then, the so-called cartoon method, which was originally proposed as a robust method

for simulating axisymmetric 4D spacetimes, is described for 5D spacetimes of several types of

symmetries. Implementing 5D numerical relativity codes with the cartoon methods, we perform test

simulations by evolving a 5D Schwarzschild spacetime and a 5D spacetime composed of a gravitational-

wave packet of small amplitude. The numerical simulations are stably performed for a sufficiently long

time, as done in the 4D case, and the obtained numerical results agree well with the analytic solutions: The

numerical solutions are shown to converge at the correct order. We also confirm that a long-term accurate

evolution of the 5D Schwarzschild spacetime is feasible using the so-called puncture approach. In

addition, we derive the Landau-Lifshitz pseudotensor in arbitrary dimensions, and show that it gives a

robust tool for computing the energy flux of gravitational waves. The formulations and methods developed

in this paper provide a powerful tool for studying nonlinear dynamics of higher-dimensional gravity.
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I. INTRODUCTION

Clarifying the nature of higher-dimensional gravity has
become an important issue, since the braneworld scenarios
were proposed [1,2]. If the space in which we live is a
three-dimensional (3D) brane in extra spatial dimensions
that are large or warped, the Planck energy may be of
OðTeVÞ and quantum gravity phenomena may emerge in
high-energy particle colliders such as the LHC. If this
scenario is correct, mini black holes may be produced at
the LHC [3–5], and this fact motivated a lot of theoretical
works in the past decade (see [6] for a recent review).
Understanding the AdS=CFT correspondence is also an
interesting issue in the higher-dimensional gravity.

To study nonlinear dynamics of spacetimes, numerical
relativity is probably the unique approach. In the past
decade, numerical relativity for four-dimensional (4D)
spacetimes was significantly developed. Now, it is feasible
to perform a long-term simulation for merger of binary
black holes or for high-velocity collision of two black
holes, which is one of the strongest gravitational phe-
nomena in nature (see Refs. [7–12] for pioneer works of
binary black hole merger). It is natural to expect that the
formulation and numerical techniques developed for 4D
cases can be extended to the higher-dimensional cases.

There are also a few pioneer works in the five-
dimensional (5D) numerical relativity performed in the
past decade [13,14]. However, the purpose of these works
was to study a specific issue, i.e., the Gregory-Laflamme
instability of a black string. Thus, the formulation and

numerical method in these works are applicable only for
this particular issue, and thus, developing a general for-
mulation and codes in the higher-dimensional numerical
relativity is still an issue. Furthermore, there obviously
remain a lot of interesting issues to be explored in this
field, as partially listed in the following.
The first issue is black hole formation in high-energy

particle collisions. If a black hole is formed at the LHC, it
will emit the Hawking radiation and may be detected. To
predict the rate of mini black hole production and its
detectability, it is necessary to know the cross section for
the black hole production �BH and the resulting mass and
angular momentum of the formed black hole. A partial
answer was given in Refs. [15,16] (see also [17]) by
numerically solving the apparent horizon at an instant of
the collision of Aichelburg-Sexl particles [18] in higher
dimensions. Because the apparent horizon formation im-
plies the formation of the event horizon assuming the
cosmic censorship (e.g., see [19]), the cross section of
the apparent horizon formation �AH gives the lower bound
of �BH. However, the precise value of �BH itself is neces-
sary for exactly predicting the phenomena in the particle
collider. In the 4D case, high-velocity collisions of two
relativistic objects have been studied by full numerical
relativity, via a model of high-velocity collision of two
black holes [20–22]. In particular, Ref. [21] (see also
Ref. [22] for the refinement of the work of [21]) first
studied the collisions with nonzero impact parameters
and clarified that �BH is approximately twice as large as
�AH found in Ref. [16]. They also showed that resulting

PHYSICAL REVIEW D 80, 084025 (2009)

1550-7998=2009=80(8)=084025(17) 084025-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.084025


mass and angular momentum should be significantly
smaller than the initial values of the system because of a
huge amount of gravitational radiation. However, these
studies are nothing but a prelude of the study of high-
velocity collisions in higher-dimensional spacetimes,
which is really required.

The second issue is on the stability of higher-
dimensional rotating black holes (Myers-Perry black
hole) [23]. Although there are works on the stability of
those black holes by separating variables for the metric
perturbation in the linearized Einstein equation, the analy-
sis can be applied for limited situations (see, e.g., [24] for
special rotation parameters and [25] for a tensor-mode
perturbation) and the problem has not been entirely inves-
tigated. Hence, multidimensional numerical analyses are
required. Clarifying the stability of the higher-dimensional
rotating black holes with a single rotation parameter, a, is
important, because such a black hole would be the outcome
of particle collisions in the TeV gravity scenarios unless
the formed black hole is unstable. However, a recent
numerical analysis of the linearized Einstein equation sug-
gests that black holes of high values of a are unstable at
least for spacetime dimensions D � 7 [26] (see also [27]):
The production rate of mini black holes may be smaller
than what we naively expect from the analysis of the
apparent horizon [16]. To elucidate the stability and sub-
sequent evolution after the onset of instability, numerical
relativity will play a crucial role.

The third issue is on the evolution of a black hole on a
Randall-Sundrum (RS) brane. So far, no analytic solution
of a 5D static black hole localized on the RS brane has been
found. The recent numerical work [28] (see also [29])
indicates the nonexistence of such solutions. If this is the
case, any black hole produced on the RS brane cannot relax
to a stationary state but evolve in time. Clarifying the fate
of such black holes is an interesting issue. Furthermore, if
the AdS=CFT correspondence holds for the RS models, a
5D classical black hole on the RS brane is dual to a 4D
black hole with quantum fields [30,31], and thus we could
obtain an indication for the Hawking radiation including
the backreaction effects.

Motivated by these issues, we have developed numerical
relativity codes for simulating 5D spacetimes as the first
step. The purposes of this paper are the following three.
The first purpose is to describe a numerical relativity
formulation in higher-dimensional spacetimes. We adopt
the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) for-
malism [32,33] and write down its higher-dimensional
version.

The second purpose is to describe the cartoon method
[34,35] for 5D spacetimes of several types of symmetries.
The cartoon method was originally proposed for simulat-
ing 4D spacetimes of axial symmetry using the Cartesian
coordinates. This method has been demonstrated to be
quite robust for accurately and stably simulating not only

vacuum spacetimes but also rotating stars and rotating
stellar core collapses (e.g., Ref. [36]). The essence of this
method is that we do not have to use curvilinear coordi-
nates that have coordinate singularities. In most higher-
dimensional problems, the spacetime should have symme-
tries, e.g., among the extra-dimensional directions. For
such problems, it will be better not to adopt the curvilinear
coordinates but to adopt the Cartesian coordinates for an
accurate and stable simulation, as we have learned in the
4D simulations. In the higher-dimensional issues that we
listed above, several types of symmetries may be imposed.
For example, in the off-axis collision of two black holes,
the axes perpendicular to the orbital plane should be
equivalent. In this paper, we particularly focus on 4D
spaces (i.e., 5D spacetimes) with Uð1Þ symmetry, Uð1Þ �
Uð1Þ symmetry, and SOð3Þ symmetry.
The third purpose is to report our new codes for simu-

lating 5D spacetimes, which are implemented using the
BSSN formalism and cartoon methods. For demonstrating
that the codes work well, we perform simulations for test
problems for which analytical solutions are known.
Specifically, evolutions for a 5D Schwarzschild spacetime
and for a 5D spacetime composed of a gravitational-wave
packet of small amplitude are chosen for the tests. In the
former case, we first solve the 5D Schwarzschild spacetime
by our codes in the geodesic slice and show that the
numerical results agree with the analytic solution derived
in this paper. We also evolve the spacetime by the puncture
approach [8] with the dynamical slices and �-driver con-
ditions [37], and show that the long-term evolution of a
black hole spacetime is feasible as in the 4D case. In the
second test, we compare the numerical results of a
gravitational-wave packet with the semianalytic solution
for linearized Einstein equations given in Appendix A, and
show that they agree well. In addition, we study a method
for estimating the energy flux carried by gravitational
waves. The Newman-Penrose formalism is widely used
for extracting gravitational waves in the 4D numerical
relativity. Unfortunately, such formalism has not yet been
developed in higher dimensions. Here, we propose the
higher-dimensional Landau-Lifshitz pseudotensor [38]
for calculating the energy flux carried by gravitational
waves and demonstrate that it correctly gives the amount
of radiated energy.
This paper is organized as follows. In Sec. II, we derive

the BSSN formalism in higher dimensions. In Sec. III, we
describe the cartoon methods in 5D spacetimes of the three
types of symmetries listed above. In Sec. IV, we present the
numerical results of test simulations for 5D numerical
relativity and show that they agree with the analytic solu-
tions. We also show that the energy extraction by the
Landau-Lifshitz pseudotensor works well. Section V is
devoted to a summary. In Appendix A, we summarize
the equations and analytic solutions for the linearized 5D
Einstein equations of Uð1Þ �Uð1Þ symmetry or SOð3Þ

HIROTAKA YOSHINO AND MASARU SHIBATA PHYSICAL REVIEW D 80, 084025 (2009)

084025-2



symmetry. The Landau-Lifshitz pseudotensor in higher
dimensions is given in Appendix B. Throughout the paper,
we use the units of c ¼ 1 where c is the speed of light.

II. BSSN FORMULATION IN HIGHER
DIMENSIONS

In this section, we describe the BSSN formalism [32,33]
for higher-dimensional spacetimes. After reviewing the
Arnowitt-Deser-Misner (ADM) formulation for D dimen-
sions in Sec. II A, the D-dimensional BSSN formalism is
derived in Sec. II B.

A. ADM formulation

SupposeM be aD-dimensional spacetime with a metric
gab. Consider a sequence of ðD� 1Þ-dimensional space-
like hypersurfaces �tð�ab; KabÞ foliated by a time coordi-
nate t in M. Here, �ab is the induced metric of �t defined
by �ab :¼ gab þ nanb with the future-directed unit normal
na to �t. Kab is the extrinsic curvature Kab :¼
�ð1=2ÞLn�ab, where Ln is the Lie derivative with respect
to na. The coordinate basis ta of the time coordinate t is
decomposed as ta ¼ �na þ �a, where � is the lapse func-
tion and �a is the shift vector.

The D-dimensional Einstein equation ðDÞGab ¼
8�GDTab is decomposed into constraint and evolution

equations. Here, ðDÞGab, Tab, and GD are the

D-dimensional Einstein tensor, the stress-energy tensor,
and the gravitational constant, respectively. First, we define

� :¼ Tabn
anb; ja :¼ �Tbcn

b�c
a;

Sab :¼ Tcd�
c
a�

d
b:

(1)

The Hamiltonian constraint is derived from the Gauss
equation to give

Rþ K2 � KabK
ab ¼ 16�GD�; (2)

where R is the Ricci scalar of the spacelike hypersurface
�t. The momentum constraint is derived from the Codacci
equation to give

DbK
b
a �DaK ¼ 8�GDja; (3)

where Da denotes the covariant derivative with respect to
�ab. The evolution equation of the induced metric �ab is
derived from the definition of the extrinsic curvature as

L t�ab ¼ �2�Kab þDa�b þDb�a; (4)

and the evolution equation of the extrinsic curvature Kab is
derived from the Ricci equation to give

L tKab ¼ �DaDb�þ �ðRab � 2KacK
c
b þ KabKÞ

þ �cDcKab þ KcbDa�
c þ KcaDb�

c

� 8�GD�

�
Sab þ �� S

D� 2
�ab

�
; (5)

where Rab denotes the Ricci tensor with respect to �ab and
S :¼ Scc. The D-dimensional equations are formally dif-
ferent from the 4D equations only in the coefficient of the
last term of Eq. (5). In vacuum, the equations are indepen-
dent of the value of D.
The above expressions are given in the covariant way.

Here, we introduce coordinates xi that span the hypersur-
face �t, where i; j ¼ 1; . . . ; D� 1. In these coordinates,
the line element is written by

ds2 ¼ ��2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ; (6)

and the spatial components �ij of �ab are the inverse of �ij.

The constraint and evolution equations in the coordinate
expressions are obtained just by replacing the indices a, b
to the spatial indices i, j and the Lie derivative Lt to the
coordinate derivative @t in Eqs. (2)–(5).

B. BSSN formalism

Now, we derive the BSSN formalism for higher-
dimensional spacetimes. The basic idea of the BSSN for-
malism is to increase the number of variables as well as
that of constraints in order to guarantee the stability in
numerical computation (e.g., to kill constraint violation
modes). First, �ij is conformally transformed as

~� ij ¼ ��ij; (7)

where the conformal factor � is chosen so that the deter-
minant of ~�ij (denoted by ~�) satisfies the condition

~� ¼ 1: (8)

This is equivalent to setting � ¼ ��1=ðD�1Þ. We choose ~�ij

and � as the fundamental variables.
In the original BSSN formalism for the 4D spacetime,

the conformal factor e�4� was used rather than �. In the

4D puncture formalism, � or W ¼ �1=2 is often used [8].
For evolving the puncture black holes in five dimensions, �
turned out to be a good choice. This is the reason that we
choose � as one of the fundamental variables.
Next, the extrinsic curvature is decomposed into the

trace part and the trace-free part as

Kij ¼ Aij þ K

D� 1
�ij; (9)

where K denotes the trace of Kij and Aij is the trace-free

part. As in the 4D BSSN formalism, K is chosen to be one
of the fundamental variables. The trace-free part Aij is

conformally transformed as

~A ij :¼ �Aij; (10)

and ~Aij is chosen to be one of the fundamental variables.

Hereafter, the indices of ~Aij and ~Aij are raised and lowered

by the conformally transformed metric ~�ij and ~�ij.
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In terms of the variables �, K, ~�ij, and ~Aij, the

Hamiltonian constraint (2) and the momentum constraint
(3) are rewritten as

RþD� 2

D� 1
K2 � ~Aij

~Aij ¼ 16�GD�; (11)

and

@i ~A
ij þ ~�j

ik
~Aik �D� 2

D� 1
~�ijK;i � ðD� 1Þ

2

�;i

�
~Aij

¼ 8�GD ~�
ijji; (12)

where ~�j
ik is the Christoffel symbol with respect to ~�ij and

the comma (; i) denotes the derivative by xi.
The evolution equation of � is derived from Eq. (4) with

Eqs. (7) and (8) to give

ð@t � �i@iÞ� ¼ 2

D� 1
�ð�K � @i�

iÞ: (13)

Multiplying �ab to Eq. (5) and rewriting it with Eqs. (9)–
(11), the evolution equation of K is derived to give

ð@t � �i@iÞK ¼ �DiD
i�þ �

�
~Aij ~Aij þ K2

D� 1

�

þ 8��

D� 2
½ðD� 3Þ�þ S�: (14)

Rewriting Eq. (4) with Eqs. (7), (9), (10), and (13), the
evolution equation of the conformal ðD� 1Þ metric is
derived as

ð@t � �k@kÞ~�ij ¼ �2� ~Aij þ ~�ik@j�
k þ ~�jk@i�

k

� 2

D� 1
@k�

k ~�ij: (15)

The evolution equation of ~Aij is derived by substituting

Eq. (9) with Eqs. (7) and (10) into Eq. (5) and using
Eqs. (11) and (13)–(15), to give

ð@t � �k@kÞ ~Aij ¼ �½�ðDiDj�ÞTF þ �ðRTF
ij � 8�STFij Þ�

þ �ðK ~Aij � 2 ~Aik
~Ak
jÞ þ ~Aik@j�

k

þ ~Akj@i�
k � 2

D� 1
@k�

k ~Aij; (16)

where TF denotes the trace-free part, e.g., RTF
ij ¼ Rij �

R�ij=ðD� 1Þ.
The Ricci tensor is decomposed into two parts as

Rij ¼ ~Rij þ Rð�Þ
ij ; (17)

where ~Rij is the Ricci tensor with respect to ~�ij and R
ð�Þ
ij is

the contribution of the conformal factor. Here, ~Rij has the

terms ð1=2Þ~�klð~�kj;il þ ~�il;kj � ~�kl;ij � ~�ij;klÞ and the first

three terms could be the source of a numerical instability,
as often found in 4D numerical relativity. For stable nu-
merical integration, the following auxiliary variable is

introduced [33]:

~� i :¼ �jk~�i
jk ¼ �~�ik

;k: (18)

We note that another choice Fi :¼ 	jk@k ~�ij can be used as

well [32]. It was found that the numerical results for the
test simulations in this paper do not essentially depend on
the choice.

Using the variable ~�i, ~Rij and Rð�Þ
ij are rewritten as

~R ij ¼ � 1

2
~�kl ~�ij;kl þ 1

2
ð~�ki@j~�

k þ ~�kj@i~�
kÞ � 1

2

�ð~�il;k ~�
kl
;j þ ~�jl;k ~�

kl
;i � ~�l ~�ij;lÞ � ~�l

ik
~�k
jl; (19)

and

R
ð�Þ
ij ¼ ðD� 3Þ

2�
ð�;ij � ~�k

ij�;kÞ � ðD� 3Þ
4

�;i�;j

�2

þ ~�ij ~�
kl

�
�;kl

2�
� ðD� 1Þ�;k�;l

4�2

�
� 1

2
~�ij

�;m

�
~�m;

(20)

where ~� ¼ 1 is used in deriving these equations. As in the
4D case, the second derivatives of ~�ij explicitly appear

only in the first term of Eq. (19).

Since ~�i is one of the dynamical variables in the BSSN
formalism, its evolution equation has to be derived.

Substituting Eq. (15) into @t~�
i ¼ @jð~�ik ~�jl ~�kl;tÞ and elim-

inating ~Aij
;j with Eq. (12), we obtain

ð@t � �j@jÞ~�i ¼ �2 ~Aij@j�þ 2�

�
~�i
jk
~Ajk �D� 2

D� 1
~�ijK;j

� 8�~�ijjj � ðD� 1Þ
2

�;j

�
~Aij

�

� ~�j@j�
i þ 2

D� 1
~�i@j�

j

þD� 3

D� 1
~�ik�j

;jk þ ~�jk�i
;jk: (21)

In summary, the variables to be evolved are �, K, ~�ij,
~Aij, and ~�i (or Fi), and their evolution equations are

Eqs. (13)–(16) and (21), respectively. The conditions (8),

trð ~AijÞ ¼ 0, and (18) are regarded as the new constraints

which arise because the dynamical variables are increased.
As shown above, the BSSN formalism for higher dimen-

sions essentially has the same form as that for the 4D case,
except that some coefficients are changed. Because of the
change in the coefficients, the behavior of the solutions
near the black hole and in the wave zone is changed.
However, this change does not significantly affect the
stability and accuracy in numerical computations at least
for evolutions of the 5D Schwarzschild spacetime and a 5D
spacetime of small-amplitude gravitational waves as
shown in Sec. IV.
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III. CARTOON METHOD

In this section, we describe the cartoon method for 5D
spacetimes. The cartoon method was originally proposed
as a prescription for stable numerical simulations of axi-
symmetric 4D spacetimes. The essence in this method is
not to use curvilinear coordinates but to use the Cartesian
coordinates [34]. We briefly review this (say, the case
‘‘x ¼ y; z’’) in Sec. III A. Next, we extend this method to
5D spacetimes with symmetries. In higher-dimensional
spacetimes, there are various types of possible symmetries.
Here, we consider 4D spaces (i.e., 5D spacetimes) with
Uð1Þ symmetry (the case ‘‘x; y; z ¼ w’’), Uð1Þ �Uð1Þ
symmetry (the case ‘‘x ¼ y, z ¼ w’’), and SOð3Þ symme-
try (the case ‘‘x ¼ y ¼ z; w’’). The cartoon methods for
these three cases are described in Secs. III B, III C, and
III D, respectively.

A. 3D axisymmetric space

For 3D axisymmetric spacelike hypersurfaces in a 4D
spacetime, the 3D Cartesian coordinates ðx; y; zÞ can be
introduced so that the vector @’ :¼ x@y � y@x becomes the

Killing vector. In other words, each spacelike hypersurface
has Uð1Þ symmetry around the z axis. We refer to this case
as x ¼ y; z in short.

One natural coordinate choice for this space is the
cylindrical coordinates ð�;’; zÞ. If these coordinates are
adopted, the problem reduces to a 2D problem (i.e., all
quantities depend only on � and z). However, in these
coordinates, the symmetry axis � ¼ 0 is the coordinate
singularity. On this coordinate singularity, one has to
change the manner of finite differencing because there is
no point of � < 0. This sometimes (not always) causes a
numerical instability, which is known as the finite discre-
tization instability. Although it might be possible to stabi-
lize numerical computations by appropriately modifying
the finite-differencing method, there is the case that the
prescription is not simple or has not been found without
numerical viscosity, e.g., issues for which a long-term
simulation of rotating objects is necessary.

One can avoid this problem by using the Cartesian
coordinates because they have no coordinate singularities.
The shortcoming in the Cartesian coordinates is that Uð1Þ
symmetry does not explicitly appear in equations, and thus,
we have to solve 3D equations. Suppose that the initial data
are given on the ðx; zÞ plane (i.e., ’ ¼ 0). In the case that
the cylindrical coordinates are adopted, the subsequent
evolution of the system is feasible with this data.
However, in the Cartesian coordinates, one cannot calcu-
late the next step only with this data, because the equations
include y derivatives of functions to be solved.

However, we do not have to prepare the data for all
values of y, if the cartoon method is used. In this method, a
few grid points in the neighborhood of the ðx; zÞ plane are
prepared. The number of necessary grid points depends on
the order of numerical accuracy required in the finite

differencing (see the last paragraph of this subsection).
Then, the data at a grid point (x; y � 0; z) are generated
using the data at a point ð�; 0; zÞ [i.e., on the ðx; zÞ plane],
where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

, by use of the symmetry. Because the
grid point is not located at the point ð�; 0; zÞ in general, the
data at this point are determined by an interpolation. The
method of the interpolation depends on the required order
of accuracy (see the last paragraph of this subsection).
Once the data at the grid points y � 0 are known, y
derivatives at y ¼ 0 are calculated and the data on the
ðx; zÞ plane are evolved toward the next time step.
The symmetric relations are derived by the fact that the

Lie derivative of functions with respect to the Killing
vector becomes zero. For a scalar function �ðx; y; zÞ, the
symmetric relation is

�ðx; y; zÞ ¼ �ð�; 0; zÞ: (22)

In order to derive the symmetric relation of a contravariant
vector function Ti, it is convenient to consider the coor-
dinate transformation from the ð�;’Þ coordinates to the
Cartesian coordinates. After expressing Txðx; y; zÞ and
Tyðx; y; zÞ in terms of T�ð�; zÞ and T’ð�; zÞ, the latter
two can be replaced by the relations on the ðx; zÞ plane,
Txð�; 0; zÞ ¼ T�ð�; zÞ and Tyð�; 0; zÞ ¼ �T’ð�; zÞ. This
yields

Txðx; y; zÞ ¼ ðx=�ÞTxð�; 0; zÞ � ðy=�ÞTyð�; 0; zÞ; (23)

Tyðx; y; zÞ ¼ ðy=�ÞTxð�; 0; zÞ þ ðx=�ÞTyð�; 0; zÞ: (24)

The relation between Tzðx; y; zÞ and Tzð�; 0; zÞ is the same
as that for a scalar, described in Eq. (22). A covariant
vector Tiðx; y; zÞ has the same symmetric relation as that
of Tiðx; y; zÞ.
In a similar manner, the symmetric relation of a sym-

metric covariant tensor function Sij ¼ SðijÞ is obtained.

Szzðx; y; zÞ has the same relation as that for a scalar,
Eq. (22), and Szx and Szy have the same relations as x

and y components of a vector function, Eqs. (23) and (24).
For the other components, the following relations are
derived:

Sxxðx; y; zÞ ¼ ðx=�Þ2Sxxð�; 0; zÞ þ ðy=�Þ2Syyð�; 0; zÞ
� ð2xy=�2ÞSxyð�; 0; zÞ; (25)

Syyðx; y; zÞ ¼ ðy=�Þ2Sxxð�; 0; zÞ þ ðx=�Þ2Syyð�; 0; zÞ
þ ð2xy=�2ÞSxyð�; 0; zÞ; (26)

Sxyðx; y; zÞ ¼ ðxy=�2Þ½Sxxð�; 0; zÞ � Syyð�; 0; zÞ�
þ ½ðx2 � y2Þ=�2�Sxyð�; 0; zÞ: (27)

Again, a contravariant symmetric tensor Sij has the same
symmetric relation as that of Sij.
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Using the above relations, the data for y � 0 are gen-
erated using the data in the ðx; zÞ plane, and thus, the
derivatives with respect to y can be calculated. The re-
quired grid number is 5 for the fourth-order finite differ-
encing (i.e., the data at y ¼ ��y and �2�y have to be
determined, where �y is the grid spacing), and 3 for the
second-order one. For obtaining the values at a point ð�; zÞ
on the ðx; zÞ plane, interpolation is necessary. To keep the
fourth-order accuracy, we have to use at least fourth-order
accurate interpolation (e.g., fourth-order Lagrangian
interpolation).

B. 4D space with Uð1Þ symmetry

In the following, we describe three cartoon methods in
5D spacetimes (4D spaces) of three types of symmetries,
denoting the Cartesian coordinates by ðx; y; z; wÞ and as-
suming that the 4D space is topologically identical to the
4D Euclidean space.

First, we consider a 4D space of Uð1Þ symmetry whose
corresponding Killing vector is @c ¼ z@w � w@z (i.e.,

tanc ¼ w=z). An example of a system of this symmetry
is an off-axis collision of two black holes. Suppose that the
centers of the two black holes are located in the ðx; yÞ
plane. In this case, the directions orthogonal to the ðx; yÞ
plane (i.e., the direction of z and w axes) are equivalent,
and thus, the space has theUð1Þ symmetry. We refer to this
symmetric space as x; y; z ¼ w in short.

Such a spacetime can be simulated as a 3þ 1 problem
using the cartoon method in a similar prescription to that in
the 3D axisymmetric space. We first prepare the grid points
in the ðx; y; zÞ plane and a few neighboring grid points in
thew direction. Then, the data at a point (x; y; z; w � 0) are
generated by the data at a point ðx; y; �; 0Þ with symmetric

relations, where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ w2

p
. The symmetric relations

are essentially the same as those in the 3D axisymmetric
case: It is sufficient to replace the indices ðx; yÞ in
Eqs. (23)–(27) to ðw; zÞ. As for the other components, Tx,
Ty, Sxx, Syy, and Sxy behave like scalar functions, and

ðSxz; SxwÞ and ðSyz; SywÞ behave like z and w components

of vector functions ðTz; TwÞ.

C. 4D space with Uð1Þ � Uð1Þ symmetry

Next, we describe the cartoon method in a 4D space of
Uð1Þ �Uð1Þ symmetry, where two Killing vector fields,
@’ ¼ x@y � y@x and @c ¼ z@w � w@z, are present. An

example of a spacetime of this symmetry is a 5D rotating
black hole spacetime with two rotation parameters [23]. In
this spacetime, the black hole is rotating with respect to the
ðx; yÞ and ðz; wÞ planes simultaneously. Of course, a 5D
rotating black hole with one rotation parameter is also the
case for this symmetry. We refer to such a case as x ¼ y,
z ¼ w in short.

The spacetime of this symmetry can be simulated as a
2þ 1 problem in the cartoon method. We prepare grid

points on the ðx; zÞ- plane and a few neighboring grid points
in both y and w directions. In this symmetry, two cartoons
are necessary: The first cartoon to generate the data in the y
direction, and the second cartoon to generate the data in the
w direction. The symmetric relations for each cartoon are
essentially the same as those in the previous two
subsections.
In numerical simulation, we have the data of points

ðx; 0; z; 0Þ at each time step. Then, we apply the first
cartoon to generate the data for grid points ðx; y; z; 0Þ.
After that, we apply the second cartoon to generate the
data for grid points ðx; y; z; wÞ. Then, all the necessary
derivatives with respect to y and w can be taken and the
data can be evolved to the next time step. This method may
be called the double cartoon method. As we demonstrate in
Sec. IV, the double cartoon method works well as the single
cartoon method.

D. 4D space with SOð3Þ symmetry

Finally, we consider a space of a different type of
symmetry, SOð3Þ symmetry, in which the three Killing
vectors, �1 :¼ y@z � z@y, �2 :¼ z@x � x@z, and �3 :¼
x@y � y@x are present. In other words, each hypersurface

of w ¼ const is spherically symmetric. An example for a
spacetime of this symmetry is a head-on collision of two
black holes moving along the w axis, because the other
directions x, y, and z are equivalent if the black holes are
not rotating. We refer to this case as x ¼ y ¼ z; w in short.
This spacetime can be simulated as a 2þ 1 problem in

the cartoon method. We prepare grid points in the ðx; wÞ
plane and a few neighboring grid points in both y and z
directions. Using the data on the ðx; wÞ- plane, the data at
points ðx; y; z; wÞ can be calculated by the SOð3Þ symmetric

relations using the data at the point ðr; 0; 0; wÞ where r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. The data at the point ðr; 0; 0; wÞ should be

determined by an interpolation as before.
In this case, the symmetry relations are different from

those in the previous cases. For scalar functions, it is trivial
as

�ðx; y; z; wÞ ¼ �ðr; 0; 0; wÞ: (28)

In order to derive the symmetry relations for vector and
symmetric tensor functions, we have to know the
SOð3Þ-symmetric forms of a vector and a symmetric ten-
sor, which can be found by the conditions L�n

Ti ¼ 0 and

L�n
Sij ¼ 0. For this purpose, we first describe their com-

ponents in the spherical-polar coordinates ðr; 
; ’; wÞ in-
troduced by x ¼ r sin
 cos’, y ¼ r sin
 sin’, and
z ¼ r cos
. Then, in the SOð3Þ symmetry, they are written
as

Tiðr; 
; ’; wÞ ¼ ðTrðr; wÞ; 0; 0; Twðr; wÞÞ; (29)

and
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Sijðr; 
; ’;wÞ ¼
Srrðr; wÞ 0 0 Srwðr; wÞ

� S

ðr; wÞ 0 0
� � S

ðr; wÞsin2
 0
� � � Swwðr; wÞ

0
BBB@

1
CCCA: (30)

Now we transform these expressions to the Cartesian co-
ordinates and use the relations on the ðx; wÞ plane to give

Txðx; y; z; wÞ ¼ ðx=rÞTxðr; 0; 0; wÞ; (31)

Tyðx; y; z; wÞ ¼ ðy=rÞTxðr; 0; 0; wÞ; (32)

Tzðx; y; z; wÞ ¼ ðz=rÞTxðr; 0; 0; wÞ; (33)

for a vector function, and

Sxxðx; y; z; wÞ ¼ ðx2=r2ÞSxxðr; 0; 0; wÞ
þ ð1� x2=r2ÞSyyðr; 0; 0; wÞ; (34)

Syyðx; y; z; wÞ ¼ ðy2=r2ÞSxxðr; 0; 0; wÞ
þ ð1� y2=r2ÞSyyðr; 0; 0; wÞ; (35)

Szzðx; y; z; wÞ ¼ ðz2=r2ÞSxxðr; 0; 0; wÞ
þ ð1� z2=r2ÞSyyðr; 0; 0; wÞ; (36)

Syzðx; y; z; wÞ ¼ ðyz=r2Þ½Sxx � Syy�ðr; 0; 0; wÞ; (37)

Szxðx; y; z; wÞ ¼ ðzx=r2Þ½Sxx � Syy�ðr; 0; 0; wÞ; (38)

Sxyðx; y; z; wÞ ¼ ðxy=r2Þ½Sxx � Syy�ðr; 0; 0; wÞ; (39)

for a tensor function. Note that Tw and Sww satisfy the
symmetry relation of a scalar function, and ðSwx; Swy; SwzÞ
satisfy that of ðx; y; zÞ components of a vector function.

Using these symmetry relations, one can calculate the
data at grid points in the neighborhood of the ðx; wÞ plane
(i.e., y; z � 0), and thus the evolution can be performed as
a 2þ 1 problem. Note that by eliminating the w direction,
the above symmetry relations can be used also for simu-
lating a 3D spherically symmetric space in a 4D spacetime.

IV. CODE TESTS

In the previous two sections, we have described neces-
sary ingredients for higher-dimensional numerical relativ-
ity, i.e., the BSSN formalism and the cartoon method.
Based on these, we have implemented several codes for
simulating 5D spacetimes in the following manner. As
often done in the 4D numerical relativity (e.g.,
Ref. [39]), we adopt the centered fourth-order finite differ-
encing in the space directions, except the advection terms
such as �k@k ~�ij for which the fourth-order upwind finite

differencing is adopted. The time evolution is carried out
using the fourth-order Runge-Kutta method, where the

Courant number is adopted to be 0.5. Vertex-centered grids
are employed for all the space directions. In the present
codes, we do not implement adaptive mesh refinement
(AMR) algorithm. We plan to combine our codes with
our AMR code (SACRA code) in the future [40].
So far, we have developed the 3D codes for spacetimes

with Uð1Þ symmetry (x; y; z ¼ w), the 2D codes for space-
times with Uð1Þ �Uð1Þ symmetry (x ¼ y, z ¼ w), and
with SOð3Þ symmetry (x ¼ y ¼ z; w). The authors of this
paper have independently developed the codes, and
checked that the numerical results for test simulations
derived by the two codes agree. In addition, Yoshino has
made a 1D code for spacetimes with SOð4Þ symmetry
(‘‘x ¼ y ¼ z ¼ w’’ in short). In the following, we present
the results by Yoshino’s code, for which the uniform grid
with the grid spacing�x is always adopted for all the space
directions.
In order to prove the validity of our codes, we consider

that at least the following two test simulations have to be
successfully carried out as in the 4D numerical relativity.
One is the evolution of the 5D Schwarzschild black hole,
and the other is the evolution of a spacetime composed of
gravitational waves of small amplitude. Since their metrics
are analytically given, they can be used in the benchmark
tests for calibrating the codes. The results of the test
simulations are reported in Secs. IVA and IVB, respec-
tively. In addition, we show in Sec. IVB that the energy
flux can be correctly calculated for linear gravitational
waves using the Landau-Lifshitz pseudotensor.

A. 5D Schwarzschild spacetime

First, we analytically derive the 5D Schwarzschild met-
ric in the geodesic slices and then compare numerical
results with it. Next, we demonstrate that a long-term
evolution of the 5D Schwarzschild spacetime is feasible
in the so-called puncture approach, as in the 4D case (e.g.,
Refs. [8,39,41,42]).

1. Geodesic slices

The well-known metric of a 5D Schwarzschild space-
time is

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2d�2
3; fðrÞ ¼ 1� r2h

r2
;

(40)

where d�2
3 is the line element of a 3D unit sphere and rh is

the Schwarzschild radius
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rh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8G5M

3�

s
: (41)

Here, we consider the Gaussian normal coordinates start-
ing from the t ¼ 0 hypersurface, which is analogous to the
Novikov coordinates in the 4D Schwarzschild spacetime
[43,44]. Let us introduce a geodesic congruence of test
particles that are initially at rest. Each geodesic labels the
radial coordinate. Denoting r0 as the initial value of r for
each geodesic, we define �r by

r0 ¼ �r

�
1þ r2h

4�r2

�
(42)

as the radial coordinate. At t ¼ 0, the coordinate �r agrees
with the so-called isotropic radial coordinate. Adopting the
proper time � for each geodesic as the time coordinate, the
geodesic equations are solved to give

r2 ¼ r20 � ðrh=r0Þ2�2; (43)

and

t ¼
ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

q
�þ rh

2
log

���������þ ðr20=rhÞ
ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p
�� ðr20=rhÞ

ffiffiffiffiffiffiffiffiffiffiffi
fðr0Þ

p ��������: (44)

Substituting these equations into Eq. (40) and transforming
r0 to �r with Eq. (42), we obtain

ds2 ¼ �d�2 þ ½r20 þ ðrh=r0Þ2�2�2
½r20 � ðrh=r0Þ2�2�

d�r2

�r2

þ ½r20 � ðrh=r0Þ2�2�d�2
3: (45)

This line element shows that the �r �r component of the
metric diverges at � ¼ r20=rh. Curvature invariants indeed

show that the curvature singularity appears at this time.

This implies that at the time � ¼ rh the slice hits the
singularity at �r ¼ rh=2.
The derived line element (45) shows the exact solution,

and thus it can be used for test simulations. In this test, we
perform a simulation with the gauge condition � ¼ 1 and
�i ¼ 0, until the computation crashes approximately at the
crash time �crash ¼ rh.
The left-hand panel of Fig. 1 shows the snapshots of xx

component of the conformal 4D metric ~�xx along the x axis
for various time slices as �=rh ¼ 0:5, 0.6, 0.7, 0.8, and 0.9.
For this plot, the grid resolutions �x ¼ 0:1 and 0.05 are
adopted. Here, the units of x are rh=2 (i.e., the event
horizon is initially located at x ¼ 1). We see that the values
of ~�xx rapidly increase and blow up around x ¼ 1, and
agree approximately with the analytic solutions (45) (solid
curves).
The right-hand panel of Fig. 1 plots the averaged error as

a function of the grid spacing �x. Here, the averaged error
is defined by

	� ¼ 1

5

Z 5

0
dxj~�xx � ~�ðaÞ

xx j; (46)

where ~�xx and ~�ðaÞ
xx are numerical and analytic solutions,

respectively, and the integral is numerically performed
using the data on the grid points. This figure indicates
that the numerical error approaches zero approximately
at the fourth-order convergence.
Here, the figures are plotted for the results obtained by

the 1D code (x ¼ y ¼ z ¼ w), but essentially the same
results are obtained by the 2D codes (x ¼ y, z ¼ w and
x ¼ y ¼ z; w) and the 3D code (x; y; z ¼ w).
The left-hand panel of Fig. 2 plots the violation of the

Hamiltonian constraint along the x axis at �=rh ¼ 0:9.
Here, the violation is defined by
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FIG. 1. Left-hand panel: Snapshots of ~�xx along the x axis for �=rh ¼ 0:5, 0.6, 0.7, 0.8, and 0.9. The unit of x is rh=2. The grid

resolutions are �x ¼ 0:1 (�) and 0.05 (�). The solid curves denote the analytic solutions, ~�ðaÞ
xx . Right-hand panel: The averaged error,

	�, as a function of �x. Here, the average is taken for the data in the range 0 � x � 5. The upper short line segment shows the relation

of the fourth-order convergence (i.e., a segment with the slope 4).
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H0 :¼ R� 3

4
K2 þ ~Aij

~Aij: (47)

As the surface approaches the singularity, the value of the
constraint violation grows rapidly. However, if we fix the
time � and compare the results by the different grid reso-
lutions �x ¼ 0:1 (�), 0.005 (�), and 0.025 (d), the clear
convergence is seen.

The right-hand panel of Fig. 2 plots the averaged con-
straint violation 	H. Here, the average is defined in the
same manner as Eq. (46). This figure indicates that the
error converges also at the fourth order approximately.

2. Long-term evolution

Next, we show that long-term evolution of a black hole
is feasible using the puncture approach as in the 4D case. In
this test, the initial condition is prepared in the isotropic
coordinates, and then, the evolution is carried out without
excising the black hole interior. As the gauge conditions,
we adopt the generalized version of the dynamical slicing
condition [37,42]

@t� ¼ ����K; (48)

and the �-driver gauge condition [37]

@t�
i ¼ ðD� 1Þ

2ðD� 2Þv
2
longB

i; @tB
i ¼ @t~�

i � ��B
i:

(49)

Here, vlong indicates the propagation speed of a gauge

mode and has to be chosen as 0< vlong � 1. We tried

the choices vlong ¼ 1 and
ffiffiffi
3

p
=2, and found that the stable

numerical evolution is possible in both cases. The choice

vlong ¼
ffiffiffi
3

p
=2 stabilizes the numerical evolution near the

puncture a little more. �� and �� are positive constants

that can be arbitrarily chosen. For ��, we chose several
values between 1.2 and 2.0, and found that the stable and
long-term simulation is feasible irrespective of the value of
��. For ��, we choose 1=5rh.

In the following, we show the results of the numerical
evolution for the case vlong ¼ 1 and �� ¼ 2. The initial

condition of the lapse and shift is chosen as � ¼ ffiffiffiffi
�

p
and

�i ¼ 0. Figure 3 shows the evolution of K at x ¼ rh=2 on
the x axis. The unit of the length is rh=2. The value of K
relaxes to zero after a few oscillations, and the slice
asymptotes to a maximal surface because of the property
of the dynamical slicing condition (48). We evolved this
spacetime up to t ¼ 100rh, and the spacetime relaxes to a
stationary state. Figure 4 shows the values of � and �x

along the x axis at t ¼ 50rh. By this time, the variables
approximately relax to stationary states. These results are
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FIG. 2. Left-hand panel: The violation of the Hamiltonian constraint at the time �=rh ¼ 0:9 for the grid resolutions �x ¼ 0:1 (�),
0.05 (�), and 0.025 (d). Although the violation grows as the 4D hypersurface approaches the singularity, it becomes smaller for a fixed
value of � as the resolution is increased. Right-hand panel: The average, 	H, as a function of the grid spacing �x. The upper short line
segment shows the relation of the fourth-order convergence (i.e., a segment with the slope 4).
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FIG. 3. The evolution of the trace of the extrinsic curvature K
at x ¼ rh=2 (y ¼ z ¼ w ¼ 0) in the puncture gauge. The unit of
t is rh=2. The value of K asymptotes to zero.
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quite similar to the evolution of a 4D Schwarzschild space-
time (compare with Figs. 1 and 5 in Ref. [42]).

The left-hand panel of Fig. 5 plots the violation from the
Hamiltonian constraint defined by Eq. (47) along the x axis
at the time t ¼ 50rh for the grid resolutions �x ¼ 0:1 (�),
0.05 (�), and 0.025 (d). After the long-term evolution, the
violation in the neighborhood of the puncture x ¼ 0 grows
large to becomeOð1Þ. This is because the analyticity of the
solution is violated at the puncture. However, the error
rapidly decreases as x is increased, indicating the reliability
of the numerical results. It is also found that the spatial
patterns ofH0 depend on the resolution after the long-term
evolution, t 	 rh, although initially they have similar
shapes.

The right-hand panel of Fig. 5 plots the averaged con-
straint violation 	H in the range 0:5 � x � 10 defined in

the same manner as Eq. (46). Because of the error gener-
ated at the puncture, the value of 	H does not show the
fourth-order convergence. Nevertheless, the violation rap-
idly decreases as the grid resolution is increased.
The obtained stationary data are expected to agree with

those of the limit surface of the maximally sliced evolu-
tion. In the 4D case, the limit surface of K ¼ 0 was
analytically determined [45,46] and also the asymptotic
solution in the numerical simulation agrees with it. A
simulation [42] also demonstrates that the spacetime re-
mains in a stationary state if the limit surface is adopted as
the initial condition. The limit surface exists also in a
higher-dimensional Schwarzschild spacetime and it pro-
vides a useful benchmark for calibrating codes for higher
dimensions, as shown in Ref. [47].
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FIG. 4. The values of the lapse � and the shift vector �x along the x axis at the time t ¼ 50rh. Here, the unit of x is rh=2.
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FIG. 5. Left-hand panel: The violation of the Hamiltonian constraint at the time t ¼ 50rh for the grid resolutions �x ¼ 0:1 (�),
0.05 (�), and 0.025 (d). After the long-term evolution, the spatial pattern of H0 depends on the resolution, and the error generated at
the puncture is Oð1Þ. But the general tendency is that the violation becomes smaller as the resolution is increased. Right-hand panel:
The average, 	H , in the range 0:5 � x � 10 as a function of the grid spacing�x. The lower short line segment shows the relation of the
fourth-order convergence (i.e., a segment with the slope 4). The convergence is worse than the fourth-order convergence because of the
error generated at the puncture.
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B. Linear gravitational waves

We turn our attention to a simulation for propagation of
gravitational waves of small amplitude. Here, we focus
only on gravitational waves that preserve Uð1Þ �Uð1Þ
symmetry (x ¼ y, z ¼ w) or SOð3Þ symmetry (x ¼ y ¼
z; w). In Appendix A, the linearized Einstein equations of
such symmetries and their special solutions for the lowest
multipole moment l are described. In this subsection, we
pick up a tensor-mode perturbation with Uð1Þ �Uð1Þ
symmetry for the test simulation.

As the perturbative solution used for the test simulation,
we adopt the spatial metric (A35) with Eq. (A34) and the
special solution for hðt; rÞ given by Eq. (A23) with the
gauge condition � ¼ 1 and �i ¼ 0. Here, we set A ¼ 1=6
and B ¼ 0 in Eq. (A34), and A0 ¼ 0:015 and !0 ¼ 2 in
Eq. (A23). In the simulation, we evolved the initial data
that correspond to the perturbative solution under the same
gauge condition � ¼ 1 and �i ¼ 0. The left-hand panel of
Fig. 6 compares the analytic solution for the linearized
Einstein equation (solid curves) and the numerical results
(dotted points) obtained by the 2D x ¼ y, z ¼ w code
(where the double cartoon method is used). The values of
�zz are plotted along the x axis for t ¼ 1; 2; . . . ; 10. The
two results agree well, indicating the validity of our code.

The right-hand panel of Fig. 6 shows the deviation of the
numerical solution from the analytic solution of the per-
turbation as a function of grid sizes �x (black squares,j).
Here, we used the data of �xx on the ðx; zÞ plane at t ¼ 3

and evaluated the deviation by taking the average of j�xx �
�ðaÞ
xx j in the region 0 � x � 6 and 0 � z � 6. The deviation

scarcely depends on �x, and thus it is not caused by the
grid resolution. The deviation primarily comes from the
fact that the perturbative solution ignores the second- and

higher-order quantities in hij, whereas the numerical simu-

lation is carried out by the fully nonlinear evolution equa-
tions. Indeed, the order of the difference 
10�5 agrees
with the magnitude of the nonlinear effect for our chosen
wave amplitude.
Squares (h) in the same panel show the difference of the

numerical data computed with the grid resolutions �x �
0:1 from the one with the grid resolution �x ¼ 0:05. The
difference decreases approximately at the fourth order,
implying that our numerical solution achieves the fourth-
order convergence.
Using the analytic solution of the linearized Einstein

equation, we can also test extraction methods of
gravitational-wave energy flux from the numerical data.
The Newman-Penrose variable is now widely used for
extracting radiated energy of gravitational waves in the
4D numerical relativity. However, the formalism for the
extraction based on theWeyl scalar has not been developed
in higher dimensions. Thus, for the calculation of the
energy flux, we adopt the Landau-Lifshitz pseudotensor
t
�
LL [38], whose D-dimensional form is given in
Appendix B. Because t

�
LL is not a tensor, it is a

coordinate-dependent quantity in general. However, as
discussed in p. 85 of Ref. [19], the total amount of gravi-
tational energy and the total radiated energy, Eqs. (B8) and
(B9), are shown to be the gauge-invariant quantities for the
linear gravitational waves of a perturbed flat spacetime up
to second order with respect to the metric perturbation.
Let r ¼ robs be the radius of the extraction of

gravitational-wave energy flux. The integrated energy
flux Erad through the surface r ¼ robs is evaluated by

EradðrobsÞ ¼
Z

t0rLLdSdt; (50)
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FIG. 6. Left-hand panel: Snapshots of �zz along the x axis for t ¼ 1; 2; . . . ; 10 for propagation of a gravitational-wave packet. The
dotted points (d) and solid curves denote the numerical results and perturbative solutions, respectively. Right-hand panel: The
averaged deviation of �xx from the analytic perturbative solution (j) and that from the numerical data with the grid resolution
�x ¼ 0:05 (h) as functions of �x. Here, the data at time t ¼ 3 are used and the average is taken for the data in the range 0 � x � 6
and 0 � z � 6. The upper short line segment shows the relation of the fourth-order convergence (i.e., a segment with the slope 4).
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where dS is the area element of a hypersphere of r ¼ robs.
Here, the second-order expression of the Landau-Lifshitz
pseudotensor with respect to the perturbative quantities is
used [see Eq. (B6) and subsequent explanation]. We evalu-
ate EradðrobsÞ both for the perturbative solution and for the
full numerical solution, and compare the two results.

The value of EradðrobsÞ for the perturbative solution is
evaluated semianalytically by proceeding with the integra-
tions of Eq. (50) numerically. Figure 7 shows the value of
8�G5Erad!

2
0 as a function of robs!0 by the solid curve. Erad

changes from zero to a constant value ’ 0:009 25=8�G5!
2
0

as robs!0 increases from zero to 40. The value of Erad near
the center robs!0 
 1 does not have a definite meaning
because the Landau-Lifshitz pseudotensor is not gauge
invariant. However, the asymptotic value of Erad for
robs!0 	 1 is gauge invariant and should indicate the
correct amount of the radiated energy. Note that because
of the conservation law (B7), @t

�
LL ¼ 0, the integrated

energy flux EradðrobsÞ has to be equal to the initial amount
of energy within the surface r ¼ robs,

EðrobsÞ ¼
Z
r�robs

t00LLdV; (51)

where dV is a volume element of the 4D space. This is
directly checked by the numerical integrations.

In order to calculate EradðrobsÞ for the numerical solu-
tion, we proceed as follows: At each time step, we define
the perturbed quantities as htt ¼ �2ð�� 1Þ, hti ¼ �i, and
hij ¼ �ij � 	ij, and evaluate t

i0 at r ¼ robs using Eq. (B6).

Then, we calculate the integral

dErad

dt
¼

Z
ti0n̂idS; (52)

that gives the energy flux through a surface r ¼ robs, where
n̂i is the outward unit normal to the surface. Finally,
dErad=dt is integrated from the initial time to the final
time to obtain EradðrobsÞ. In order to evaluate the metric
functions for a surface of r ¼ robs, we used linear, qua-
dratic, and cubic interpolations and compared the results.
Although relatively large deviation from the analytic result
is seen for the linear interpolation, the deviation becomes
smaller when the quadratic interpolation is used. The result
of the cubic interpolation did not improve that of the
quadratic interpolation. This is because in these cases,
the error primarily comes from the error generated at the
outer boundary (i.e., the error due to the inaccuracy of the
outgoing boundary condition) which is approximately at
the second order with respect to the grid size.
Figure 7 shows the results of 8�G5Erad!

2
0 evaluated by

the quadratic interpolation at several observation points for
the grid resolutions �x ¼ 0:1 (�), 0.15 (m), and 0.2 (�).
The deviation decreases as the resolution is increased and
the numerical data approach the analytic result.
We also evolved the gravitational-wave packet using the

dynamical slicing and �-driver conditions and checked that
Erad depends very weakly on the initial choice of the lapse
and shift as long as the initial value of �� 1 and �i is
small. This is natural because the gauge invariance of Erad

is guaranteed for robs!0 	 1. Therefore, we conclude that
the extraction of gravitational-wave energy flux by the
Landau-Lifshitz pseudotensor works well, as far as the
amplitude of gravitational waves is sufficiently small at
the extracted region (i.e., in the wave zone).

V. SUMMARY

This paper describes the formulations for numerical
relativity in higher dimensions and reports the new codes
for simulating 5D spacetimes. We derived the BSSN for-
malism for higher-dimensional spacetimes and also
studied the cartoon method in 5D spacetimes of Uð1Þ
symmetry (x ¼ y; z; w), Uð1Þ �Uð1Þ symmetry (x ¼ y,
z ¼ w), and SOð3Þ symmetry (x ¼ y ¼ z; w). Based on
the BSSN formalism and the cartoon methods, we have
implemented the new 5D numerical relativity codes, and
tested them by evolving the 5D Schwarzschild spacetime
and the spacetime composed of gravitational waves of
small amplitude. The numerical results converge to the
analytic solutions with improving the grid resolution at
the correct order (fourth order). It was also demonstrated
that the 5D Schwarzschild spacetime can be evolved for a
long time by the puncture approach, as in the 4D case.
We proposed the method of extracting gravitational-

wave energy flux by the Landau-Lifshitz pseudotensor
and tested this method. We showed that the integrated
energy fluxes calculated at several surfaces r ¼ robs agree
well with the semianalytic solution derived by perturbative
calculations. Furthermore, it was confirmed that the result
is insensitive to the gauge conditions for the lapse and shift.
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FIG. 7. The integrated energy flux 8�G5Erad!
2
0 calculated by

the Landau-Lifshitz pseudotensor as a function of the extraction
radii robs!0 for the analytic solution (solid curve) and for the
numerical results computed with the grid resolutions
�x ¼ 0:1 (�), 0.15 (m), and 0.2 (�). The inset shows the
enlarged figure for the region 31 � robs!0 � 40.
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These results indicate that the energy extraction by the
Landau-Lifshitz pseudotensor works well. The remaining
problem would be to check that the extraction in the wave
zone works well even when the central region is highly
nonlinear, e.g., a head-on collision of two black holes. This
will be tested by performing a simulation of Brill wave
spacetime in five dimensions and by comparing the ADM
mass of the initial data and the energy radiated during the
evolution. Also, it is necessary to check if the extraction of
the angular momentum is possible. We expect that the
radiated angular momentum also can be calculated by the
Landau-Lifshitz pseudotensor using a similar manner to
the 4D case [48].

As discussed in Sec. I, there are many interesting issues
of nonlinear dynamics in higher-dimensional gravity,
which should be studied in numerical relativity. In this
paper, we have prepared the tools necessary for simulating
higher-dimensional spacetimes. Our next step is to apply
our codes to the unsolved problems.
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APPENDIX A: LINEAR GRAVITATIONALWAVES
IN THE 5D SPACETIME

In this section, we describe solutions of the linearized
Einstein equations in the 5D flat spacetime focusing on the
perturbations preserving Uð1Þ �Uð1Þ symmetry and
SOð3Þ symmetry. In the following, we denote the metric
perturbation as h�, which obeys the linearized Einstein

equation

	G�½h��� ¼ 0: (A1)

The analysis for perturbations of higher-dimensional
Schwarzschild black holes described in Ref. [49] is par-
tially used, since this formulation is applicable also for the
flat spacetime. In their approach, the perturbation is de-
composed into the scalar, vector, and tensor modes (with
respect to the 3D unit sphere) using spherical harmonic
functions, and the master equations are derived for the
gauge-invariant variables. We adopt their method for
spherical harmonic expansion but do not use the master

equations, because we are interested in explicit special
solutions for which the master equations are not necessary.

1. Perturbation with Uð1Þ � Uð1Þ symmetry

We here derive a solution of Uð1Þ �Uð1Þ symmetry for
Eq. (A1). Denoting the coordinates by ðt; x; y; z; wÞ, we
introduce the following curvilinear coordinates:

x ¼ r sin
 cos’; (A2)

y ¼ r sin
 sin’; (A3)

z ¼ r cos
 cosc ; (A4)

w ¼ r cos
 sinc : (A5)

In these coordinates, the line element of the flat space is

dl2 ¼ dr2 þ r2ðd
2 þ sin2
d’2 þ cos2
dc 2Þ: (A6)

For the Uð1Þ �Uð1Þ symmetry case, the linear perturba-
tion h� satisfies

@h�

@’
¼ @h�

@c
¼ 0; (A7)

since @’ and @c are the Killing vectors.

In the gauge condition with � ¼ 1 and �k ¼ 0 (i.e.,
h00 ¼ h0i ¼ 0), the spatial components of the linear per-
turbation hij satisfy

€h ij ¼ �hij; (A8)

where � is the flat 4D Laplacian. The Hamiltonian and
momentum constraints in the linear approximation give

�g ijhij ¼ 0; (A9)

�D ihij ¼ aj; (A10)

where �gij is the 4D flat space metric in the curvilinear

coordinates and �Di is the covariant derivative with respect
to �gij. aj denotes a constant vector determined at the initial

state, which is set to be zero in the following for simplicity.

a. Scalar mode

The scalar mode (with respect to a 3D unit sphere)
is expanded in terms of scalar harmonic functions S on a
3D unit sphere with the metric d�2 ¼ �IJdz

IdzJ ¼ d
2 þ
sin2
d’2 þ cos2
dc 2, which satisfy the equation

½�̂3 þ lðlþ 2Þ�S ¼ 0; (A11)

where �̂3 ¼ D̂ID̂I is the Laplace operator on the 3D unit
sphere. In the following, we focus only on solutions of the
lowest-order multipole moment l ¼ 2, for which the har-
monic function is

S ¼ 2cos2
� 1: (A12)
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The scalar-mode perturbation is given in the form

hij ¼ aðt; rÞS rbðt; rÞSJ

� r2½cðt; rÞS�IJ þ dðt; rÞSIJ�
� �

; (A13)

where

S J :¼ D̂JS; and

SIJ :¼ 1

lðlþ 2Þ D̂ID̂JSþ 1

3
�IJS;

(A14)

or more explicitly,

S J ¼ ð�4 sin
 cos
; 0; 0Þ; (A15)

S IJ ¼ 1

6
�

1� 2cos2
 0 0
� sin2
ðcos2
� 2Þ 0
� � cos2
ð1þ cos2
Þ

0
@

1
A: (A16)

Equation (A9) gives aþ 3c ¼ 0, and Eq. (A10) yields

8b ¼ 4aþ ra;r; (A17)

5

12
d ¼ 4bþ rb;r þ c: (A18)

The rr component of Eq. (A8) with Eq. (A17) gives a wave
equation for a:

€a ¼ a;rr þ 7

r
a;r: (A19)

Equations (A17) and (A18) imply that once a is computed
from the equation (A19), b, c, and d are subsequently
determined. The obtained solution is guaranteed to satisfy
other components of Eq. (A8).

Defining a � u=r3, we obtain the equation

€u ¼ u;rr þ 1

r
u;r � n2

r2
u: (A20)

Here, n ¼ lþ 1 ¼ 3. The formal solution of this equation
is written as

u ¼ Re

�Z
d!fð!Þei!tJnð!rÞ

�
; (A21)

where fð!Þ is an arbitrary function of !, and Jn is the
Bessel function of nth order. In the integral expression, it is
written by

JnðzÞ ¼ 1

2�

Z 2�

0
d# cosðn# � z sin#Þ: (A22)

To constitute a solution for the propagation of a

gravitational-wave packet, we set fð!Þ ¼
�i

ffiffiffiffiffiffiffi
2�

p
A0e

�!2=2!2
0 . Then, Eq. (A21) is integrated to give

uðt; rÞ ¼ A0!0

Z 2�

0
d# sinðn#Þe�!2

0ðt�r sin#Þ2=2: (A23)

In this case, u ¼ 0 at t ¼ 0, and thus hij ¼ 0, whereas the

extrinsic curvature Kij ¼ � _hij=2 is not zero because

_uð0; rÞ ¼ rA0!
3
0

Z 2�

0
d# sinðn#Þ sin#e�ð!0r sin#Þ2=2

(A24)

is not zero at t ¼ 0.

b. Vector mode

Perturbation hij of the vector type is expanded in terms

of the harmonic vectors VI satisfying

½�̂3 þ lðlþ 2Þ � 1�VI ¼ 0; (A25)

D̂ JV
J ¼ 0: (A26)

Under the Uð1Þ �Uð1Þ symmetry, only the modes for odd
l numbers are nonzero. Since the l ¼ 1 mode denotes a
stationary perturbation with angular momentum, the low-
est value of l is 3 for the nonstationary perturbation. For
this mode,

V J ¼ ð0; Aðsin2
� 2=3Þ; Bðcos2
� 2=3ÞÞ; (A27)

where A and B are arbitrary constants. The perturbation is
given in the form

hij ¼ 0 ð1=rÞkðt; rÞVJ

� roðt; rÞVIJ

� �
; (A28)

where VIJ is defined by

V IJ :¼ 1

2
ðD̂IVJ þ D̂JVIÞ

¼
0 Asin3
 cos
 �B sin
cos3

� 0 0
� � 0

0
B@

1
CA: (A29)

From Eqs. (A8) and (A10), the equations for k and o are
derived as

€k ¼ k;rr þ 1

r
k;r � 16

r2
k; (A30)

HIROTAKA YOSHINO AND MASARU SHIBATA PHYSICAL REVIEW D 80, 084025 (2009)

084025-14



6o ¼ k;r þ 2

r
k: (A31)

Here, Eq. (A30) has the same form as Eq. (A20) but with
n ¼ 4. Hence, a special solution for kðt; rÞ is given by
Eq. (A23) with n ¼ 4, and then oðt; rÞ is calculated from
Eq. (A31).

c. Tensor mode

Perturbation hij of the tensor type is expanded in terms

of the harmonic tensors TIJ satisfying

½�̂3 þ lðlþ 2Þ � 2�TIJ ¼ 0; (A32)

T I
I ¼ 0; D̂JT

J
I ¼ 0: (A33)

Under Uð1Þ �Uð1Þ symmetry, the possible harmonic ten-
sors for l ¼ 2 are

T IJ ¼
A 0 0
� Asin2
ð1� 3sin2
Þ Bsin2
cos2

� � Acos2
ð3sin2
� 2Þ

0
@

1
A;

(A34)

where A and B are arbitrary constants. The perturbation is
given in the form

hij ¼ 0 0
� rhðt; rÞTIJ

� �
; (A35)

and from Eq. (A8), the equation for h becomes

€h ¼ h;rr þ 1

r
h;r � 9

r2
h: (A36)

This is the same equation as Eq. (A20), and thus a special
solution is given by Eq. (A23) with n ¼ 3.

2. Perturbation with SOð3Þ symmetry

Next, we derive solutions of a perturbation of SOð3Þ
symmetry. For the Minkowski coordinates ðt; x; y; z; wÞ, we
introduce the following hyperspherical coordinates:

x ¼ r sin
 sin’ sinc ; (A37)

y ¼ r sin
 sin’ cosc ; (A38)

z ¼ r sin
 cos’; (A39)

w ¼ r cos
: (A40)

Then, the line element of the flat space is given by

dl2 ¼ dr2 þ r2ðd
2 þ sin2
d’2 þ sin2
sin2’dc 2Þ:
(A41)

Here, we consider solutions of SOð3Þ symmetry with the
Killing vectors

� 1 ¼ � cosc @’ þ cot’ sinc @c ; (A42)

� 2 ¼ sinc @’ þ cot’ cosc @c ; (A43)

� 3 ¼ @c : (A44)

Under the requirement of this symmetry, the vector and
tensor modes do not exist, because there are no vector and
tensor harmonic functions that satisfy L�nVI ¼ 0 and

L�n
TIJ ¼ 0. Therefore, only the scalar mode should be

analyzed.
The scalar harmonic function defined by Eq. (A11) on a

3D unit sphere with the metric d�2 ¼ �IJdz
IdzJ ¼ d
2 þ

sin2
d’2 þ sin2
sin2’dc 2 is

S ¼ 4cos2
� 1; for l ¼ 2: (A45)

The metric perturbation is given in the same form as
Eq. (A13). Here, definitions for SI and SIJ are the same
as Eq. (A14), and their explicit forms in this case are

S J ¼ ð�8 sin
 cos
; 0; 0Þ; (A46)

S IJ ¼ 1

3
sin2
�

2 0 0
� �sin2
 0
� � �sin2
sin2’

0
@

1
A: (A47)

The equations for a, b, c, and d are the same as Eqs. (A17)–
(A19), and a special solution for u ¼ r3a is given by the
same formula as Eq. (A23).

APPENDIX B: LANDAU-LIFSHITZ
PSEUDOTENSOR

In this section, we derive the Landau-Lifshitz pseudo-
tensor in a D-dimensional spacetime M with the metric
g�. Following [38], we define

~g� ¼ ffiffiffiffiffiffiffi�g
p

g�; (B1)

where g is the determinant of the metric, and then we
introduce the superpotential

H��� ¼ ~g�~g�� � ~g��~g�: (B2)

The Landau-Lifshitz pseudotensor is defined by

16�GDt
�
LL ¼ ð�gÞ�1H���

;�� � ð2R� � g�RÞ: (B3)

From this definition, the conservation law is derived:

½ð�gÞðT� þ t
�
LL Þ�;� ¼ 0: (B4)

Because the Landau-Lifshitz pseudotensor is not a tensor,
it does not have a covariant meaning in general. However,
for a perturbed flat spacetime, the leading-order terms of
t
�
LL with respect to the perturbative quantities can be used
to evaluate the total energy and total radiated energy of the
gravitational field in a gauge-invariant manner (see below).
In Ref. [38], two expressions for t�

LL are given. The first
one is the expression in terms of the Christoffel symbols,
and this expression holds for arbitrary dimensionality D.
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The second one is the expression by the metric functions, and it is modified to give

16�GDð�gÞt�
LL ¼ ~g�

;�~g
��

;� � ~g�
;�~g

��
;� þ 1

2
g�g��~g

��
;�~g

��
;� � ðg�g��~g

��
;�~g

��
;� þ g��g��~g

�
;�~g

��
;�Þ

þ g��g
��~g�

;�~g
��

;� þ 1

4ðD� 2Þ ð2g
�g�� � g�g��Þ½ðD� 2Þg��g�	 � g��g�	�~g�	;�~g��;�

(B5)

inD dimensions. Let us consider the perturbation on a flat spacetime, whose metric is g� ¼ �� þ h�, where �� is the
flat metric in the Minkowski coordinates. Defining ĥ� :¼ h� � ð1=2Þh��, the Landau-Lifshitz pseudotensor is
rewritten as

16�GDt
�
LL ¼ ĥ�

;�ĥ
��

;� � ĥ�
;�ĥ

��
;� þ 1

2
��ĥ��;�ĥ

�
�;� � ðĥ�

;�ĥ�
�;� þ ĥ��;�ĥ�

�;Þ þ ĥ�;�ĥ��;� þ 1

2
ĥ��;ĥ��

;�

� 1

4
��ĥ��;�ĥ��;� � 1

4ðD� 2Þ ð2ĥ
;ĥ;� � ��ĥ;�ĥ;�Þ: (B6)

Here, we have kept only the second-order quantities of the
perturbation. Note that the second-order Landau-Lifshitz
pseudotensor t

�
LL behaves as a tensor against the general

coordinate transformations of the background spacetime
(but for a fixed gauge), by replacing the coordinate deriva-
tives (; ) to the covariant derivatives and the Minkowski
metric �� to the flat background metric �g� in curved
coordinates in Eq. (B6). The quantity t0r in Eq. (50) has to
be evaluated in this way.

For the expression (B6), the conservation law (B4) for a
vacuum spacetime becomes

@t
�
LL ¼ 0 (B7)

in the Minkowski coordinates, which suggests that t
�
LL can

be interpreted as the effective stress-energy tensor of the
gravitational field valid up to second order in h�. Here, we

have to be careful because the Landau-Lifshitz pseudoten-

sor is not the unique quantity satisfying the condition (B7)
and also because this quantity is not gauge-invariant (see
Ref. [19]). However, the total energy

Etot ¼
Z

t00LLdV (B8)

is shown to be the gauge-invariant quantity, where dV is
the volume element of the spacelike hypersurface.
Similarly, the total radiated energy

Erad ¼
Z

t0in̂idSdt (B9)

is gauge-invariant, where dS and n̂i are the area element
and an outward unit normal of a surface at the distant
region. Therefore, the Landau-Lifshitz pseudotensor t�

LL

provides us a reliable method for evaluating the total
radiated energy.
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