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We report results of a numerical-relativity simulation for the merger of a black hole-neutron star binary

with a variety of equations of state (EOSs) modeled by piecewise polytropes. We focus, in particular, on

the dependence of the gravitational waveform at the merger stage on the EOSs. The initial conditions are

computed in the moving-puncture framework, assuming that the black hole is nonspinning and the neutron

star has an irrotational velocity field. For a small mass ratio of the binaries (e.g., MBH=MNS ¼ 2, where

MBH and MNS are the masses of the black hole and neutron star, respectively), the neutron star is tidally

disrupted before it is swallowed by the black hole irrespective of the EOS. Especially for less-compact

neutron stars, the tidal disruption occurs at a more distant orbit. The tidal disruption is reflected in a cutoff

frequency of the gravitational-wave spectrum, above which the spectrum amplitude exponentially

decreases. A clear relation is found between the cutoff frequency of the gravitational-wave spectrum

and the compactness of the neutron star. This relation also depends weakly on the stiffness of the EOS in

the core region of the neutron star, suggesting that not only the compactness but also the EOS at high

density is reflected in gravitational waveforms. The mass of the disk formed after the merger shows a

similar correlation with the EOS, whereas the spin of the remnant black hole depends primarily on the

mass ratio of the binary, and only weakly on the EOS. Properties of the remnant disks are also analyzed.
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I. INTRODUCTION

Gravitational-wave observation is becoming one of the
reliable tools for observing our Universe. Current ground-
based laser-interferometric gravitational-wave detectors
such as LIGO [1] and VIRGO [2] have already achieved
nontrivial scientific results; e.g., upper limits on the am-
plitude of a stochastic gravitational-wave background have
been improved and we now know that gravitational waves
are not the main energy source of our Universe [3].
Advanced gravitational-wave detectors such as advanced
LIGO will be in operation within the next several years and
detect gravitational waves, which can be used to explore
the nature of strongly gravitating phenomena. The most
promising sources of gravitational waves are the coales-
cing compact binaries composed of compact objects such
as black holes (BHs) and neutron stars (NSs). As illustrated
in this paper, black hole-neutron star (BH-NS) binaries are
potential sources for exploring the nature of the NSs and
high-density nuclear matter.

According to a statistical study based on population
synthesis calculations, the detection rate of gravitational
waves from BH-NS binaries is estimated to be 0.5–50
events per year for advanced gravitational-wave detectors
[4,5]. This suggests that we will observe a variety of BH-
NS binaries in the next decade. To extract physical infor-
mation of BH-NS binaries as well as the information about
the BH and NS themselves from gravitational waves,

theoretical templates of gravitational waves are necessary.
This fact motivates the numerical-relativity community to
study in depth the coalescence of BH-NS binaries, because
numerical relativity is the unique approach for accurately
computing gravitational waves emitted from the late in-
spiral and merger phases of such compact binaries.
Another astrophysical interest in BH-NS binaries is

motivated by their potential to be a progenitor of short-
hard gamma-ray bursts (GRBs); see [6,7] and references
therein for reviews. According to a merger scenario of
GRBs, a NS is tidally disrupted by a low-mass BH before
the orbit reaches an innermost stable circular orbit (here-
after ISCO), resulting in a system consisting of a rotating
BH and a hot, massive accretion disk of mass * 0:01M�
which could become the central engine of a GRB. This
BH-massive disk system could subsequently radiate a large
amount of energy * 1048 erg by neutrino emission or by
the so-called Blandford-Znajek process [8] in a short time
scale & 1 s. Then, neutrino-antineutrino pair annihilation
or electromagnetic Poynting flux could drive a GRB. One
of the key questions for the merger scenario is whether the
tidal disruption could lead to formation of the BH-disk
system. Numerical relativity is again the unique approach
for answering this question.
The equation of state (EOS) of NSs, which is still un-

known, is the key for determining gravitational waveforms
emitted in the tidal-disruption phase as well as for deter-
mining other properties of the BH-disk system such as the
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mass and typical density of the disk. The EOS (specifically
its stiffness) determines the relation between mass and
radius of a NS, and hence, the relation between the tidal-
disruption process and associated gravitational waveforms.
The reason is that the sensitivity of a NS to the tidal force
by the companion BH depends on its radius; e.g., a NS of
larger radius (with a stiffer EOS) will be disrupted at a
larger orbital separation (or a lower orbital frequency). If
the tidal disruption of a NS occurs at a larger distance,
more material may be spread around the companion BH,
and consequently, a high-mass remnant disk may be
formed. Also, the gravitational-wave frequency at the tidal
disruption, which will be one of the characteristic frequen-
cies, is lower for NSs of larger radius. The EOS of nuclear
matter beyond the normal nuclear density is highly uncer-
tain due to the lack of constraints obtained from experi-
ments. Gravitational-wave astronomy will become a new
and robust tool for determining or at least constraining the
EOS at such high densities through the observation of NSs
[9–12]. For this purpose, we need theoretical templates of
gravitational waves and it is necessary to perform many
simulations employing a wide variety of possible EOSs for
the NS matter.

In recent years, fully general relativistic studies of BH-
NS binaries have been performed both in calculations of
quasiequilibrium states [13–17] and in dynamical simula-
tions of the mergers [18–25]. However, we have not yet
understood the effect of the EOS on the merger of BH-NS
binaries in spite of its importance; in most of the previous
studies, NSs are modeled by simple and unrealistic � ¼ 2
polytropic EOS (but see [24]). One of the next goals in
numerical relativity is to clarify the effect of the EOS on
the merger process of BH-NS binaries and on resulting
gravitational waveforms. For this purpose, a systematic
parametrization of possible EOSs by a small number of
parameters is quite useful.

In this paper, we report new results obtained by a simu-
lation using a wide variety of piecewise polytropic EOSs,
which are shown to be useful for parametrizing nuclear-
theory-based EOSs in the cold approximation [10,26,27].1

We employ eight types of the piecewise polytropic EOSs,
ranging from highly stiff to soft ones.2 We systematically
choose the BH and NS masses in a realistic range of
interest. As a first step in this series of work, the BH is
assumed to be nonspinning. We track orbital evolutions of
BH-NS binaries typically for �5 orbits so that the orbital
eccentricity would not give a serious error in gravitational
waveforms at the onset of the merger phase. We clarify the

dependence of gravitational waveforms and merger rem-
nants on the EOS. In particular, we show that a
gravitational-wave spectrum contains valuable information
on the EOS properties.
This paper is organized as follows. In Sec. II A, we

summarize initial conditions employed in this paper.
Section II B describes the piecewise polytropic EOS and
the models adopted in this paper. Section III describes the
formulation and methods of numerical simulations.
Section IV presents the numerical results and clarifies the
effect of the EOS on gravitational waveforms and merger
remnants. Section V is devoted to a summary. Throughout
this paper, we adopt the geometrical units in which G ¼
c ¼ 1, whereG and c are the gravitational constant and the
speed of light, respectively. The irreducible mass of the
BH, gravitational mass of the NS in isolation, circumfer-
ential radius of the NS in isolation, Arnowitt-Deser-Misner
(ADM) mass of the system, and sum of the BH and NS
masses at infinite separation are denoted by MBH, MNS,
RNS,M,m0 ¼ MBH þMNS, respectively. The mass ratioQ
is defined by Q � MBH=MNS and the compactness of the
NS (C) is defined by C � MNS=RNS. Latin and Greek
indices denote spatial and spacetime components,
respectively.

II. INITIAL CONDITION

We employ BH-NS binaries in quasiequilibria for initial
conditions of numerical simulations as in [20,23]. The
quasiequilibrium state is computed in the moving-puncture
framework [17–19] with a piecewise polytropic EOS
[10,26,27]. Here, we first summarize the formulation and
numerical methods for computing the quasiequilibrium
state and then describe EOSs employed in this paper. The
details of the formulation and methods for computing
initial conditions are described in [17], to which the reader
may refer. Computation of the quasiequilibrium state is
performed using the spectral-method library LORENE
[28].

A. Formulation and methods

We derive quasiequilibrium states of BH-NS binaries as
solutions of the initial value problem of general relativity
[29]. When the orbital separation of the binary is large
enough, the time scale for the gravitational-wave emission,
tGW, is much longer than the orbital period Porb, so that
we can safely neglect the radiation reaction of the
gravitational-wave emission. In numerical simulations,
the orbital evolution has to be followed for * 5 orbits to
derive a realistic waveform both for the late inspiral and
merger phases. For such a purpose, we have to choose the
initial separation of the binary which satisfies tGW � Porb,
and have to provide BH-NS binaries in a quasicircular orbit
as the initial condition, i.e., the binary is approximately in
an equilibrium state if it is observed in the comoving
frame. To satisfy these two conditions, we assume the

1In the original piecewise polytropic EOS, finite-temperature
effects are not taken into account. In our numerical simulation, a
correction of finite temperature induced by shock heating is
taken into account; see Sec. III A.

2In this paper, the stiffness is simply determined by the
magnitude of pressure for the nuclear-density region. We do
not determine it by the adiabatic index.
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presence of a helical Killing vector field with the orbital
angular velocity �,

�� ¼ ð@tÞ� þ�ð@’Þ�; (1)

and a hydrostatic equilibrium for the fluid configuration in
the comoving frame. In addition, we assume that the BH is
nonspinning and the NS has an irrotational velocity field.
The irrotational velocity field is believed to be an astro-
physically (approximately) realistic configuration [30,31].

To compute the three-metric �ij, the extrinsic curvature

Kij, the lapse function �, and the shift vector �i, we

employ a mixture of the conformal thin-sandwich ap-
proach and the conformal transverse-traceless decomposi-
tion of Einstein’s equation [29]. We assume the conformal
flatness of the three-metric �ij ¼ c 4�̂ij ¼ c 4fij, the sta-

tionarity of the conformal three-metric @t�̂ij ¼ 0, and the

maximal slicing condition for the trace part of the extrinsic
curvature K ¼ �ijK

ij, i.e., K ¼ @tK ¼ 0. Here, fij de-

notes the flat spatial metric. Then, the basic equations for
the conformal factor c , the shift vector �i, and a weighted
lapse function � � �c are derived from the Hamiltonian
constraint, the momentum constraint, and the maximal
slicing condition @tK ¼ 0 as

�c ¼ �2�c 5�H � 1
8c

�7ÂijÂ
ij; (2)

��i þ 1
3r̂ir̂j�

j ¼ 16��c 3ji þ 2Âijr̂jð�c�7Þ; (3)

�� ¼ 2��c 4ð�H þ 2SÞ þ 7
8�c�8ÂijÂ

ij; (4)

where Âij � c 10Kij, � � fijr̂ir̂j, and r̂i denotes the

covariant derivative associated with fij. We assume an

ideal fluid for the matter field

T�� ¼ �hu�u� þ Pg��; (5)

where � is the rest-mass density, P is the pressure, h �
1þ "þ P=� is the specific enthalpy, " is the specific
internal energy, and u� is the four-velocity of the fluid.
Then, the fluid quantities seen by the Eulerian observer are
denoted by

�H ¼ �hð�utÞ2 � P; (6)

ji ¼ �h�utu���
i; (7)

S ¼ �h½ð�utÞ2 � 1� þ 3P: (8)

The EOS fully determines relations among the thermody-
namical quantities �, ", P, and h. We describe the EOS
adopted in this work in Sec. II B.

In the moving-puncture framework, we set c and � as

c ¼ 1þ MP

2rBH
þ	; � ¼ 1�M�

rBH
þ 
; (9)

where MP and M� are positive constants of mass dimen-
sion and rBH ¼ jxi � xiPj is a coordinate distance from the
puncture located at xiP. We numerically solve the nonsin-
gular parts	 and
 using Eqs. (2) and (4) and adjusting the
parameter MP to achieve a desired BH mass. The other
parameter,M�, is determined by the virial relation, i.e., the
condition in which the ADM mass (M0) and the Komar
mass agree, which holds for the stationary and asymptoti-
cally flat spacetime [32,33],I

r!1
@i�dSi ¼ �

I
r!1

@ic dSi ¼ 2�M0: (10)

We note that the lapse function, �, obtained in this method
is always negative near the puncture. In the numerical
simulation, we modify the initial condition for � appro-
priately and ensure its positivity.
For solving the momentum constraint, we decompose

Âij as

Â ij ¼ r̂iWj þ r̂jWi � 2
3fijr̂kW

k þ KP
ij; (11)

where Wi is an auxiliary three-vector field, and Wi ¼
fijWj. K

P
ij denotes a conformally weighted extrinsic cur-

vature associated with the linear momentum of the BH,
written by [34]

KP
ij ¼

3

2r2BH
½liPBH

j þ ljP
BH
i � ðfij � liljÞlkPBH

k �; (12)

where li ¼ xiBH=rBH is a unit radial vector, li ¼ fijl
j, and

PBH
i is the linear momentum of the BH, which is deter-

mined by the condition in which the total linear momentum
of the system should vanish,

PBH
i ¼ �

Z
jic

6d3x: (13)

Wi obeys an elliptic equation

�Wi þ 1
3r̂ir̂jW

j ¼ 8�c 6ji; (14)

which is derived by taking a derivative of Eq. (11) and
using the momentum constraint.
To summarize, we solve the elliptic equations for 	, �i,


, and Wi imposing outer boundary conditions derived
from the asymptotic flatness. In the present formalism,
we do not have to impose inner boundary conditions at
the BH horizon unlike in the excision method [14,15].
The basic equations for the hydrostatic equilibrium are

derived from the condition of irrotation, i.e., the zero
relativistic vorticity

!�� ¼ r�ðhu�Þ � r�ðhu�Þ ¼ 0; (15)

and from the helical symmetric relation for the specific
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momentum of the fluidL�ðhu�Þ ¼ 0. One result is the first
integral of the relativistic Euler equation,

h��u
� ¼ �Cð¼ constÞ: (16)

This equation determines h (and subsequently �, ", and P
through an EOS) for an arbitrarily chosen constant C. The
irrotational flow condition implies the presence of a veloc-
ity potential �, which determines the four-velocity of
the fluid by hui ¼ Di�, where Di is the covariant deriva-
tive associated with �ij. The continuity equation

r�ð�u�Þ ¼ 0 then leads to an elliptic equation for the

velocity potential �.
A quasiequilibrium state is computed using an iteration

method described in detail in [17]. During the iteration, we
fix the center of mass of the binary with a 3PN-J condition
described in [17,23]; we determine the center of mass
phenomenologically so that the total angular momentum
of the binary for a given value of �m0 agrees with that
derived by the third post-Newtonian (3PN) approximation
[35]. In this condition, the initial orbital eccentricity is by a
factor of �2 smaller than that in other conditions tried to
this time [18–20], and the eccentricity at the onset of the
merger becomes & 1% for a long-term simulation which
tracks �5 inspiral orbits.

B. Piecewise polytropic equation of state

The temperature of NSs, except for newly born ones, are
believed to be much lower than the Fermi energy of the
constituent particles [36]. This implies that we can safely
neglect the thermal effects and employ a cold EOS, for
which the pressure, P, the specific internal energy, ", and
other thermodynamical quantities are written as a function
of the rest-mass density �. One of the simplest cold EOSs
is a polytropic EOS,

P ¼ ��1þ1=np ; (17)

where � is the polytropic constant and npð� 0Þ the poly-

tropic index: In the following, we often refer to the adia-
batic index defined by � ¼ 1þ 1=np. The first law of the

thermodynamics,

d" ¼ �Pd

�
1

�

�
; (18)

determines the specific internal energy as " ¼ P=½ð��
1Þ�� where we assume " ¼ 0 at � ¼ 0. Then, the specific
enthalpy h becomes

h ¼ 1þ �
�

�� 1
���1: (19)

A piecewise polytropic EOS is a phenomenologically
parametrized EOS, which reproduces cold nuclear-theory-
based EOSs at high density only with a small number of
polytropic constants and indices [10,26,27], i.e.,

Pð�Þ ¼ �i�
�i for �i�1 � � < �i ð1 � i � nÞ;

(20)

where n is the number of the pieces used to parametrize an
EOS and �i denote boundary densities for which we pro-
vide an appropriate value (see the method below). Here,
�0 ¼ 0 and �n ! 1. �i is the polytropic constant and �i

the adiabatic index for each piece. We note that we could in
principle match to the known more realistic EOS at lower
density. However, using a single polytrope for the low-
density EOS is justified to the extent that the radius and
deformability of the NS as well as resulting gravitational
waveforms in the merger phase are insensitive to the low-
density EOS.
At each boundary density, � ¼ �iði ¼ 1; . . . ; n� 1Þ, the

pressure is required to be continuous, i.e., �i�
�i

i ¼
�iþ1�

�iþ1

i . Thus, if we give �1, �i, and �iði ¼ 1; . . . ; nÞ,
the EOS is totally determined. For the zero-temperature
EOS, the first law of the thermodynamics (18) holds, and
thus, " and h are also determined except for the choice of
the integration constants, which are fixed by the continuity
condition of " (hence equivalently h) at each �i.
Recently, several authors have shown that the piecewise

polytropic EOS composed of one piece in the crust region
and three pieces in the core region approximately repro-
duces most of nuclear-theory-based EOSs at high density
[26]. Here, three pieces in the core region are required to
reproduce a high-mass NS for which inner and outer cores
could have different stiffness due to the variation of prop-
erties of high-density nuclear matter. In the present work,
we pick up NSs of relatively low mass 1:2–1:35M�, taking
into account that the masses of the NSs in the observed
binary are fairly small [37]. The highest density of such
NSs is not high enough in general that the EOS for the
high-density part plays a critical role (note that if the EOS
is very soft, the EOS for the high-density region is impor-
tant, but we do not pursue this possibility in this paper). An
additional fact to be noted is that NSs in BH-NS binaries
never achieve the state of density higher than the initial
value; their density should decrease due to the tidal field of
the companion BH during the evolution. For these reasons,
we employ a simple version of piecewise polytropic EOS
in this paper, in which only one piece is assigned for the
core region and one piece for the crust region as in [10].
Following [10], we employ the parameters of the crust
EOS for all the models as follows:

�1 ¼ 1:356 923 95; (21)

�1=c
2 ¼ 3:998 736 92	 10�8 g1��1 cm3�1�3: (22)

On the other hand, we vary the value of �2 (the adiabatic
index for the core EOS). Authors in [10] propose that
instead of giving the density �1, the pressure p at the
fiducial density �fidu ¼ 1014:7 g=cm3 in the core region
should be provided because this parameter p is closely
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correlated with the NS radius and deformability [38]. Thus,
we have the following relations:

p ¼ �2�
�2

fidu; (23)

�1�
�1

1 ¼ �2�
�2

1 ð¼ Pð�1ÞÞ: (24)

These determine the values of �2 and �1.
Table I lists the parameters of the EOSs employed in this

paper, and several key quantities for each EOS. ‘‘2H,’’
‘‘H,’’ ‘‘HB,’’ and ‘‘B’’ denote very stiff, stiff, moderately
stiff, and soft EOSs, respectively, for which �2 ¼ 3:0
universally, but the values of p are varied [10]. For
‘‘HB,’’ ‘‘HBs,’’ and ‘‘HBss’’ or ‘‘B,’’ ‘‘Bs,’’ and ‘‘Bss’’,
we assign the same value of p but different values of �2.
The subscript ‘‘s’’ denotes that the value of �2 is smaller.
For ‘‘s’’ and ‘‘ss,’’ �2 ¼ 2:7 and 2.4, respectively.

We calculate all the physical quantities for the spherical
NS in equilibrium both by solving the Tolman-
Oppenheimer-Volkoff equation directly and using the
code to calculate initial conditions in the isotropic gauge
by LORENE, and check that numerical values agree with
each other within 0.03%. Figure 1 plots the relation be-
tween the massMNS and circumferential radius RNS for the
spherical NSs with the adopted piecewise polytropic EOSs.
For comparison, we also plot the relation for � ¼ 2 poly-
tropic EOS with �=c2 ¼ 2	 10�16 g�1 cm3. Note that in
the polytropic EOS with a fixed adiabatic index, only the
shape of this relation has an invariant meaning and there is
a freedom of the absolute scaling, since all the dimensional
quantities can be rescaled through the polytropic length

scale Rpoly � �1=ð2��2Þ.
Figure 1 shows that for a given mass �1:35M�, the

radius depends strongly on the EOSs, whereas the radius
for a given piecewise polytropic EOS depends only weakly
on the mass around the canonical mass �1:35M�. This
weak dependence of the radius on the mass is an often-seen
feature for the nuclear-theory-based EOSs [36]. By con-
trast, the relation calculated with the � ¼ 2 polytropic EOS
does not show this feature. Figure 1 illustrates that the

dependence of the radius RNS on the mass MNS becomes
much stronger in this EOS than in the piecewise polytropic
EOSs. This illustrates that the � ¼ 2 polytropic EOS is not
very realistic.
Comparison of the quantities among HB, HBs, and HBss

EOS models in Table I reveals a complicated mass-radius
relation: HB is not always stiffer than HBss. Indeed, the
radius withMNS ¼ 1:2M� is largest for HBss and smallest
for HB among three models, whereas the radius with
MNS ¼ 1:35M� is largest for HB and smallest for HBss.
This complicated relation of the ‘‘stiffness’’ is due to the
choice for the combination ð�2; pÞ (cf. Table I). For a
density smaller than �fidu, HBss EOS is stiffer than HB
and HBs EOSs, whereas for a high density � > �fidu, HB
EOS is stiffer than the others. For a given high-mass NS for
which the central density is much larger than �fidu, the
radius with HB EOS should be larger than that with other
two EOSs. By contrast, for a given low-mass NS for which

TABLE I. Key ingredients of the adopted EOSs. �2 is the adiabatic index in the core region and p is the pressure at the fiducial
density �fidu ¼ 1014:7 g=cm3, which determines the polytropic constant �2 of the core region and �1: the critical rest-mass density
separating the crust and core regions. Mmax is the maximum mass of the NS for a given EOS. R135ðR12Þ and C135ðC12Þ are the
circumferential radius and the compactness of the NS with MNS ¼ 1:35M�ð1:2M�Þ.
Model �2 log10p (g=cm3) �1 (1014 g=cm3) Mmax½M�� R135 (km) C135 R12 (km) C12

2H 3.0 13.95 0.7033 2.835 15.23 0.1309 15.12 0.1172

H 3.0 13.55 1.232 2.249 12.27 0.1624 12.25 0.1447

HB 3.0 13.45 1.417 2.122 11.61 0.1718 11.60 0.1527

HBs 2.7 13.45 1.069 1.926 11.57 0.1723 11.67 0.1519

HBss 2.4 13.45 0.6854 1.701 11.45 0.1741 11.74 0.1509

B 3.0 13.35 1.630 2.003 10.96 0.1819 10.98 0.1614

Bs 2.7 13.35 1.269 1.799 10.74 0.1856 10.88 0.1629

Bss 2.4 13.35 0.8547 1.566 10.27 0.1940 10.66 0.1663

 0
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FIG. 1 (color online). The relation between the mass and
circumferential radius of the spherical NSs for piecewise poly-
tropic EOSs adopted in this paper. For comparison, we also plot
the curve for � ¼ 2 polytropic EOS with �=c2 ¼ 2	
10�16 g�1 cm3 (dotted curve).
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the central density is not very high, the radius with HB
EOS should be smallest.

C. Models

The previous works by three groups [22,23,25] have
found that the NSs in BH-NS binaries with high mass ratio
Q * 4 are barely subject to tidal disruption if the compan-
ion BH is not spinning: At the merger, the BH swallows
most of the NS matter at one moment and the remnant disk
mass is quite small or nearly equal to zero. Namely, the NS
behaves approximately as a point particle even at the
ISCO. Gravitational waves emitted in such a case have a
similar waveform to that from a BH-BH binary. Because
the behavior of NSs with high-mass BH companions does
not show remarkable dependence on the EOS, they are
unsuitable for the purpose of this paper, i.e., to investigate
the effect of the EOS on gravitational waves and final
outcomes. Thus, we focus only on low mass-ratio binaries
with Q ¼ 2 and 3 in this paper. Also, we choose relatively
low-mass NSs, because two-piece EOSs adopted in this
paper may not be appropriate for modeling a high-mass NS
with high central density, due to the lack of model parame-
ters in the high-density region.

Table II summarizes key quantities for the initial models
employed in the present numerical simulation. The labels
for the models denote the name of the EOS, the mass ratio,
and the NS mass; e.g., 2H-Q2M135 is modeled by 2H
EOS, and its mass ratio and the NS mass are 2 and
1:35M�, respectively. The primary purpose of this paper
is to study the dependence of gravitational waveforms and

the final outcome on (i) the EOS of NSs, (ii) the mass ratio,
and (iii) the NS mass. These purposes are reflected in our
choice of the initial models.
We prepare quasiequilibrium states basically with the

same value of �m0 for the same value of Q irrespective of
the EOS. The value of �m0 is chosen to be small enough
that the binaries spend more than 5 inspiral orbits before
the onset of the merger. ForQ ¼ 2 binaries, a smaller value
of initial angular velocity is required only for 2H EOS,
because the NS with this EOS has a much larger radius
than with other EOSs and is sensitive to the BH tidal force
even for a larger orbital separation; to track * 5 inspiral
orbits before the tidal disruption, we have to choose the
value of �m0 by �10% as small as that for other EOSs.
For the case of Q ¼ 3, we also choose smaller values of
�m0 for MNS ¼ 1:2M� cases.

III. METHODS OF SIMULATIONS

Numerical simulation is performed using an adaptive-
mesh refinement (AMR) code SACRA [39]. The formula-
tion, the gauge conditions, the numerical scheme, and the
methods of diagnostics are essentially the same as those
described in [23,39] except for the EOS. Thus, we here
only briefly review them. We also describe the present
setup of the computational domain for the AMR algorithm
and grid resolution in Sec. III C.

A. Formulation and numerical methods

In SACRA, we solve Einstein’s evolution equation in the
BSSN formalism [40,41] with the moving-puncture

TABLE II. Key parameters and quantities for the initial conditions adopted in the numerical simulations. The adopted EOS, mass
ratio (Q), NS mass in isolation (MNS), angular velocity (�) in units of c3=Gm0, baryon rest mass (M
), compactness of the NS in
isolation (C), maximum rest-mass density (�max), ADM mass of the system (M0), and total angular momentum of the system (J0),
respectively.

Model EOS Q MNS½M�] G�m0=c
3 M
½M�� C �max (g=cm3) M0½M�� J0½GM2�=c�

2H-Q2M135 2H 2 1.35 0.0250 1.455 0.1309 3:740	 1014 4.015 14.39

H-Q2M135 H 2 1.35 0.0280 1.484 0.1624 7:018	 1014 4.013 14.02

HB-Q2M135 HB 2 1.35 0.0280 1.493 0.1718 8:262	 1014 4.013 14.02

HBs-Q2M135 HBs 2 1.35 0.0280 1.489 0.1723 9:154	 1014 4.013 14.02

HBss-Q2M135 HBss 2 1.35 0.0280 1.485 0.1741 1:082	 1015 4.013 14.02

B-Q2M135 B 2 1.35 0.0280 1.503 0.1819 9:761	 1014 4.013 14.02

Bs-Q2M135 Bs 2 1.35 0.0280 1.501 0.1856 1:137	 1015 4.013 14.02

Bss-Q2M135 Bss 2 1.35 0.0280 1.501 0.1940 1:490	 1015 4.013 14.02

2H-Q3M135 2H 3 1.35 0.0280 1.455 0.1309 3:737	 1014 5.359 21.05

H-Q3M135 H 3 1.35 0.0300 1.484 0.1624 7:011	 1014 5.358 20.74

HB-Q3M135 HB 3 1.35 0.0300 1.493 0.1718 8:254	 1014 5.358 20.74

B-Q3M135 B 3 1.35 0.0300 1.503 0.1819 9:751	 1014 5.357 20.74

2H-Q2M12 2H 2 1.20 0.0220 1.282 0.1172 3:466	 1014 3.571 11.71

H-Q2M12 H 2 1.20 0.0280 1.303 0.1447 6:421	 1014 3.567 11.08

HB-Q2M12 HB 2 1.20 0.0280 1.310 0.1527 7:522	 1014 3.567 11.08

B-Q2M12 B 2 1.20 0.0280 1.317 0.1614 8:832	 1014 3.567 11.08

HB-Q3M12 HB 3 1.20 0.0280 1.310 0.1527 7:517	 1014 4.763 1.663

B-Q3M12 B 3 1.20 0.0280 1.317 0.1614 8:826	 1014 4.763 1.663
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method [34,42,43]. We evolve a conformal factor W �
��1=6, the conformal three-metric ~�ij ¼ ��1=3�ij, the

trace of the extrinsic curvature K, the conformal trace-

free part of the extrinsic curvature ~Aij ¼ ��1=3ðKij �
K�ij=3Þ, and an auxiliary variable ~�i � �@j ~�

ij. The spa-

tial derivatives in the evolution equations are evaluated by
a fourth-order centered finite difference except for the
advection terms which is evaluated by a fourth-order non-
centered finite difference. A fourth-order Runge-Kutta
method is employed for the time evolution.

Following [44], we employ a moving-puncture gauge in
the form

ð@t � �j@jÞ� ¼ �2�K; (25)

ð@t � �j@jÞ�i ¼ ð3=4ÞBi; (26)

ð@t � �j@jÞBi ¼ ð@t � �j@jÞ~�i � 
sB
i; (27)

where Bi is an auxiliary variable and 
s is an arbitrary
constant. In this work, we typically set 
s � M�=MBH.

For the hydrodynamics, we evolve �
 � ��utW�3,
ûi � hui, and e
 � h�ut � P=ð��utÞ. To handle the ad-
vection terms, we adopt a high-resolution central scheme
by Kurganov and Tadmor [45] with a third-order piecewise
parabolic interpolation for the cell reconstruction.

With regards to the EOS, we decompose the pressure
and the specific internal energy into cold and thermal parts
as follows (e.g., [46]):

P ¼ Pcold þ Pth; " ¼ "cold þ "th: (28)

Here, the thermal part is nonzero only in the presence of
shock heating, and thus, this part plays a role for the
evolution only in the merger phase. Once the primitive
variables � and " are recovered from the conserved vari-
ables �
, ûi, and e
, we calculate zero-temperature parts
Pcold and "cold from � using the piecewise polytropic EOS
(20). Then, the thermal part of the specific internal energy
is calculated by "th ¼ "� "cold, and finally the thermal
part of the pressure Pth is determined. In this paper, we
adopt a simple �-law, ideal-gas EOS for the thermal part as
(e.g., [46])

Pth ¼ ð�th � 1Þ�"th; (29)

where �th is an adiabatic index for the thermal part. We
choose �th equal to the adiabatic index in the crust region,
�1, for simplicity.

Because the vacuum is not allowed in any conservative
hydrodynamic scheme, an artificial atmosphere of small
density is distributed outside the NS in the same manner as
done in our previous work [23]. The rest-mass density of
the atmosphere is set to be �atm ¼ 10�9�max � 106 g=cm3

for the inner computational domain. For the outer domain

with r � rc � 20RNS, a smaller density is assigned accord-

ing to the rule � ¼ �atme
1�r=rc . The total rest mass of the

atmosphere is always less than 10�5M�, and hence, we can
safely neglect spurious effects by accretion of the atmo-
sphere onto the remnant accretion disk as long as the disk
mass is much larger than 10�5M�.

B. Diagnostics

Gravitational waves are extracted calculating the out-
going part of the complex Weyl scalar �4, which we
evaluate at a finite coordinate radii r ¼ 300–400M�.
Gravitational waveforms are obtained by integrating �4

twice in time as

hþðtÞ � ih	ðtÞ ¼ �
Z t

dt0
Z t0

dt00�4ðt00Þ; (30)

and then by subtracting the quadratic function a2t
2 þ

a1tþ a0 from the obtained waveform using the least-
square fitting for determining the constants a0, a1, and
a2. The purpose of this subtraction is to eliminate unphys-
ical components in numerically calculated Weyl scalar,�4

[47], as described in [23]. (In the previous work, we sub-
tract quadratic functions by the least-square fitting also
from �4 itself and

R
�4dt. We have found that we do

not have to perform this procedure.) We also calculate the
amount of radiated energy �E and angular momentum �J
by integrating the emission rate calculated from the Weyl
scalar �4 as

dE

dt
¼ r2

16�

I
S

��������
Z

�4dt

��������2

dA; (31)

dJz
dt

¼ � r2

16�
Re

�I
S

�Z
��4dt

��ZZ
@’�4dtdt

0
�
dA

�
;

(32)

where S denotes a coordinate sphere of r ¼ const, dA ¼
r2dðcos�Þd’ is the surface element of S, and ��4 is the
complex conjugate of�4. We decompose�4 into s ¼ �2
spin-weighted spherical harmonics of 2 � l � 4. Among
them, ðl; jmjÞ ¼ ð2; 2Þ modes are always dominant but
higher l modes such as ðl; jmjÞ ¼ ð3; 3Þ, (4, 4), and (2, 1)
modes contribute to the totally radiated energy and angular
momentum by larger than 1%.
We compare numerical waveforms with those derived

by the Taylor-T4 formula in the post-Newtonian approxi-
mation [48] for two point masses in quasicircular orbits.
Assuming that both the BH and NS have no spin angular
momentum, we calculate the evolution of the orbital an-

gular velocity �ðtÞ through XðtÞ ¼ ½m0�ðtÞ�2=3 and the
orbital phase �ðtÞ up to 3.5PN order by solving the ordi-
nary differential equations [49]
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dX

dt
¼ 64�X5

5m0

�
1� 743þ 924�

336
X þ 4�X3=2 þ

�
34 103

18 144
þ 13 661

2016
�þ 59

18
�2

�
X2 �

�
4159

672
þ 15 876

672
�

�
�X5=2

þ
�
16 447 322 263

139 708 800
� 1712

105
�E þ 16

3
�2 �

�
56 198 689

217 728
� 451

48
�2

�
�þ 541

896
�2 � 5605

2592
�3 � 856

105
lnð16XÞ

�
X3

�
�
4415

4032
� 358 675

6048
�� 91 495

1512
�2

�
�X7=2

�
; (33)

d�

dt
¼ X3=2

m0

; (34)

where � ¼ Q=ð1þQÞ2 and �E is the Euler constant. After X and� are obtained, we calculate complex gravitational-wave
amplitude h22 of ðl; mÞ ¼ ð2; 2Þ mode, assuming that the binary is orbiting on the equatorial (� ¼ �=2) plane, up to 3PN
order using the formula [50]

h22 ¼ �8

ffiffiffiffi
�

5

r
�m0

D
e�2i�X

�
1�

�
107

42
� 55

42
�

�
X þ 2�X3=2 �

�
2173

1512
þ 1069

216
�� 2047

1512
�2

�
X2

�
��
107

21
� 34

21
�

�
�þ 24i�

�
X5=2 þ

�
27 027 409

646 800
� 856

105
�E þ 2

3
�2 � 1712

105
ln2� 428

105
lnX �

�
278 185

33 264
� 41

96
�2

�
�

� 20 261

2772
�2 þ 114 635

99 792
�3 þ 428

105
i�

�
X3

�
; (35)

where D is a distance between the binary and an observer.
We also compute a gravitational-wave spectrum from the
waveform obtained in this way.

We determine the properties of the BHs formed after the
merger such as masses and spins using the quantities
associated with the apparent horizon. The apparent horizon
is determined in the same manner as described in [39].

The BH mass may be estimated by two methods. In the
first method, we measure the circumferential radius Ce of
the apparent horizon along the equatorial plane and calcu-
late Ce=4�, which gives the BH mass in the stationary
vacuum BH spacetime. By this method, we estimate the
mass of the remnant BH after the spacetime settles to an
approximately steady state (assuming that deviation from
Kerr spacetime due to the presence of surrounding mate-
rials is negligible). In the second method, we measure the
irreducible mass of the BH,Mirr, which is determined from
the area of the apparent horizon AAH as

Mirr ¼
ffiffiffiffiffiffiffiffiffi
AAH

16�

s
: (36)

For the Kerr spacetime, Mirr is written by the mass and
dimensionless spin parameter a � JBH=M

2
BH of a BH

(where JBH is the spin angular momentum of the BH) as

Mirr ¼ MBH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p

2

s
: (37)

Thus, if either the BH spin or mass is known, the BH mass
or spin is determined (again assuming that deviation from
Kerr spacetime due to the presence of surrounding mate-
rials is negligible). For the Kerr spacetime, this relation
may be written as

Mirr ¼ Ce

4
ffiffiffi
2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

pq
: (38)

Thus, we may say that the spin is estimated by calculating
Mirr and Ce.
The dimensionless spin parameter of the BH is esti-

mated also using the quantities defined on the apparent
horizon. For a Kerr BH with spin parameter a, the ratio of
the circumferential radius along the meridional plane Cp to

the one along the equatorial plane Ce is written as

Cp

Ce

¼
ffiffiffiffiffiffiffiffi
2r̂þ

p
�

E

�
a2

2r̂þ

�
; (39)

where r̂þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
is the normalized radius of the

horizon and EðzÞ is an elliptic integral

EðzÞ ¼
Z �=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� zsin2�

p
d�: (40)

Assuming that this relation holds for a BH surrounded by
materials again, we estimate the spin parameter of the
remnant BH.
Comparison of the spin obtained from Cp=Ce with that

derived from Eq. (38) provides a consistency check. It is
found that these two values agree with each other within
the error �a ¼ 0:003 irrespective of the model of BH-NS
binaries. For this reason, in the following, we only present
the spin determined from Cp=Ce.

In addition to the quantities for the remnant BHs, we
calculate the total rest mass of materials located outside the
apparent horizon by integrating the rest-mass density with
respect to the proper volume element,
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Mr>rAH �
Z
r>rAH

�
d3x; (41)

where rAH ¼ rAHð�; ’Þ denotes the radius of the apparent
horizon as a function of the angular coordinates ð�;’Þ.
Mr>rAH is regarded as the mass of the remnant disk when

the system settles to a quasistationary state after the
merger.

C. Setup of AMR grids

Numerical simulation is performed using an AMR algo-
rithm described in [39], to which the reader may refer for
details. In the present work, we prepare seven refinement
levels to ensure that the computational domain extends to
the local wave zone for initial quasiequilibrium states and
that both compact objects are resolved with a sufficient
grid resolution (e.g., Table III). Each refinement domain
consists of the uniform, vertex-centered grids with (2N þ
1, 2N þ 1, N þ 1) grid points for ðx; y; zÞ with the equato-
rial plane symmetry at z ¼ 0 imposed. In the present work,
we typically choose N ¼ 50, with the exception that N ¼
54 for model Bss-Q2M135, in which the NS is quite
compact and needs to be resolved with a better grid reso-
lution. For several models arbitrarily chosen, we performed
numerical simulations with lower grid resolutions, N ¼ 36
and 42, to check the convergence of the numerical results
(see the Appendix). The edge length of the largest domain
is denoted by 2L and the grid spacing for each domain is

then hl ¼ L=ð2lNÞ, where l ¼ 0–6. In all the simulations,
two sets of four finer domains comoving with compact
objects cover the region in the vicinity of two objects,
and the other three coarser domains cover both objects
by a wider domain with their origins being fixed at the
approximate center of mass of the binary. Namely, we
prepare 11 refinement domains in total for all the
simulations.
Table III summarizes the parameters of the grid structure

for the simulations in this paper. As mentioned above, the
value of L is chosen to be � 0, where 0 � �=�0 is the
gravitational wavelength at t ¼ 0 and �0 is the orbital
angular velocity of the initial configuration. Because the
gravitational wavelength decreases during the evolution of
the binaries, the outer boundary of the computational
domains is guaranteed to be located in the wave zone
throughout the simulation. Each of the two finest domains
covers the semimajor axis of the NS with 42–48 grid points
and the BH radius (the coordinate radius of the apparent
horizon) with typically � 20 grid points, respectively. For
N ¼ 54 run, the total memory required for the simulations
is about 11.6 G bytes. We perform numerical simulations
with personal computers of 12 G bytes memory and of
core-i7X processors with clock speed 3.2 or 3.33 GHz.
We only use two processors to perform one job with an
OPEN-MP library. Typical computational time required to
perform one simulation (for �40 ms in physical time of
coalescence) is 7–10 weeks.

IV. NUMERICAL RESULTS

A. Orbital evolution and general merger process

To obtain a realistic numerical result for gravitational
waveforms and the final outcome formed after the merger,
it is necessary to exclude spurious effects associated with a
noncircularity in the orbital motion as much as possible. To
assess the circularity of the orbital motion, we plot the
evolution of the coordinate separation xisep ¼ xiNS � xiBH
for model HB-Q2M135 in Fig. 2. Here, the position of the
maximum rest-mass density is identified as the coordinate
of the NS, xiNS, and the location of the puncture, xiP, is the
coordinate of the BH, xiBH. This figure suggests that the
orbital eccentricity appears to be low throughout the whole
evolution. Because* 5 orbits are tracked, the eccentricity,
which is likely to be nonzero initially, should be suppressed
by gravitational radiation reaction. We note that for all the
models, similar trajectories are found.
The coordinate separation shown above is a gauge-

dependent quantity. To show a stronger evidence that the
eccentricity is suppressed to a small level, it is better to plot
a gauge-independent quantity. Figure 3 plots the evolution
of the orbital angular velocity defined from the ðl; mÞ ¼
ð2; 2Þ mode of �4 by

�ðtÞ ¼ 1

2

j�4ðl ¼ m ¼ 2Þj
jR�4ðl ¼ m ¼ 2Þdtj ; (42)

TABLE III. Setup of the grid structure for the computation
with our AMR algorithm. �x ¼ h6 ¼ L=ð26NÞ is the grid spac-
ing at the finest-resolution domain with L being the location of
the outer boundaries for each axis. Rdiam=�x denotes the grid
number assigned inside the semimajor diameter of the NS. 0 is
the gravitational wavelength of the initial configuration.

Model �x=M0 Rdiam=�x L=0

2H-Q2M135 0.0471 90.8 1.189

H-Q2M135 0.0377 86.2 1.065

HB-Q2M135 0.0347 87.0 0.982

HBs-Q2M135 0.0353 85.2 0.998

HBss-Q2M135 0.0353 84.0 0.998

B-Q2M135 0.0330 85.1 0.932

Bs-Q2M135 0.0324 84.4 0.915

Bss-Q2M135 0.0270 95.4 0.825

2H-Q3M135 0.0353 89.0 0.998

H-Q3M135 0.0282 84.7 0.856

HB-Q3M135 0.0269 82.7 0.816

B-Q3M135 0.0247 83.8 0.749

2H-Q2M12 0.0565 86.9 1.255

H-Q2M12 0.0453 83.1 1.281

HB-Q2M12 0.0420 83.6 1.188

B-Q2M12 0.0392 83.4 1.109

HB-Q3M12 0.0306 84.6 0.866

B-Q3M12 0.0278 86.9 0.786
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for models 2H-Q2M135, H-Q2M135, HB-Q2M135, and
B-Q2M135. Here, the horizontal axis is chosen to be an
approximate retarded time defined by

tret ¼ t�D� 2M0 lnðD=M0Þ: (43)

We here do not plot the curve after the onset of tidal
disruption. For comparison, the angular velocity derived
from the Taylor-T4 formula is also plotted. To align the
curve in the inspiral phase for �ðtÞm0 � 0:05, we appro-
priately shift the time for each model. For tret & 0 ms, an

unphysical (a junk wave) component contained in the
initial data dominates the waveform, and hence, �ðtÞ
derived from Eq. (42) does not give the angular velocity.
Figure 3 shows that the angular velocity obtained in

numerical simulations agrees with that by the Taylor-T4
formula within a small modulation of ��=� & 5% irre-
spective of the models. With the fact that the orbital
eccentricity is approximately estimated as e � 2��=3�
for e � 1, we conclude that the orbital eccentricity is
suppressed within �3%. Figure 3 also shows that the
deviation from the Taylor-T4 result becomes remarkable
in an earlier time for models with stiffer EOSs such as 2H
and H EOSs. This is due to the fact that the tidal elongation
and disruption of the NS occur at slightly earlier stages of
the inspiral orbits for models with the stiffer EOSs. This
illustrates the fact that the stiffness of the EOS is reflected
clearly in the gravitational-wave frequency (and
gravitational-wave phase) as a function of time.
Figures 4 and 5 plot the snapshots of the rest-mass

density profiles and the location of the apparent horizon
on the equatorial plane at selected time slices for models
2H-Q2M12 and B-Q3M135. Figure 4 illustrates the pro-
cess in which the NS is tidally disrupted to form a disk
surrounding the companion BH. In this case, the NS is
disrupted far outside the ISCO and then forms a one-armed
spiral arm with large angular momentum. As a conse-
quence of the angular momentum transport in the arm, a
large amount of materials spread outward and then form a
disk around the BH. We will report more details about the
remnant disk in Sec. IVD. Figure 5 illustrates the case in
which the NS is not tidally disrupted before it is swallowed
by the BH. In this case, mass of the disk formed after the
onset of the merger is negligibly small.

B. Gravitational waveforms

Figures 6 and 7 plot the ðl; mÞ ¼ ð2; 2Þ, plus-mode gravi-
tational waveforms obtained numerically (hereafter re-
ferred to as hþ). All the waveforms are shown for an
observer located along the z axis (axis perpendicular to
the orbital plane) and plotted as a function of a retarded
time tret. We plot the amplitude in a normalized form,
Dhþ=m0, and the physical amplitude observed by an ob-
server located at a hypothetical distance D ¼ 100 Mpc.
To validate the numerical waveforms, we compare them

with the Taylor-T4 waveform, which is accurate up to
3.5PN order in phase and 3PN order in amplitude, with
an appropriate time shift; the time shift is carried out to
align the curve of�ðtÞ as performed in Sec. IVA. Figures 6
and 7 show that these two waveforms agree with each other
irrespective of models during the inspiral phase, except for
2–3 initial cycles. The reasons for this initial disagreement
are that an approaching velocity associated with gravita-
tional radiation reaction is not taken into account in the
initial data and also the initial condition does not exactly
model a quasicircular state, because we do not fully solve
Einstein’s equation for deriving it.
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FIG. 3 (color online). Time evolution of the orbital angular
velocity �ðtÞm0 for models 2H-Q2M135, H-Q2M135, HB-
Q2M135, and B-Q2M135 as a function of a retarded time
defined by Eq. (43) with an appropriate time shift. The dotted
curve denotes the evolution of the orbital angular velocity
calculated by the Taylor-T4 formula.
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FIG. 2 (color online). Evolution of the coordinate separation of
the binary xisep for model HB-Q2M135.
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FIG. 5 (color online). The same as Fig. 4 but for model B-Q3M135.
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FIG. 4 (color online). Evolution of the rest-mass density profile in units of g=cm3 and the location of the apparent horizon on the
equatorial plane for model 2H-Q2M135. The filled circles denote the regions inside the apparent horizons. The color panels on the
right-hand side of each figure show log10ð�Þ.
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FIG. 6 (color online). ðl; mÞ ¼ ð2; 2Þ, plus-mode gravitational waveforms for models 2H-Q2M135, H-Q2M135, HB-Q2M135, HBs-
Q2M135, HBss-Q2M135, B-Q2M135, Bs-Q2M135, and Bss-Q2M135. All the waveforms are shown for an observer located along the
z axis (axis perpendicular to the orbital plane) and plotted as a function of a retarded time. For model 2H-Q2M135, the waveform is
plotted as a function of tret � 5 ms to align it with other waveforms (note that the initial value of � only for this model is smaller than
those for other models). The left axis denotes the amplitude normalized by the distance from the binary D and the total mass m0. The
right axis denotes the physical amplitude of gravitational waves observed at a hypothetical distance 100 Mpc. The dotted curves denote
the waveforms calculated by the Taylor-T4 formula.
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FIG. 7 (color online). The same as Fig. 6 but for models 2H-Q3M135, H-Q3M135, HB-Q3M135, B-Q3M135, 2H-Q2M12, H-
Q2M12, HB-Q2M12, and B-Q2M12. Again, the waveform for model 2H-Q2M12 is plotted as a function of tret � 9 ms.
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The numerical waveforms in the merger phase also (but
due to a physical reason) deviate from the Taylor-T4 ones
both in phase and amplitude, in particular, for models with
stiff EOSs, e.g., 2H-Q2M135 and 2H-Q2M12. For such
models, ringdown waveforms associated with the BH qua-
sinormal mode are not seen in the merger and ringdown
phases, and instead, the gravitational-wave amplitude
damps suddenly in the middle of the inspiral phase. The
reason for this quick damping is that the NS is tidally
disrupted by the companion BH at an orbit in the inspiral
phase within one orbital period, and then, the disrupted
material forms a relatively low-density and nearly axisym-
metric matter distribution around the BH, suppressing time
variation of a mass quadrupole moment. Because the
gravitational-wave emission stops in the middle of the
inspiral motion, the maximum amplitude of gravitational
waves is smaller for such a binary than for a binary with no
tidal disruption, as shown in Fig. 6. All these facts illustrate
that the finite size effect of the NS significantly modifies
gravitational waves derived in the point-particle approxi-
mation (in the Taylor-T4 formula). On the other hand,
ringdown gravitational waves are clearly seen for models
with soft EOSs (for which tidal disruption does not occur)
such as model B-Q3M135, in which the numerical and the
Taylor-T4 waveforms are in more excellent agreement
even in the late inspiral phase.

Table IV presents total radiated energy �E and angular
momentum �J carried away by gravitational waves. The
contribution from all the l ¼ 2–4 modes is taken into

account for �E and �J. We estimate systematic errors in
the presented values to be less than 10%, which are asso-
ciated mainly with the finite grid resolution and partly with
the finite extraction radii (cf. the Appendix). We note that
the ðl; jmjÞ ¼ ð2; 2Þ modes always contribute by * 90% to
both for �E and �J. The fraction of these modes is larger
for binaries composed of less-compact NSs, because only
binaries which escape the tidal disruption in the late in-
spiral phase can efficiently emit higher l-mode gravita-
tional waves. Among other modes, (3, 3) and (4, 4)
modes constitute most of the remaining part of �J,
whereas the order of magnitude of the (2, 1) mode is as
large as that of the (4, 4) mode for �E.
The numerical results shown in Table IV illustrate a

quantitative dependence of gravitational-wave emission
on the compactness of the NS: For a given mass ratio,
gravitational-wave emission continues for a longer dura-
tion and consequently total radiated energy and angular
momentum are larger for binaries composed of more com-
pact NSs. Comparison among the models with Q ¼ 2 and
MNS ¼ 1:35M� and with the same initial value of �m0

shows that both �E=M0 and �J=J0 are monotonically
increasing functions of the NS compactness C. This point
is also recognized from Figs. 6 and 7, e.g., from the
comparison among gravitational waves for models H-
Q2M135, HB-Q2M135, and B-Q2M135 (note that for
model 2H-Q2M135 the simulation is started from a lower
value of �m0 and it is not suitable for this comparison).
Table IV also shows that �J=�E decreases as the EOS
softens. This is due to the fact that �J=�E � m=� for a
given angular harmonic of m, and for a soft EOS, more
radiation is emitted at large angular velocity, �.

C. Gravitational-wave spectrum

Characteristic features of a gravitational waveform, such
as characteristic frequencies and their dependence on the
EOS, are well reflected in the Fourier spectrum. Figures 8–
10 display gravitational-wave spectra for all the models
with the mass ratio Q ¼ 2 and the models with the mass
ratio Q ¼ 3 and the NS mass MNS ¼ 1:35M�. As before
[23], we define the Fourier spectrum as a sum of each
Fourier component of two independent polarizations of
the ðl; mÞ ¼ ð2; 2Þ mode as

~hðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~hþðfÞj2 þ j~h	ðfÞj2

2

s
; (44)

~h AðfÞ ¼
Z

e2�ifthAðtÞdt; (45)

where A denotes two polarization modes, þ or 	. In

calculating ~hðfÞ from a numerically obtained Weyl scalar,
�4, we always omit the unphysical radiation component
extracted at tret & 0 ms using a step function of retarded
time as the window function so that the spurious radiation

TABLE IV. Total radiated energy �E and angular momentum
�J carried away by gravitational waves. �E and �J are nor-
malized with respect to the initial ADM mass M0 and angular
momentum J0, respectively. We also show the ratio between �J
and �E.

Model �E=M0 (%) �J=J0 (%) ð�J=J0Þ=ð�E=M0Þ
2H-Q2M135 0.55 14 26

H-Q2M135 1.1 20 18

HB-Q2M135 1.4 22 16

HBs-Q2M135 1.4 22 16

HBss-Q2M135 1.5 23 15

B-Q2M135 1.7 24 14

Bs-Q2M135 1.9 25 13

Bss-Q2M135 2.2 27 12

2H-Q3M135 0.64 15 23

H-Q3M135 1.4 22 16

HB-Q3M135 1.6 23 14

B-Q3M135 1.8 24 13

2H-Q2M12 0.41 12 30

H-Q2M12 0.74 16 21

HB-Q2M12 0.89 18 20

B-Q2M12 1.1 20 18

HB-Q3M12 1.2 21 18

B-Q3M12 1.4 23 16
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component does not introduce unphysical oscillations in
the gravitational-wave spectrum. The spectrum amplitude
for a low-frequency region of f � �ðtret ¼ 0Þ=� changes
slightly if we include the spurious radiation component.
However, we believe that our use of the window function is
physically reasonable.3 We always show the spectrum
based on gravitational waves observed along the z axis
(axis perpendicular to the orbital plane), which is the most
optimistic direction for the gravitational-wave detection.
(To obtain an averaged amplitude, we only need to multi-
ply a factor of 0.4; e.g., see [49].) Because the Fourier
components of any dimensionless quantity have the dimen-
sion of time, we define a dimensionless effective amplitude

f~hðfÞ. In the figure, we plot this quantity observed at a
hypothetical distance 100 Mpc as a function of f (Hz) or a

normalized amplitude f~hðfÞD=m0 as a function of dimen-
sionless frequency fm0.

Figure 8 plots gravitational-wave spectra for Q ¼ 2
and MNS ¼ 1:35M� with all the EOSs employed in this
paper. For all these models, the total mass is universally
m0 ¼ 4:05M�, and thus, a nondimensional quantity,
fm0ð¼ Gfm0=c

3Þ, is plotted at the bottom and f in units
of Hz is plotted at the top. Also, a normalized amplitude,

f~hðfÞD=m0, is plotted at the left side and f~hðfÞ observed at
a distance of 100 Mpc from the binary is at the right side.
For comparison, we also plot the spectra derived from the
quadrupole formula (e.g., see [51]) and the Taylor-T4
formula (dashed curves).

General qualitative features of the gravitational-wave
spectrum by BH-NS binaries are summarized as follows.
In the early stage of the inspiral phase, during which the
orbital frequency is & 1 kHz and the PN point-particle
approximation works well, the gravitational-wave spec-
trum is approximately reproduced by the Taylor-T4 for-

mula. For this phase, the spectrum amplitude of f~hðfÞ
decreases as f�ni , where ni ¼ 1=6 for f � 1 kHz and
the value of ni increases with f for f & 1 kHz. As the
orbital separation decreases, both the nonlinear effect of
general relativity and the finite size effect of the NS come
into play, and as a result, the PN point-particle approxima-
tion breaks down. If the tidal disruption sets in for a
relatively large separation (e.g. for 2H EOS), the amplitude
of the gravitational-wave spectra damps for a low fre-
quency in the middle of the inspiral phase (before the
ISCO is reached). By contrast, if the tidal disruption does
not occur or occurs at a close orbit near the ISCO, the
spectrum amplitude for a high frequency region (f *
1 kHz) is larger than that predicted by the Taylor-T4

formula (i.e., the value of ni decreases). In this case, an
inspiral-like motion continues even inside the ISCO for a
dynamical time scale and gravitational waves with a high

amplitude are emitted. As a result, f~hðfÞ becomes a slowly
varying function of f for 1 kHz & f & fcut, where fcut �
2–3 kHz is the so-called cutoff frequency which depends
on the binary parameters as well as the EOS of the NSs. (A
more strict definition of fcut will be given below.) A steep
damping of the spectra for f * fcut is universally ob-
served, and for softer EOSs with a smaller radius of NSs,
the frequency of fcut is higher. This cutoff frequency is
determined by the frequency of gravitational waves emit-
ted when the NS is tidally disrupted for the stiff EOSs or by
the frequency of a quasinormal mode of the formed BH for
the soft EOSs. Therefore, the cutoff frequency provides
potential information for the EOS through the tidal-
disruption event of the NSs, in particular, for the stiff
EOSs.
Hereafter, we pay special attention to the cutoff fre-

quency determined by the tidal disruption. It is natural to
expect that the NS compactness C primarily determines the
cutoff frequency in the combination, fcutm0, because the
orbital angular velocity at the onset of mass shedding,
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FIG. 8 (color online). Spectra of gravitational waves from BH-
NS binaries for Q ¼ 2 and MNS ¼ 1:35M� with all the EOSs
chosen in this paper. The bottom axis denotes the normalized
dimensionless frequency fm0ð¼ Gfm0=c

3Þ and the left axis the
normalized amplitude f~hðfÞD=m0. The top axis denotes the
physical frequency f in Hz and the right axis the effective
amplitude f~hðfÞ observed at a distance of 100 Mpc from the
binaries. The short-dashed slope line plotted in the upper left
region denotes a planned noise curve of the Advanced-LIGO [1]
optimized for 1:4M� NS-NS inspiral detection (‘‘Standard’’), the
long-dashed slope line denotes a noise curve optimized for the
burst detection (‘‘Broadband’’), and the dot-dashed slope line
plotted in the lower right region denotes a planned noise curve of
the Einstein Telescope (‘‘ET’’) [60]. The upper transverse
dashed line is the spectrum derived by the quadrupole formula
and the lower one is the spectrum derived by the Taylor-T4
formula, respectively.

3In the previous work [23], we matched the Taylor-T4 wave-
form with numerical waveforms in the inspiral phase to com-
pensate lack of numerical waveforms at low frequencies, and
then, performed the Fourier transformation. In the present work,
we do not perform such a procedure, because that is not
necessary to study the dependence of the Fourier spectrum on
EOSs near f� fcut.
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Rshed, is written as a function of Q and C as [14,15]

�m0 / C3=2ð1þQÞ3=2ffiffiffiffi
Q

p : (46)

In fact, we found a qualitative correlation between C and
fcutm0 in the previous work [23]. To reconfirm this, we first

plot gravitational-wave spectra [f~hðfÞD=m0 as a function
of fm0] for Q ¼ 2 with the different NS mass MNS ¼
1:35M� and 1:2M� in Fig. 9. This indeed shows fcutm0

increases monotonically with C irrespective of the NS mass
for the given mass ratio.

Figure 10 shows the gravitational-wave spectrum for
MNS ¼ 1:35M� and for Q ¼ 2 and 3. The left panel plots

f~hðfÞD=m0 as a function of fm0 and the right panel f~hðfÞ

as a function of f for D ¼ 100 Mpc. This shows that
dependence of fcutm0 on C for Q ¼ 3 is weaker than for
Q ¼ 2. The reason for this is that the tidal effect is weaker
for Q ¼ 3, as discussed in Sec. IVD. (As later shown in
Fig. 11, fcut for models H-Q3M135, HB-Q3M135, and B-
Q3M135 are not determined by the orbital frequency at
tidal disruption but by the quasinormal-mode frequency of
the remnant BH, which sets an approximate upper limit on
the frequency of gravitational waves emitted in the
merger.) Hence, the information of the EOS is not encoded
in gravitational waves for Q ¼ 3 as strongly as for Q ¼ 2.
The right panel shows that fcut is between �1 and 3 kHz
depending weakly on the value of Q.
To analyze the cutoff frequency quantitatively and to

strictly study its dependence on EOSs, we perform a
systematic fitting procedure. As in [23], we fit all the
spectra by a function with seven free parameters

~hfitðfÞ ¼ ~h3PNðfÞe�ðf=finsÞ�ins

þ Am0

Df
e�ðf=fcutÞ�cut ½1� e�ðf=fins2Þ�ins2 �; (47)

where ~h3PNðfÞ is the Fourier spectrum calculated by the
Taylor-T4 formula and fins, fins2, fcut, �ins, �ins2, �cut, and
A are free parameters. The first and second terms of
Eq. (47) denote the spectrum models for the inspiral and
merger phases, respectively. We determine these free pa-
rameters by searching the minimum for a weighted norm
defined by X

i

f½fi ~hðfiÞ � fi ~hfitðfiÞ�f1=3i g2; (48)

where i denotes the data point for the spectrum. In the
previous work [23], we fix�ins ¼ 3:5 and�ins2 ¼ 5 to save
the computational costs. Here, these are chosen to be free
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FIG. 10 (color online). The same as Fig. 8 but for MNS ¼ 1:35M� and for Q ¼ 2 and 3. The left panel shows the normalized
amplitude f~hðfÞD=m0 as a function of the dimensionless frequency fm0. The right panel shows the spectra observed at a distance of
100 Mpc. The spectra derived from the quadrupole formula and the Taylor-T4 formula are plotted by the short-dashed (Q ¼ 2) and
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parameters to reproduce a more consistent spectrum with
the original one.

Among these seven free parameters, we focus on fcut
because it depends most strongly on the compactness C and
the EOS of the NS. Figure 11 plots fcutm0, obtained in this
fitting procedure, as a function of C. Also the typical
quasinormal-mode frequencies, fQNM, of the remnant BH

calculated in Sec. IVD are plotted by the two horizontal
lines, which show that the values of fcutm0 for models H-
Q3M135, HB-Q3M135, and B-Q3M135 agree approxi-
mately with fQNM and indicates that fcut for these models

are irrelevant to the tidal disruption. For Q ¼ 3, fcutm0

depends clearly on the EOS only for C & 0:16. This agrees
with the result with � ¼ 2 polytropic EOS [23]. By con-
trast, fcutm0 for Q ¼ 2 depends strongly on the NS com-
pactness C irrespective of MNS not only for the piecewise
polytropic EOS but also for � ¼ 2 polytrope [23]. The
solid line in Fig. 11 is the linear fitting of lnðfcutm0Þ as a
function of lnðCÞ forQ ¼ 2 and for the piecewise polytrope
with �2 ¼ 3, and denoted by a well-approximated relation

lnðfcutm0Þ ¼ ð3:87 0:12Þ lnCþ ð4:03 0:22Þ: (49)

Thus, fcutm0 is approximately proportional to C3:9 (for
Q ¼ 3 and �2 ¼ 3, fcutm0 also appears to be proportional
to C4, although the number of data points is small and thus
this is not conclusive). This is a noteworthy point because
the power of C is much larger than 1.5, which is expected
from the relation for the mass-shedding limit, Eq. (46).
Qualitatively, this increase in the power is natural because
the duration of a NS for the survival against tidal disruption
after the onset of mass shedding is in general longer
for a more compact NS due to a stronger central conden-
sation of the mass. Equation (49) implies that the ratio
fcut=fshedð>1Þ, where fshed is the frequency of gravita-

tional waves at the onset of mass shedding, is larger for
the larger values of C. This is the preferable feature, for an
observer of gravitational waves from BH-NS binaries who
tries to constrain the EOS of the NSs, because the depen-
dence of fcutm0 on the EOS is enhanced.
Comparison of the values of fcutm0 for models HB-

Q2M135 (�2 ¼ 3:0 and C ¼ 0:1718), HBs-Q2M135 (�2 ¼
2:7 and C ¼ 0:1723), and HBss-Q2M135 (�2 ¼ 2:4 and
C ¼ 0:1741), for which the value of C is approximately
identical, shows that fcutm0 depends also on the adiabatic
index of EOS in the central region, �2. The reason for this
is that the NSs with smaller values of �2 (but with the same
value of C) have a more centrally condensed density profile
as can be seen from the value of �max in Table II, and
hence, are less subject to tidal disruption (fcutm0 becomes
larger). Quantitatively, the value of fcutm0 increases by
�20%, when the value of �2 is varied from 3 to 2.4. This
result suggests that it may be possible to constrain not only
the compactness of a NS but also its density profile and
detailed function of Pð�Þ for the EOS, if gravitational
waves emitted during the merger of low-mass BH-NS
binaries are detected.

D. Properties of the disk

If a NS is tidally disrupted before it is swallowed by the
companion BH, a disk may be formed around the BH.
Figure 12 plots the time evolution of the rest mass of the
material located outside the apparent horizon Mr>rAH de-

fined by Eq. (41). This shows that most of the material is
swallowed by the BH soon after the onset of the merger (or
tidal disruption) within �1 ms, but 1%–10% of total rest
mass survives around the BH to be a disk, if the tidal
disruption occurs (see Table V which lists the numerical
results of Mr>rAH at the end of the simulations for all the

models).
To clarify that the disk will survive for a time duration

longer than the dynamical time scale of the system, we
estimate an accretion time scale. Figure 12 shows that for
t� tmerger * 5 ms, Mr>rAH for each model behaves ap-

proximately as C expð�t=tdÞ, where C is a constant and
td is the accretion time scale which we determine by a
least-square fitting of Mr>rAHðtÞ at t� tmerger � 10 ms.

The fourth column of Table V lists the numerical results.
It is found that the accretion time scale is always longer
than the dynamical time scale of the remnant disk�10 ms,
and hence, we conclude that the BH-NS merger always
forms a long-lived accretion disk, if the disk is formed.4

Figure 13 plots the values of Mr>rAH estimated at t�
tmerger � 10 ms as a function of the NS compactness C and

clarifies the dependence of the disk mass on the EOS. The
disk mass for model Bss-Q2M135 is estimated at the end of
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FIG. 11 (color online). fcutm0 as a function of C in logarithmic
scales. The solid line is obtained by a linear fitting of the data for
Q ¼ 2 and �2 ¼ 3. The short-dashed and long-dashed lines
show approximate frequencies of the quasinormal mode of the
remnant BH for Q ¼ 2 and Q ¼ 3, respectively.

4Note that in the presence of magnetic fields, angular momen-
tum transport by them works efficiently, and thus, the accretion
time scale may be shorter than that presented here in reality.
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the simulations, 4.83 ms, because it already became very
small at that time and we stopped the simulation. (We also
note that the result for model H-Q2M135 is not included in
Fig. 13, because the simulation for this model unfortu-
nately terminated just after the disk formation due to the
electrical outage at our institute.) This figure summarizes
the key features as follows: (i) for a given mass ratio and
for a given adiabatic index of the core, �2, the disk mass
decreases monotonically with the increase of C for
Mr>rAH & 0:1M�; (ii) for a given mass ratio and for a given

NS compactness, the disk mass increases slightly with the
increase of �2; and (iii) the disk mass is highly sensitive to
the mass ratio of the binary,Q, for a given mass and EOS of
the NS. In the following, we observe these features from
Fig. 12 in detail.

The top left panel of Fig. 12 plots the disk-mass evolu-
tion for binaries with Q ¼ 2, MNS ¼ 1:35M� and for all
the EOSs employed in this paper. For this sample, C / R�1

NS

since MNS is identical, and we find that the disk mass
increases monotonically with C�1 (see Table I for C of
each model); the disk mass is larger for a model for which
the tidal disruption occurs at a more distant orbit (i.e., for
smaller value of fcut, cf. Fig. 11). This is quite reasonable
because the earlier onset of tidal disruption helps more
materials to remain outside the ISCO of the BH.
Comparison of the results for models HB-Q2M135

(�2 ¼ 3:0 and C ¼ 0:1718), HBs-Q2M135 (�2 ¼ 2:7 and
C ¼ 0:1723), and HBss-Q2M135 (�2 ¼ 2:4 and C ¼
0:1741) indicates that the disk mass depends not only on
the compactness of the NS but also on the adiabatic index
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FIG. 12 (color online). Evolution of the rest mass of the material located outside the apparent horizon, Mr>rAH , with an appropriate
time shift; in these plots, the time at the onset of the merger is taken as the time origin. The top-left panel shows the results for models
with Q ¼ 2 and MNS ¼ 1:35M� for all the EOSs employed in this paper (we note that the simulation for model H-Q2M135
unfortunately terminated in the middle of the accretion process due to the electrical outage at our institute). The top-right panel shows
the results for selected models withMNS ¼ 1:35M� but with different values ofQ. The bottom-left panel shows the results for selected
models with Q ¼ 2 but with the different NS mass MNS. The bottom-right panel is the same as the bottom-left panel except for the
normalization of the mass, with respect to the initial rest mass M
.
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of the core, �2; a higher value of �2 is preferable for
forming a massive disk. This dependence on �2 is consis-
tent with the result reported in [52]; the NS with a larger

value of the adiabatic index is more subject to tidal dis-
ruption (tidal disruption occurs for more distant orbital
separation). The physical interpretation for this result is
that the degree of central mass concentration for NSs of
larger values of the adiabatic index is weaker, helping
earlier tidal disruption (in other words, we may say that
the tidal Love number or deformability is larger for the
larger value of �2).
The top right panel of Fig. 12 plots the disk-mass

evolution for the NS with the same mass (MNS ¼
1:35M�) but with different mass ratio Q ¼ 2 and Q ¼ 3
and with HB and 2H EOSs. This, together with Fig. 13,
shows that the disk mass depends strongly on the mass
ratio, in particular, for the soft EOS. The reason for this is
simply that the NS is less subject to tidal disruption for a
larger BH mass (i.e., for weaker tidal force near the ISCO).
The present result suggests that the disk mass is much
smaller than 0:01M� for BH-NS binaries with the typical
NS mass ofMNS ¼ 1:2–1:35M� and C & 0:16, if the BH is
nonspinning andMBH * 4M�. Only for the case C * 0:16,
the disk mass may be larger than 0:01M� even with a high-
mass BH companion. This conclusion is in agreement with
the previous studies [22,23,25].
The two bottom panels of Fig. 12 compare the disk-mass

evolution for models 2H-Q2M12 and 2H-Q2M135 and for

TABLE V. Several key quantities for the merger remnants. All the quantities are estimated when we stopped the simulation at
t ¼ tend. tmerger denotes the time of the merger and the time duration for following the disk evolution, tend � tmerger, is shown in the

second column.Mr>rAH is the rest mass of the disk surrounding the BH; because the accretion is still ongoing at the end of simulations

due to the hydrodynamic angular momentum transport process, the values listed give only an approximate mass of the long-lived
accretion disk (especially for model H-Q2M135; see Sec. IVD), which survives for a time scale longer than the dynamical time scale
�10 ms. td is the approximate accretion time scale estimated around �10 ms after the merger, which we show only for the case
Mr>rAH * 0:001M�. Ce and Cp are the circumferential radii of the apparent horizon along the equatorial plane and meridional plane,

respectively, and Ce=4� is the approximate mass of the remnant BH. Mirr is the irreducible mass of the remnant BH. a is the
nondimensional spin parameter of the remnant BH estimated from Cp=Ce.

Model tend � tmerger (ms) Mr>rAH ½M�� td (ms) Ce=4�M0 Mirr=M0 Cp=Ce a

2H-Q2M135 12.6 0.097 30 0.947 0.891 0.913 0.64

H-Q2M135 4.22 0.070 � � � 0.968 0.905 0.905 0.66

HB-Q2M135 11.9 0.022 18 0.978 0.912 0.902 0.67

HBs-Q2M135 13.7 0.015 15 0.980 0.914 0.902 0.67

HBss-Q2M135 13.5 0.0093 12 0.981 0.916 0.903 0.67

B-Q2M135 20.0 0.0045 20 0.980 0.917 0.905 0.66

Bs-Q2M135 12.5 0.0029 19 0.979 0.917 0.906 0.66

Bss-Q2M135 4.83 6	 10�4 � � � 0.977 0.917 0.910 0.65

2H-Q3M135 20.4 0.044 19 0.961 0.925 0.944 0.52

H-Q3M135 21.4 0.0015 11 0.984 0.942 0.937 0.55

HB-Q3M135 16.5 2	 10�4 � � � 0.983 0.942 0.937 0.55

B-Q3M135 15.1 <10�5 � � � 0.982 0.941 0.939 0.55

2H-Q2M12 12.6 0.097 31 0.939 0.886 0.918 0.62

H-Q2M12 11.9 0.077 30 0.959 0.899 0.907 0.66

HB-Q2M12 9.72 0.068 30 0.964 0.902 0.906 0.66

B-Q2M12 15.4 0.043 24 0.972 0.908 0.903 0.67

HB-Q3M12 12.2 0.011 15 0.979 0.937 0.937 0.55

B-Q3M12 10.6 0.0019 17 0.982 0.940 0.936 0.56
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FIG. 13 (color online). Disk mass Mr>rAH at t� tmerger �
10 ms as a function of the NS compactness C. Note that the
disk mass for model Bss-Q2M135 is estimated at the end of the
simulations, 4.83 ms, because it became already very small at
that time and we stopped the simulation.
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models HB-Q2M12 and HB-Q2M135. In the left panel we
plot the disk mass in units of M� while the bottom right
panel plots the disk mass in units of M
. We note that the
NS radius depends weakly on the mass for 1:2M� �
MNS � 1:35M� for both EOSs, and also the mass ratio Q
is identical for these models. Nevertheless, the disk mass
depends strongly on the NS mass except for models with
stiff 2H EOS as seen in Table V; it decreases with the
increase of MNS. Thus, not the NS radius RNS but C is the
key parameter for determining the disk mass.

Before closing this section, we summarize several key
properties of the remnant disk. Figure 14 plots the relation
betweenMr>rAH and the maximal rest-mass density �max of

the remnant disk estimated at t� tmerger � 10 ms. This

clearly shows a strong correlation between two quantities.
The value ofMr>rAH increases approximately linearly with

�max for Mr>rAH & 0:1M�, and for Mr>rAH � 0:01M�,
�max is larger than 4	 1011 g=cm3. Because the density
is high and the temperature should be also high enough
(� 10 MeV if viscous effects or magnetohydrodynamic
effects are taken into account [53–55]), neutrinos will be
copiously produced in such a disk in reality. Because of the
high density and temperature, the cross section to the
nucleon will be large enough (� 10�41 cm2) to trap neu-
trinos inside the disk of nucleon number density nn ¼
�=mn * 1035 cm�3, where mn is nucleon mass 1:66	
10�24 g [56–58]. Therefore, a neutrino-dominated accre-
tion disk will be always produced, if BH-NS binaries result
in a system composed of the BH and surrounding disk of
mass larger than 0:01M�.

E. Properties of the remnant BH

Table V shows several quantities associated with the
remnant BH such as the mass and spin, in addition to the

disk mass. Unlike the disk mass, the mass and spin of the
remnant BH depend weakly on the EOS of the NS. For
given values of Q and MNS, the BH mass tends to be
slightly smaller for stiffer EOS, primarily because the
fraction of the NS mass swallowed by the BH is smaller
(the disk mass is larger). The spin does not show such a
clear dependence. The reason is that the spin angular
momentum of the remnant BH is affected by two compet-
ing processes; one is the orbital angular momentum dis-
sipation due to gravitational radiation reaction and the
other is the distribution of the angular momentum to the
disk surrounding the BH. The former dissipation effect is
important for the case in which the NS is compact and the
tidal disruption does not occur as stated in Sec. IVB. By
contrast, the latter effect is more important for the case in
which the NS is less compact and the tidal disruption
occurs in the relatively early stage of the inspiral phase.
Although the relation �J > Jr>rAH (where Jr>rAH denotes

the angular momentum of disk) always holds for all the
models, we may also have the relation �E * Mr>rAH . As a

result, a nondimensional spin parameter, which may be
approximately estimated by

spin angular momentum

ðmassÞ2 � ðJ0 ��J � Jr>rAHÞ
ðM0 ��E�Mr>rAHÞ2

;

(50)

does not depend simply on the EOS.
The spin of the remnant BH is primarily determined by

the mass ratio, Q; a ¼ 0:66 0:03 for Q ¼ 2 and a ¼
0:54 0:02 forQ ¼ 3 (here signs do not imply the error
bars but signify differences due to the EOS). Thus, the spin
parameter is modified by the EOS only in 5%.
From the typical value of the spin parameter a and mass

of the remnant BHMBH;f , we estimate typical quasinormal-

mode frequencies fQNM of the remnant BH by the latest

fitting formula [59]

fQNMMBH;f � 1

2�
½1:5251–1:1568ð1� aÞ0:1292�: (51)

Then, fQNM � 0:083=MBH;f for Q ¼ 2 and

� 0:076=MBH;f for Q ¼ 3, respectively. Assuming that

Ce=4� gives an approximate value of MBH;f as described

in Sec. III B, these values are in good agreement with the
ringdown part of gravitational waves for models Bss-
Q2M135 and B-Q3M135, for which the disk masses are
negligibly small, respectively. We note that this estimation
is valid only when the quasinormal modes of the BH are
excited, and actually the tidal disruption of the NS often
suppresses the quasinormal-mode excitation as can be seen
in Figs. 6 and 7, in particular, for the stiff EOS such as 2H.

V. SUMMARY

We performed numerical simulations for the merger of
nonspinning BH-NS binaries using an AMR code SACRA
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with eight piecewise polytropic EOSs. In this work, we
employed the EOSs with two free parameters which de-
termine the core EOSs. The crust EOS was fixed, whereas
the core EOS was varied for a wide range, to investigate the
dependence of gravitational waveforms, merger process,
and merger remnant on the core EOS. We focused, in
particular, on the case in which the NS is tidally disrupted
by the companion BH, choosing relatively low values of
mass ratio asQ ¼ 2 and 3 as well as low masses for the NS
as MNS ¼ 1:2 and 1:35M�. By preparing the initial condi-
tion with a distant orbit and a small eccentricity, we always
tracked * 5 quasicircular orbits in the inspiral phase and
studied the merger phase with a realistic setting. We also
evolved the merger remnant (BH-disk system) until they
settled to a quasistationary state.

A wide variety of simulations were systematically per-
formed to investigate the dependence of the tidal-
disruption process and resulting gravitational waveforms
on the EOS. For the case in which the tidal disruption
occurs before the orbit reaches the ISCO, the
gravitational-wave amplitude decreases quickly at its onset
and the emission of ringdown gravitational waves associ-
ated with the quasinormal mode of the remnant BH is
suppressed. Only in the BH-NS binaries with low values
of mass ratio (for the nonspinning BH), the tidal effects
play an important role, and hence, the remarkable depen-
dence of the gravitational waveforms on the EOS is found
only for such cases: With stiffer EOSs, the radius of the NS
becomes larger and the tidal effect is more relevant than
with softer EOSs. For given masses of the BH and NS, the
tidal disruption occurs in a lower frequency with stiffer
EOSs than with softer EOSs, and consequently, the emis-
sion of gravitational waves terminates at a lower frequency
in the inspiral phase. The corresponding Fourier spectrum
of gravitational waves is characterized by a cutoff fre-
quency, fcut, above which the spectrum amplitude expo-
nentially damps. From the analysis of the gravitational-
wave spectra, we find that the cutoff frequency fcut de-
pends strongly on the mass ratio and the compactness C of
the NS. For a given small mass ratio such as Q ¼ 2, the
value of fcut increases monotonically and steeply with C,
depending weakly on the adiabatic index, �2, of the core
EOS. We derive the relation between C and fcut for Q ¼ 2
and �2 ¼ 3 as fcut / C3:9, in which the power index of C is
significantly larger than 1.5 which is expected from the
analysis of the mass-shedding limit. This implies that the
dependence of fcut on C is stronger than that for fshed, and
indicates that the observation of fcut will play a role for
constraining the value of C. Varying the core EOS also
modifies the value of fcut, because the central density
profile of the NS depends on the stiffness of the core
EOS and susceptibility to the tidal force of its companion
BH is modified. For the variation from �2 ¼ 3 to 2.4, the
value of fcut is modified by �20%. This suggests that the
details of the core EOS for � * 1015 g=cm3 may play an

important role for determining the gravitational waveform
from the BH-NS binaries composed of high-mass NSs.
We also determined the mass of the disk surrounding the

remnant BH. The disk mass depends strongly on the EOS,
because the EOS determines the location at which the tidal
disruption occurs through the compactness C of the NS.
The disk mass is correlated strongly with the NS compact-
ness C, and forQ ¼ 2, it can be* 0:01M� for a wide range
of the EOSs and the NS masses MNS. However, the disk
mass is tiny for Q ¼ 3, unless the EOS is extremely stiff
like 2H EOS or the NSmass is low. For the BH-NS binaries
consisting of a nonspinning BH, the disk mass can be
* 0:01M� for Q ¼ 3, only for the case C & 0:16.
Using the quantities calculated on the apparent horizon,

we estimated the dimensionless spin parameter of the
remnant BH. We find that this spin parameter depends
only weakly on the EOS for given masses of the BH and
NS, unlike the disk mass. The BH spin depends primarily
on the mass ratio Q and becomes smaller for a binary
with a larger value of Q: a � 0:66 0:03 for Q ¼ 2 and
� 0:54 0:02 for Q ¼ 3.
Finally we list the issues for the future. The two-piece

EOS employed in this paper is not accurate enough to
describe high-mass NSs for which the inner core is com-
posed of a high-density matter with � * 1015 g=cm3. For
the study of a BH-NS binary composed of a high-mass NS
with small values of Q (i.e., for a binary in which the tidal
interaction plays a role), it is necessary to adopt piecewise
polytrope EOSs with three or four free parameters. It is
also necessary to take into account the BH spin for a
systematic survey of the BH-NS binary merger process,
because the orbital frequency at the ISCO depends strongly
on the BH spin as well as the mass of the BH; e.g., for the
ISCO around Kerr BHs, the orbital angular frequency

increases by a factor of 63=2 if the spin is changed from
zero to unity. This difference in the ISCOwill be crucial for
determining the criteria for the onset of tidal disruption, the
mass of the remnant disk, and gravitational waveforms.
Currently we are working on this subject and will report the
numerical results in the next paper.
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APPENDIX: CONVERGENCE

In this Appendix, we demonstrate that the convergence
is approximately achieved for the numerical results shown
in Sec. IV. We here compare numerical results obtained
with different grid resolutions for models HB-Q2M135 and
H-Q3M135. Table VI lists several numerical results. This
shows that the numerical results depend only weakly on the
grid resolutions, and thus, we conclude that the conver-
gence is approximately achieved in our simulation. Most
importantly, Fig. 15 shows that the gravitational-wave
spectra approximately converge and fcutm0 shown in
Table VI does not vary by * 5%. Figure 16 plots fcutm0

for model HB-Q2M135 as a function of the inverse of a
squared grid resolution 1=N2. This figure shows that the
value of fcutm0 converges at better than second order, and
thus the values of fcutm0 for N ¼ 50 are obtained in& 3%
error. For model H-Q3M135, the value of fcutm0 does not
converge systematically and fluctuates with the amplitude
of�0:5%. This fluctuation may be ascribed to the variance

associated with the fitting procedure using Eq. (47), which
involves a number of free parameters. We estimate roughly
the variance of fcutm0 at �0:5% within 95% accuracy of
the fitting with respect to the norm defined by Eq. (48) for
model H-Q3M135. We note that the merger time tmerger

depends on the grid resolution; it is systematically larger
for better grid resolutions. However, the spectrum near f ¼
fcut depends weakly on the grid resolution.�E and�J also
approximately converge. The errors are & 0:1% for �E
and & 1% for �J, respectively.
Among many quantities, the disk mass is most sensitive

to the numerical dissipation because the spurious dissipa-
tion of the angular momentum in the disk enhances the
accretion of the materials surrounding BH and results in a
lower disk mass. Hence, the values of disk mass described
in the body text should be regarded as the lower limit of the
actual mass of the remnant disk.

TABLE VI. Several numerical results for models HB-Q2M135
and H-Q3M135 with different grid resolutions, N ¼ 50, 42, and
36. All the quantities are defined in the body text. In this table,
we compare the disk mass at t� tmerger � 10 ms.

N fcutm0

Mr>rAH ½M��
(10 ms) a

�E=M0

(%)

�J=J0
(%)

HB-Q2M135

50 0.0613 0.025 0.67 1.36 21.8

42 0.0621 0.022 0.67 1.34 21.4

36 0.0644 0.022 0.68 1.35 21.4

H-Q3M135

50 0.0790 0.0027 0.55 1.39 21.8

42 0.0794 0.0021 0.56 1.36 21.3

36 0.0788 0.0022 0.56 1.33 20.7
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We plot the time evolution of the disk mass for different
grid resolutions in Fig. 17. Roughly speaking, the numeri-
cal results for the disk mass increase with improving the
grid resolution, although systematic convergence property
is not seen. The reason for this unsystematic behavior is
likely that the motion of the disk material is affected
slightly by the atmosphere (in particular for low-mass disks
of relatively low densities), and thus, convergence property
should not be expected. Assuming most conservatively that

the convergence is achieved only at first order for the
results of N ¼ 42 and 50, the error of the results for N ¼
50 may be a factor of 2 for the low disk mass case
Mr>rAH & 0:01M�. However, we expect that systematic

quantitative relations between the disk mass and the com-
pactness of the NS, and between the disk mass and the
maximum density shown in Figs. 13 and 14 are not dras-
tically changed.

[1] B. P. Abbott et al., Rep. Prog. Phys. 72, 076901 (2009).
[2] F. Acernese et al., Classical Quantum Gravity 25, 114045

(2008).
[3] LIGO Scientific Collaboration and Virgo Collaboration,

Nature (London) 460, 990 (2009).
[4] K. Belczynski, R. E. Taam, V. Kalogera, F. A. Rasio, and

T. Bulik, Astrophys. J. 662, 504 (2007).
[5] V. Kalogera, K. Belczynski, C. Kim, R. O’Shaughnessy,

and B. Willems, Phys. Rep. 442, 75 (2007).
[6] E. Nakar, Phys. Rep. 442, 166 (2007).
[7] W.H. Lee and E. Ramirez-Ruiz, New J. Phys. 9, 17

(2007).
[8] R. D. Blandford and R.D. Znajek, Mon. Not. R. Astron.

Soc. 179, 433 (1977).
[9] L. Lindblom, Astrophys. J. 398, 569 (1992).
[10] J. S. Read, C. Markakis, M. Shibata, K. Uryū, J. D. E.
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