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We study the foliation of a D-dimensional spherically symmetric black-hole spacetime with D � 5 by

two kinds of one-parameter families of maximal hypersurfaces: a reflection-symmetric foliation with

respect to the wormhole slot and a stationary foliation that has an infinitely long trumpetlike shape. As in

the four-dimensional case, the foliations by the maximal hypersurfaces avoid the singularity irrespective

of the dimensionality. This indicates that the maximal slicing condition will be useful for simulating

higher-dimensional black-hole spacetimes in numerical relativity. For the case of D ¼ 5, we present

analytic solutions of the intrinsic metric, the extrinsic curvature, the lapse function, and the shift vector for

the foliation by the stationary maximal hypersurfaces. These data will be useful for checking five-

dimensional numerical-relativity codes based on the moving puncture approach.
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I. INTRODUCTION

The merger of binary black holes is one of the most
important sources of gravitational waves for gravitational-
wave detectors. As a result of long-term efforts by many
numerical-relativity researchers, it is now feasible to theo-
retically predict the late stages of the orbital evolution and
merger process of astrophysical binary black holes and
resulting gravitational waves emitted from these systems
by numerical relativity. After the first report of long-term
simulations of binary black holes by Pretorius [1], several
groups have also succeeded in long-term simulations [2–
7]. There are basically three formulations of numerical
relativity for simulating a dynamical black-hole system;
one is the ‘‘generalized harmonic’’ formulation with the
help of ‘‘black-hole excision’’ [1], the second one is the
so-called Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
formulation [8,9] together with the ‘‘moving puncture’’
method, and the third one is the hyperbolic formulation
with the black-hole excision [6]. Among the three different
approaches, the BSSN formalism is currently most widely
used, because of its simplicity in implementing numerical
code.

Another scenario of black-hole formation in the system
of two relativistic objects was pointed out in the nonastro-
physical context [10–12]: mini-black-hole production at
high-energy particle collisions in particle accelerators in
the framework of the brane world scenarios (i.e., the so-
called TeV gravity scenarios) [13,14]. Motivated by this
possibility, mini black holes in the particle colliders have

been studied by many researchers in the past decade from a
wide variety of viewpoints (see [15] for a recent review).
There are two marked differences between the black-hole
production in the colliders and the black-hole mergers in
astrophysical situations. One is the relative speed of the
objects. In the high-energy particle collisions at the LHC,
the � factor of an incoming proton is�7� 103, and that of
its constituent partons can be much larger. The other is the
number D of the spacetime dimensions, because a space-
time dimension higher than four is essential for the TeV
gravity scenarios.
In order to understand well the black-hole production in

the particle colliders, numerical relativity is probably the
unique approach, since this issue is a highly nonlinear
phenomenon. To perform a simulation of this system,
two techniques have to be developed: One is the technique
to handle the high-energy objects, and the other to simulate
higher-dimensional black-hole spacetimes. The first tech-
nique has been developed for the four-dimensional case
[16–18] by modeling the high-energy two-particle system
as the high-velocity two-black-hole collision and extrap-
olating the results to the ultrarelativistic regime. Such
simulations have not been performed for higher-
dimensional spacetimes yet (but see Refs. [19,20] for
studies on the apparent horizon in the system of two
high-energy particles in higher dimensions). Also, a nu-
merical code to simulate higher-dimensional spacetimes
with the BSSN formalism has been recently developed [21]
(see a list of proposed several test simulations and the
successful results).
Usually, in numerical relativity, the four-dimensional

Einstein equations are written in the form of evolution
and constraint equations for geometrical quantities of
three-dimensional space with some conditions to deter-
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mine the coordinate system. Then numerical integrations
of the evolution equations lead to a solution of four-
dimensional spacetime with a foliation by spacelike hyper-
surfaces labeled by the time coordinate. There is large
freedom in choosing a foliation, and, if the foliation is
appropriate for the subject of our interest, the numerical
simulations give us information about a sufficiently wide
domain of the spacetime.

The maximal slicing is a foliation by a one-parameter
family of the spacelike hypersurface with vanishing
mean extrinsic curvature and is known as one of the work-
able slicing conditions in four-dimensional numerical
simulations for astrophysical situations. Thus, in this pa-
per, we investigate the maximal slicing condition for the
D-dimensional spherically symmetric black-hole space-
time (D � 5), known as the Schwarzschild-Tangherlini
solution [22]. This study is motivated by numerical rela-
tivity performed with the BSSN formalism and the punc-
ture method, by which a whole spacetime region including
the black-hole interior is simulated, and, thus, the slicing
condition that avoids the singularity has to be adopted. For
the four-dimensional Schwarzschild black hole, it was
shown that the sequence of maximal slices never plunges
into the curvature singularity but asymptotes to the so-
called limit surface which exists inside the event horizon
[23]. We shall show that the sequence of the maximal slices
avoids the singularity also in the higher-dimensional
Schwarzschild-Tangherlini spacetime. This gives the theo-
retical foundation that both the maximal slicing condition
and the puncture gauge condition (see [24,25]) have the
desired features in higher-dimensional numerical relativity.
Another important aspect of this study is to derive a sta-
tionary sequence of the maximal slicing hypersurfaces that
provides a useful analytic solution for a benchmark test of
higher-dimensional numerical-relativity codes, as dis-
cussed in Refs. [25,26] in the four-dimensional case.

This paper is organized as follows. In Sec. II, we derive
the general solution in the maximal slicing for the
D-dimensional spherically symmetric black-hole space-
time. Then, in Sec. III, we investigate the foliation by the
maximal hypersurfaces which are reflection-symmetric at
the wormhole slot. In Sec. IV, we study the foliation by the
stationary maximal hypersurfaces. After explicitly describ-
ing the analytic solution in the case D ¼ 5, we show its
usefulness as a benchmark test for numerical relativity, by
performing a numerical simulation adopting the analytic
solution as the initial data. Section V is devoted to a
summary. In the appendix, the Kruskal extension of the
Schwarzschild-Tangherlini spacetime is analyzed.

We adopt the geometrized units c ¼ G ¼ 1 throughout
this paper, where c is the speed of light and G is the
gravitational constant of a D-dimensional spacetime. The
Greek indices (�; �; . . . ) represent the components of a
spacetime, while the Latin indices (i; j; . . . ) represent the
components of a space.

II. GENERAL SPHERICALLY SYMMETRIC
MAXIMAL SLICING

Following Estabrook et al. [23], we derive general
spherically symmetric maximal slicing of the
Schwarzschild-Tangherlini spacetime, i.e., the
D-dimensional spherically symmetric vacuum black-hole
solution with D � 5. The general form of its line element
is

ds2 ¼ ��2dt2 þ �ðdrþ ��1�dtÞ2 þ r2d�2
D�2; (1)

where d�2
D�2 is the line element of a (D� 2)-dimensional

unit sphere with the (D� 2) area �D�2 :¼ ðD�
1Þ�ðD�1Þ=2=�ðDþ1

2 Þ and�,�, and � are functions of t and r.

Einstein’s equations with appropriate coordinate condi-
tions lead to the basic equations for �, �, and �. Because
the (D� 2)-dimensional spherical-polar coordinate sys-
tem is uniquely determined in the spherically symmetric
spacetime, two conditions are required to fix the remaining
two coordinates: the condition to determine the foliation of
the spacetime by a one-parameter family of spacelike
hypersurfaces and that to specify the time evolution of
the radial coordinate. In Eq. (1), the radial coordinate has
already been fixed so that �D�2r

D�2 becomes the area of
the (D� 2)-dimensional sphere labeled by r. Thus, we
need only the condition for the foliation. As mentioned
earlier, we shall consider the foliation of this spacetime by
the family of maximal hypersurfaces, where a maximal
hypersurface implies that the trace of the extrinsic curva-
ture vanishes on it, i.e., K ¼ 0.
In the following, we solve Einstein’s equations for the

metric (1) in the maximal slicing condition. From the
maximal slicing condition K ¼ 0, we have

� @tðln�Þ þ ���1@r½lnð�2��1r2ðD�2ÞÞ� ¼ 0: (2)

The Hamiltonian and momentum constraints are calculated
to give

ðD� 1Þ��2�2��1 ¼ ðD� 3Þð�� 1Þ þ r@rðln�Þ; (3)

@r½lnð��1���1rD�2Þ� ¼ 0: (4)

By using @tK ¼ 0, the evolution equation for the trace part
of the extrinsic curvature reduces to

@2r�þ ðD� 2Þr�1@r�� 1
2½@rðln�Þ�@r�

¼ ðD� 2Þr�2½ðD� 3Þð�� 1Þ þ r@rðln�Þ�: (5)

The remaining nontrivial component of the evolution equa-
tions gives

@t½lnð��1�Þ� ¼ ½ð2D� 5Þ���1

þ ðD� 3Þ�2��1ð�� 1Þ�r�1 þ 3��1@r�

þ 1
2ð�2��1 � 4���1Þ@rðln�Þ

� ð���1 þ �2��1Þ@rðln�Þ: (6)
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General solutions for �, �, and � are derived as follows.
From Eq. (4), � is determined as

� ¼ TðtÞ��r�ðD�2Þ; (7)

where TðtÞ is a function of integration. By substituting the
above equation into Eq. (3), the equation for � is derived to
give

@rðrD�3��1Þ ¼ ðD� 3ÞrD�4 � ðD� 1ÞT2r�D; (8)

and by the integration of this equation, we obtain

��1 ¼ 1� ½rgðtÞ=r�D�3 þ T2=r2ðD�2Þ; (9)

where rgðtÞ is a function of integration. Eliminating � in

Eq. (2) by using Eq. (7), and then using Eq. (9), we have

@rð��1=2Þ ¼ �3=2

�
@tðrD�3

g Þr
2T

� @tT

rD�2

�
: (10)

Eliminating � from Eq. (6) and rewriting the result with
help of Eq. (10), we find that rg is a constant:

@trg ¼ 0: (11)

By using this fact, Eq. (10) is integrated to give

� ¼ fðrg=r;TÞ1=2
�
1þ @tT

rD�3
g

Z rg=r

0
xD�4fðx;TÞ�3=2dx

�
;

(12)

where

fðx;TÞ :¼ 1� xD�3 þ T2r�2ðD�2Þ
g x2ðD�2Þ: (13)

If TðtÞ is determined, � and � are subsequently derived
by solving Eqs. (9) and (12), and then � is determined by
Eq. (7). Because TðtÞ is an arbitrary function, we have to
impose an additional condition for TðtÞ for specifying a
solution. In the next section, we impose the reflection
symmetry with respect to the wormhole slot and derive
the function TðtÞ that specifies this slicing. In Sec. IV, we
also consider the case that TðtÞ is constant and give a
different class of the maximal hypersurfaces.

III. REFLECTION-SYMMETRIC FOLIATION

The coordinate system with the choice T ¼ 0 agrees
with the Schwarzschild-Tangherlini static coordinates:

ds2 ¼ �
�
1�

�
rg
r

�
D�3

�
d�2 þ

�
1�

�
rg
r

�
D�3

��1
dr2

þ r2d�2
D�2: (14)

To derive the coordinates for the general foliation with T �
0, we first prepare the maximally extended Schwarzschild-
Tangherlini spacetime (see the appendix for the Kruskal
extension) and then perform coordinate transformation
from the Schwarzschild-Tangherlini coordinates ð�; rÞ to
the coordinates ðt; rÞ for a foliation T � 0. Here the
Schwarzschild-Tangherlini time coordinate � is given as

� ¼ �ðt; rÞ and satisfies

@�

@t
¼ ��1=2; (15)

@�

@r
¼ ��1=2Tr�ðD�2Þ

�
1�

�
rg
r

�
D�3

��1
: (16)

Integrating Eq. (16) gives � in the form

� ¼ Tr�Dþ3
g

Z XðTÞ

rg=r

xD�4

ðxD�3 � 1Þfðx;TÞ1=2 dx; (17)

where XðTÞ is a function of integration. By substituting the
above equation into Eq. (15), the equation for X is derived
as

dX

dT
¼ T�1X4�DðXD�3 � 1ÞfðX;TÞ1=2

�
�
rD�3
g

@tT
þ

Z X

0

xD�4

fðx;TÞ3=2 dx
�
: (18)

Here we require the hypersurface to have a reflection
symmetry with respect to the wormhole slot, i.e., � ¼ 0,
which is located in the black-hole interior r ¼ rmin < rg
(see the Kruskal diagram in Fig. 1); this condition deter-
mines TðtÞ. At � ¼ 0, the 1-form r�t, normal to the

limit surface

horizon

r=(2/3)1/2rg

r=rg

singularity

maximal slices

r=0

FIG. 1. The reflection-symmetric maximal slicing in the
Kruskal diagram of Schwarzschild-Tangherlini spacetime with
D ¼ 5. The maximal hypersurfaces with the reflection symmetry
with respect to the wormhole slot � ¼ 0 are depicted by solid
curves. The dotted curves show the r ¼ const lines, while the
dotted straight lines indicate the � ¼ const lines. The singularity,

the limit surface, and the horizon are given by r ¼ 0,
ffiffiffiffiffiffiffiffi
2=3

p
rg,

and rg, respectively.
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hypersurface labeled by t, should be perpendicular to
ð@=@�Þ� because � is a spacelike coordinate in the black-
hole interior, and thus�

@

@�

�
�r�t ¼ 1

��1=2
¼ 0 at � ¼ 0: (19)

Because � should be finite everywhere on the slice, the
following condition has to be satisfied:

1

�ðrmin;TÞ ¼ 0: (20)

Note that the circumferential radius r takes the minimal
value rmin at � ¼ 0 in the black-hole interior because of the
requirement of the reflection symmetry. Equation (20)
determines the value of rmin for a given value of T, i.e.,
rmin ¼ rminðTÞ.

The equation fðx;TÞ ¼ 0 has at most two real positive
roots, and the smaller one is x ¼ rg=rmin because

fðrg=r;TÞ ¼ 1=�ðr;TÞ holds. By a careful limiting proce-

dure, the following fact is found: IfXðTÞ is a smaller root of
fðX;TÞ ¼ 0, then X satisfies Eq. (18); if X is a larger root,
then the integrand in Eq. (18) becomes imaginary which is
unphysical. This implies that we have to adopt XðTÞ ¼
rg=rminðTÞ in Eq. (17).

We further require the time coordinate t to agree with the
Schwarzschild-Tangherlini time coordinate � at spacelike
infinity r ! 1. Then Eq. (17) gives

t ¼ Tr�Dþ3
g

Z XðTÞ

0

xD�4

ðxD�3 � 1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðx;TÞp dx: (21)

This equation determines the function of TðtÞ.
If the equation fðx; TÞ ¼ 0 has a degenerate double root,

the integral of Eq. (21) diverges, i.e., t ¼ 1. This is the so-
called limit surface to which the sequence of maximal
hypersurfaces asymptotes. Since the root of f ¼ 0 is also
the root of the equation df=dx ¼ 0 in this case, we obtain

lim
t!1T

2ðtÞ ¼ T12

:¼ D� 3

2ðD� 2Þ
�

D� 1

2ðD� 2Þ
�ðD�1Þ=ðD�3Þ

rg
2ðD�2Þ:

(22)

The root x ¼ xlim of fðx; T1Þ ¼ 0 is then given by

xlim ¼
�
2ðD� 2Þ
D� 1

�
1=ðD�3Þ

: (23)

The minimal radius rmin for t ! 1 is called the limit
radius, and it is given by

rlim ¼ rg
xlim

¼
�

D� 1

2ðD� 2Þ
�
1=ðD�3Þ

rg: (24)

In the case of D ¼ 4, this shows the known result rlim ¼
ð3=4Þrg [23].

Several maximal hypersurfaces with the reflection sym-
metry at the wormhole slot � ¼ 0 for the case ofD ¼ 5 are
depicted in the Kruskal diagram in Fig. 1 (see the appendix
for the method of embedding). As in the case D ¼ 4, the
sequence of maximal hypersurfaces avoids the singularity
for D � 5.

IV. STATIONARY FOLIATION

In this section, we turn our attention to a foliation of
maximal hypersurfaces which is different from the one
analyzed in Sec. III: foliations for which TðtÞ is constant
and the reflection symmetry with respect to the wormhole
slot is not imposed in general. As the fixed value, we
choose T ¼ T1 defined in Eq. (22). In this case, the
sequence of hypersurfaces is the one-parameter family
labeled by t (not by T), and the metric does not depend
on the time coordinate t. Because the time coordinate basis
is not orthogonal to each hypersurface, we refer to this
foliation as the stationary foliation.
Several stationary maximal hypersurfaces of T ¼ T1 for

D ¼ 5 are depicted in the Kruskal diagram in Fig. 2 (see
the appendix for the method of embedding). The limit
surface exists also for the stationary foliation with T ¼
T1, and it agrees with the limit surface of the reflection-
symmetric foliation, studied in the previous section.
Figure 2 shows that the sequence of maximal hypersurfa-
ces in this class also avoids the singularity and that, except

limit surface
r=(2/3)1/2rg

singularity

singularity

stationary slices

horizon
r=rg

FIG. 2. The stationary maximal slicings of T ¼ T1 in the
Kruskal diagram of Schwarzschild-Tangherlini spacetime with

D ¼ 5 (solid lines). Except for the limit surface r ¼ ffiffiffiffiffiffiffiffi
2=3

p
rg, the

maximal hypersurfaces of T ¼ T1 are not symmetric with
respect to the wormhole slot.
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for the limit surface, the hypersurfaces of the stationary
foliation are not reflection-symmetric.

The stationary foliation is of special interest in connec-
tion with numerical relativity performed in the moving
puncture approach, because it would be an attractor of
the time evolution with a dynamical slicing (@t� ¼
�C�K, where C is a constant) [27] and �-driver condi-
tions [24] as demonstrated in [25] forD ¼ 4 and in [21] for
D ¼ 5. In other words, the numerical evolution starting
from a hypersurface of stationary foliation has to remain
unchanged in time in these gauge conditions. Therefore,
this solution provides a useful benchmark test for higher-
dimensional numerical-relativity codes.

Black-hole simulation in numerical relativity is often
performed in the isotropic coordinates. In Sec. IVA, we
describe hypersurfaces of stationary foliation in the iso-
tropic coordinates and study the asymptotic behaviors of
the spatial metric. In Sec. IVB, we derive the analytic
solution of the stationary maximal hypersurface for D ¼
5 in terms of the BSSN variables and then demonstrate its
usefulness for a benchmark test of numerical-relativity
codes, by performing numerical simulation.

A. Asymptotic behaviors

In the isotropic coordinates, the line element of a
(D� 1)-dimensional spherically symmetric spacelike hy-
persurface is written as

dl2 ¼ c 4=ðD�3ÞðdR2 þ R2d�D�2Þ: (25)

By comparing this with the spatial part of the metric (1),
the relation between the coordinates r and R is found:

�1=2dr ¼ c 2=ðD�3ÞdR; (26)

r ¼ c 2=ðD�3ÞR: (27)

These equations lead to a differential equation

d lnR

d lnr
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrg=r;T1Þ
q ; (28)

and the formal solution is given by

R ¼ Rce
IðrÞ; (29)

where

IðrÞ ¼
Z 1

rg=r

dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðx;T1Þ

p : (30)

In the following, we analyze asymptotic relations between
r and R and the behavior of the conformal factor c in the
distant region r � rg and in the neighborhood of r ¼ rlim
[given by Eq. (24)], one by one.

In order to study the asymptotic behavior of R in the
distant region, we rewrite the function IðrÞ in the form

IðrÞ ¼ � lnðrg=rÞ þ Fðrg=rÞ; (31)

where

FðyÞ :¼
Z 1

y
dx

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðx;T1Þ

p
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðx;T1Þ

p : (32)

For analyzing its behavior for y ! 0, we write FðyÞ in the
form of a Maclaurin series:

FðyÞ ¼ Fð0Þ � yD�3

2ðD� 3Þ þOðy2D�7Þ: (33)

By requiring R to agree with r at spatial infinity r ! 1, the
integration constant Rc is chosen to be

Rc ¼ rge
�Fð0Þ: (34)

Then the relation between R and r is found to be

R ’ r

�
1� 1

2ðD� 3Þ
�
rg
r

�
D�3

�
for r � rg: (35)

From Eqs. (27) and (35), the asymptotic behavior of the
conformal factor c is given by

c ’ 1þ 1

4

�
rg
R

�
D�3

for R � rg; (36)

which is the well-known relation for D ¼ 4.
Next, we investigate the asymptotic behavior of R in the

neighborhood of r ¼ rlim. Because fðx;T1Þ ¼ 0 has the
degenerate double root at x ¼ xlim given by Eq. (23),
fðx;T1Þ is written in the form

fðx;T1Þ ¼ ðxlim � xÞ2hðxÞ: (37)

Here a function hðxÞ is a positive definite polynomial of x
for 0< x � xlim. By substituting Eq. (37) into Eq. (30), the
function IðrÞ is rewritten in the following form:

IðrÞ :¼
Z 1

rg=r

dx

xðxlim � xÞ ffiffiffiffiffiffiffiffiffi
hðxÞp

¼ 1

xlim
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðxlimÞ

p ln

�������� r� rlim
rð1� rlim=rgÞ

��������þHðrg=rÞ; (38)

where

HðyÞ :¼ 1

xlim
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðxlimÞ

p Z 1

y
dx

xlim
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðxlimÞ

p � x
ffiffiffiffiffiffiffiffiffi
hðxÞp

xðxlim � xÞ ffiffiffiffiffiffiffiffiffi
hðxÞp :

(39)

Note that HðyÞ is finite at y ¼ xlim. By taking the second
derivative of Eq. (37), we have

hðxlimÞ ¼ 1

2

d2f

dx2

��������x¼xlim

¼ 1

2
ðD� 1ÞðD� 3Þ

�
2ðD� 2Þ
D� 1

�ðD�5Þ=ðD�3Þ
: (40)

Substituting this expression with Eq. (23) into Eq. (38) and
using Eq. (29), we obtain the relation between R and r in
the neighborhood of r ¼ rlim:
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R ’ R0

�
r

rlim
� 1

�
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD�3ÞðD�2Þ

p
; (41)

where

R0 ¼ Rce
HðxlimÞ

�
1� rlim

rg

��1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD�3ÞðD�2Þ

p
: (42)

Thus, the asymptotic behavior of the conformal factor is
given by

c ’
�
rlim
R

�ðD�3Þ=2
for R � rg: (43)

Although the factor c becomes steeper near the puncture
for higher dimensions, the overall conformal factor

c 4=ðD�3Þ in Eq. (25) has the universal behavior c 4=ðD�3Þ ’
ðrlim=RÞ2 for arbitrary values of D.

The above result shows that the coordinate origin R ¼ 0
has a finite circumferential radius r ¼ rlim. By contrast, the
proper length l from a point labeled with the isotropic
radial coordinate R to the origin R ¼ 0 is

l ¼
Z R

0
c 2=ðD�3ÞðR0ÞdR0 � rlim

Z R

0

dR0

R0 ¼ 1: (44)

This result implies that each stationary maximal hypersur-
face with T ¼ T1 has an infinitely long trumpet shape for
D � 4.

B. Explicit construction for D ¼ 5 and numerical
evolution

In the following, we derive solutions of the stationary
slice for D ¼ 5 in terms of the variables of the BSSN
formalism and then demonstrate that the solutions are
useful for checking numerical-relativity codes based on
the BSSN formalism for D ¼ 5.

The fundamental variables in the BSSN formalism are
different from those in the so-called standard 3þ 1 formal-
ism [28]. In the standard 3þ 1 formalism, the fundamental
quantities are the intrinsic metric �ij, the extrinsic curva-

tureKij, the lapse function�, and the shift vector�
i (i; j ¼

1; . . . ; D� 1 in D dimensions). The initial values of these
quantities are provided by solving the constraint equations,
and the subsequent evolution is achieved by solving the
evolution equations in certain coordinate conditions (see
e.g. Ref. [29]). The standard 3þ 1 formalism prohibits a
long-term stable numerical evolution, because constraint
violation modes grow in the presence of truncation error. In
the BSSN formalism, the number of dynamical variables is
increased to suppress the source of such instability and to
enable long-term stable simulation.

The original form of the BSSN formalism was described
in Refs. [8,9], and it was extended for general dimension-
alities in Ref. [21]. The definitions of dynamical variables
in the D-dimensional BSSN formalism are �, the confor-
mal factor; ~�ij, the conformal intrinsic metric; K, the trace

of the extrinsic curvature; ~Aij, a trace-free extrinsic curva-

ture; and ~�i, an auxiliary D� 1 variable. � and ~�ij are

defined by

~� ij ¼ ��ij; (45)

where � is determined so that the determinant of ~�ij is

equal to unity (note that we assume to use the Cartesian
coordinates). The trace-free extrinsic curvature is defined
by

~A ij :¼ �

�
Kij � 1

D� 1
�ijK

�
; (46)

and ~�i is defined by

~� i :¼ � @~�ij

@xj
; (47)

where ~�ij is the inverse of ~�ij, i.e., ~�ik ~�kj ¼ 	i
j. The

variables�,K, ~�ij, ~Aij, and
~�i are evolved, imposing gauge

conditions for � and �i.
For a numerical-relativity simulation, the data of the

stationary slice are prepared in the Cartesian spatial coor-
dinates ðx; y; z; wÞ. In the assumption that the intrinsic

metric �ij is conformally flat, ~�ij ¼ 	ij and ~�i ¼ 0.

Furthermore, the maximal slicing condition gives K ¼ 0.
Since the slice is spherically symmetric, it is sufficient to
prepare the data on the x axis, i.e., y ¼ z ¼ w ¼ 0, on
which the following relations hold:

�x ¼ �R; �y ¼ �z ¼ �w ¼ 0; (48)

~A yy ¼ ~Azz ¼ ~Aww ¼ �1
3
~Axx ¼ �1

3
~ARR; (49)

~A ij ¼ 0 for i � j: (50)

Here R ¼ ðx2 þ y2 þ z2 þ w2Þ1=2 indicates the isotropic
radial coordinate. This implies that the data only for �,

�R, ~ARR, and � are needed in the spherical-polar
coordinates.
For D ¼ 5, it is easy to perform integral in Eq. (30) to

give

R ¼ r

6

�
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3½ðrg=rÞ2 þ 3�

q �

�
� ð5þ 2

ffiffiffi
6

p Þ½3� 2ðrg=rÞ2�
2ðrg=rÞ2 þ 15þ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ðrg=rÞ2 þ 3�

q
�
1=

ffiffi
6

p
: (51)

The conformal factor �, the lapse function �, and the R
component of the shift vector are given, respectively, by

� ¼ c�2 ¼ ðR=rÞ2; (52)

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

�
rg
r

�
2 þ 4

27

�
rg
r

�
6

s
; (53)
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and

�R ¼ dR

dr
��1� ¼ 2

3
ffiffiffi
3

p r3gR

r4
: (54)

The RR component of the trace-free extrinsic curvature is

~A RR ¼ � 2ffiffiffi
3

p r3g

r4
: (55)

To describe the data in the isotropic radial coordinate R, we
have to give r as a function of R. Since the inversion of
Eq. (51) cannot be done analytically, we numerically de-
rive the relation r ¼ rðRÞ and then generate the data as

functions ofR. The analytic initial values of�,�x, ~Ayy, and

� on the x axis are depicted by the solid curves in Fig. 3.
Here we adopt rg=2 as the unit of the length.

We evolve the initial data by using the numerical code
recently developed [21] and show that the data indeed
remain stationary in the puncture gauge conditions. We
adopt a dynamical time slicing condition

@t� ¼ �2�K: (56)

This is a simplified version of the 1þ log slicing condition
[27] that was studied in Ref. [25]. As the spatial gauge
coordinates, we adopt the �-driver condition [24]

@t�
i ¼ D� 1

2ðD� 2ÞB
i and @tB

i ¼ @t~�
i � 
Bi; (57)

where 
 is a constant. The value of 
 is varied over the
range 1=5rg � 20=rg.

The stationary maximal slicing with the isotropic spatial
coordinate satisfies the coordinate conditions (56) and (57),
and, thus, the numerical data have to be unchanged during
numerical evolution with these gauge conditions, if the

initial data for �, ~�ij, K, ~Aij, �, and �i agree with those

of the stationary maximal hypersurface with T ¼ T1 cov-
ered by the isotropic coordinate system, together with
further initial data Bi ¼ 0. Therefore, the analytic solution
for these variables given here is used for a test simulation
of numerical-relativity codes based on the BSSN formal-
ism and puncture gauge.
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FIG. 3. The values of �, �x, ~Ayy, and � on the x axis for the stationary maximal hypersurface with T ¼ T1 (solid curves), and the
data after a long-term evolution by the time t ¼ 100 (	), where the stationary maximal hypersurface was adopted as the initial data.
The units of the length and time are rg=2. The data remain approximately stationary after the long-term evolution.
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The data obtained by evolving the above analytic initial
data with Bi ¼ 0 are depicted by the circles 	 in Fig. 3. In
the numerical simulation, the outer boundary is located at a
sufficiently distant zone (x ¼ 200), and the grid size is
uniformly �x ¼ 0:1. The value of 
 is chosen for a wide
range as 
 ¼ 1=ð5rgÞ � 20=rg, and we confirm that the

result does not depend on the choice (but we found that
numerical error becomes large for very large values of 
).
Figure 3 shows that the numerical data at t ¼ 100 agree
well with the initial data t ¼ 0. Thus, we conclude that the
numerical data remain approximately stationary and un-
changed in time.

The left panel of Fig. 4 shows the evolution of numerical
values of ~�xx on the x axis obtained by 
 ¼ 2=rg for

several grid resolutions with �x ¼ 0:1, 0.075, and 0.05.

Because the analytic solution is ~�ðaÞ
xx ¼ 1, the deviation

from unity indicates the amount of the error. This figure
clearly shows that the deviation is decreased as the reso-
lution is increased, and, hence, the deviation from the
analytic data is caused only by the numerical error.
Indeed, the values of averaged error are 0.01%, 0.003%,
and 0.0008% for �x ¼ 0:1, 0.075, and 0.05, respectively.
Here the spatial pattern of the error for a fixed time t with
t � 10rg was found to depend on the grid resolutions.

However, as the resolution is increased, the pattern be-
comes less dependent on the resolution and the error
decreases approximately at the fourth order. This implies
that our numerical solution achieves the four-order con-
vergence in the limit �x ! 0 except at the region near the
puncture (where the analyticity of solution is broken and
the numerical solution should not converge at the fourth
order). The right panel shows the snapshots of ~�xx for t ¼
20–80 for the grid size �x ¼ 0:05. Although the error
grows during the evolution, the growth rate is small. In
fact, the amount of increase in the averaged error between
t ¼ 20 and 80 is 0.0003%. These results illustrate both the

accuracy of our numerical simulations and the effective-
ness of the foliation by the stationary maximal hypersur-
faces as a benchmark for checking a five-dimensional
numerical-relativity code.

V. SUMMARY

We have studied the foliation of the D-dimensional
Schwarzschild-Tangherlini spacetime by the two kinds of
one-parameter family of maximal hypersurfaces: the
reflection-symmetric foliation with respect to the worm-
hole slot and the stationary foliation. We have shown that
both foliations avoid the singularity for D � 5, as in the
case of D ¼ 4. It is also shown that each hypersurface of
the stationary foliation has an infinitely long trumpetlike
shape in the neighborhood of the black-hole puncture
located at the origin of the isotropic coordinate. Because
the stationary foliation is the attractor of the numerical
evolution by a dynamical slicing condition [25], both the
maximal slicing condition and the dynamical slicing con-
ditions will have the preferable nature for the puncture
method for D � 4. We presented the explicit solution of
the stationary foliation forD ¼ 5 and showed, by perform-
ing the numerical simulation, that it is useful for a bench-
mark test of D ¼ 5 numerical-relativity codes.
The remaining issues to be explored are as follows.

Although we expect that the puncture gauge condition
based on a dynamical slicing and �-driver gauge condition
also works well for many issues in the higher-dimensional
numerical relativity, as demonstrated in Ref. [30] in the
four-dimensional case, more detailed studies for a variety
of spacetimes are obviously needed. For example, it is
important to figure out the gauge conditions suitable for
simulating higher-dimensional rotating black-hole space-
times (i.e., Myers-Perry black holes [31]) and for simulat-
ing black holes with high velocity. These are issues to be
studied.
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FIG. 4. Left panel: The value of ~�xx at time t ¼ 60 for resolutions �x ¼ 0:1 (	), 0.075 (�), and 0.05 (
). The deviation from the

analytic solution ~�ðaÞ
xx ¼ 1 becomes smaller as the resolution is increased. Right panel: Snapshots of ~�xx for a fixed grid spacing

�x ¼ 0:05 for time t ¼ 20, 40, 60, and 80. The error gradually increases during the evolution.
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APPENDIX: KRUSKAL EXTENSION AND
EMBEDDING OF MAXIMAL HYPERSURFACES

In this section, we analyze the Kruskal extension of the
D-dimensional Schwarzschild-Tangherlini spacetime and
explain how to embed maximal hypersurfaces in it. We
start from the standard metric (14) in the static coordinates
ð�; rÞ and consider the region r > rg. First, we introduce

the so-called tortoise coordinate r�:

r� :¼
Z dr

1� ðrg=rÞD�3

¼ rþ rg
D� 3

�
ln

�������� r

rg
� 1

��������þGðrÞ
�
: (A1)

Here, defining

GnðrÞ :¼ cos

�
2n�

D� 3

�
ln

��������
�
r

rg

�
2 � 2r

rg
cos

�
2n�

D� 3

�
þ 1

��������
þ 2 sin

�
2n�

D� 3

�

� arctan

�
cos½2n�=ðD� 3Þ� � r=rg

sin½2n�=ðD� 3Þ�
�
; (A2)

the function GðrÞ is given by

GðrÞ ¼ XðD�4Þ=2

n¼1

GnðrÞ; for even D � 4; (A3)

and

GðrÞ ¼ ln

�������� r

rg
þ 1

��������
�1þ XðD�5Þ=2

n¼1

GnðrÞ; for odd D � 5:

(A4)

It is easily seen that GðrÞ is regular for r � 0. Then we
introduce the Kruskal null coordinates as

U ¼ �rg exp½�ðD� 3Þð�� r�Þ=2rg�; (A5)

V ¼ þrg exp½þðD� 3Þð�þ r�Þ=2rg�: (A6)

In these coordinates, the metric (14) is reduced to the
following form:

ds2 ¼ �
�

2

D� 3

�
2
e�ðD�3Þr=rg�GðrÞ XD�3

n¼1

�
rg
r

�
n
dUdV

þ r2d�2
D�2: (A7)

Now we can extend the spacetime in a similar manner to
the four-dimensional case. The coordinates U and V in-
troduced by Eqs. (A5) and (A6) are restricted to the region
U < 0 and V > 0. However, since the metric is regular at
U ¼ 0 and V ¼ 0, the spacetime is extended to the region
U > 0 or V < 0. The maximally extended spacetime con-
sists of four regions, and the three regions obtained by the
extension are the black-hole region U > 0 and V > 0, the
white-hole region U < 0 and V < 0, and the other region
U > 0 and V < 0 outside of the two holes beyond the
wormhole slot. The relation between the coordinates
ðU;VÞ and the static coordinates ðt; rÞ in each extended
region is given by appropriately changing the sign of
Eqs. (A5) and (A6). Note that the range of r is 0< r <

rg in the black- and white-hole regions, while rg < r in the

two outside regions. The line element (A7) is regular
everywhere except at the two physical curvature singular-
ities, r ¼ 0, in the black and white holes. See Fig. 2 for the
structure of the maximally extended spacetime.
In order to embed maximal hypersurfaces in the Kruskal

diagram, we consider the coordinate transformation be-
tween the Kruskal coordinates ðU;VÞ and the coordinates
ðt; rÞ for maximal slicing. Since ðU;VÞ and ð�; rÞ are re-
lated through Eqs. (A5) and (A6) whereas ð�; rÞ and ðt; rÞ
are related through Eqs. (15) and (16), we obtain

@U

@r

��������t
¼ D� 3

2rg

�
1�

�
rg
r

�
D�3

��1ð1þ �1=2Tr�ðD�2ÞÞU;

(A8)

@V

@r

��������t
¼ D� 3

2rg

�
1�

�
rg
r

�
D�3

��1ð1� �1=2Tr�ðD�2ÞÞV:
(A9)

Once the arbitrary function of integration TðtÞ is deter-
mined, we obtain a maximal hypersurface in the Kruskal
diagram by integrating these two equations.
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