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Using the (3+1) formalism, we derive the post-Newtonian (PN) equations of motion in a flat
universe. To derive the equations of motion, we must carefully consider two points, one being the
choice of the density in the Newtonian order (p~) and the other the choice of the gauge condition. In
choosing pw, we require that the density fluctuation px — po agrees with a gauge invariant quantity in
the linear approximation theory. As a gauge condition, we propose the cosmological post-
Newtonian (CPN) slice condition with the pseudo transverse-traceless gauge condition, by which the
evolution of the geometric variables derived in the PN approximation in the early stage of universe
agrees with that of the gauge invariant quantities in the linear approximation. In the derived
equations of motion, the force is calculated from six potentials which satisfy the Poisson equations.
Hence, our formalism can be easily applied to numerical simulations in which the standard technique
(e.g., particle-mesh method) is used. We apply the PN formula to the one-dimensional (1D)
Zel’dovich solution to demonstrate that our strategy works well, and also to determine the effect of
the PN forces on the evolution of the large-scale structure. It is found that the behavior of the
density fluctuation and metric quantities in the early stage obtained by the present formalism agrees
with that of the gauge invariant quantities in the linear approximation, although they do not always
agree within the previous formalism due to the appearance of spurious gauge modes. We also discuss
the evolution of the non-linear density fluctuation with very large scale, which may be affected by the
PN correction in the last stage of the evolution.

§1. Introduction

The big-bang cosmological model is now considered to be successful. In this
scenario, the large-scale structure of the universe has grown from the small density
fluctuations at an early time in a homogeneous and isotropic background.” Its
evolution depends not only on cosmological parameters such as the Hubble parameter
H, the density parameter £, the fraction of the baryon £, and the cosmological
constant /, but also on the initial spectrum of the density fluctuation. This means
that we have the possibility to understand our universe well if we clarify the evolution
of the large-scale structure of the universe theoretically and compare the theoretical
prediction with the observation of the large-scale structure.®® Therefore, theoreti-
cal investigations of the evolution of the large-scale structure are among the most
important subjects in cosmology.

When we investigate the evolution of the large-scale structure of the universe, we
usually assume that the Newtonian theory in cosmology is correct, and use it.” In
this theory, equations of motion are derived assuming that the scale of the non-linear
density fluctuation is much smaller than the horizon scale H ~! of the universe. In
most cases, this assumption is correct because the size of our Galaxy and the cluster
of galaxies are, respectively, about IO‘SH“ land 103 H '€ H"'. However, we may
ask about the very large-scale structure. ' Because of limited observations of very
large scales,” we have only a few observational results which suggest the existence of
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non-linear density fluctuations of very large scale, beyond 1004~ 'Mpc scale,””® but in
this decade, we will know whether such fluctuations really exist or not by means of
galaxy survey projects such as the SDSS (Sloan Digital Sky Survey) project.®’ For a
non-linear density fluctuation with very large scale, it is not clear at all whether the
application of the Newtonian theory is appropriate. To understand the evolution of
the large-scale structure of the universe, it is important to clarify up to what scale we
may use the Newtonian theory as a sufficiently accurate theory. For this purpose, in
this paper, we consider the post-Newtonian (PN) equations of motion in the flat
universe and analyze them.

As for the PN equations of motion in cosmology, there have been several
works.”® Futamase” derived the PN equation for the scale factor to analyze the
correction of the expansion rate due to the inhomogeneity in the universe. In his
formalism, he did not derive the PN equations of motion consistently, so his formalism
cannot be used to calculate the evolution of the density fluctuations in the PN order.
On the other hand, Tomita® has derived the PN equations of motion for the N-body
system consistently. However, his equations of motion are very complicated, and it
seems difficult to study physical effects of the PN correction analytically. Even for
numerical simulations, they do not seem practical because we need to perform many
direct summations in calculating the force term of his equations of motion. This is
very time consuming.” To see qualitative effects of the PN correction, it is desirable
that the equations of motion can be treated analytically, and to perform the numerical
simulation, we should write the equations to which we can apply a standard numerical
method. In this way, we need appropriate PN equations of motion, which are easily
analyzed by both analytical and numerical calculations.

This paper is organized as follows. In § 2, we derive the PN equations of motion
by using the (3+1) formalism in general relativity. In deriving the equations in the
PN approximation, we must specify 1) the density in the Newtonian order (o) and 2)
gauge conditions. Their choice is very important in eliminating unphysical gauge
modes, an shown below. In choosing p~, we require that the density fluctuation ox
— oo becomes gauge invariant when the linear approximation theory holds (a<1).?
As for gauge conditions, we suggest guiding principles, and propose the pseudo TT
gauge and cosmological post-Newtonian slice for an aprropriate set of the gauge
conditions. In § 3, we apply the derived PN formula to the 1D Zel’dovich solution in
order to test the gauge conditions as well as to determine the PN effects on the
evolution of the large-scale structure. We illustrate that the gauge conditions we
propose in this paper work well. We also discuss the PN effects on the evolution of
the large-scale structure. We show that the PN effect is not important at all for
ordinary large-scale structure <100~ 'Mpc, although it may become important for
the very large-scale structure in the late stage of the evolution. Section 4 is devoted
to a summary. Throughout this paper, we use the units c=G=1. Greek and Latin
indices take 0, 1, 2, 3 and 1, 2, 3, respectively, and % denotes the Hubble parameter in
units of 100 km/sec/Mpc.
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§2. The (3+1) formalism and post-Newtonian approximation

2.1. The (3+1) formalism for Einstein equation

For the sake of convenience, we use the (3+1) formalism to perform the post-
Newtonian (PN) approximation.'” In the (3+1) formalism, the metric is split as

L G = Ye T Bally,

nﬂ=(~_ay 0) ’

nu=(L -ﬁ_) . (2+1)

a’ a

where a, 8¢ and 7 are the lapse function, shift vector and metric on a 3D hypersurface
respectively. Then the line element is written as

ds*=—(a?— B:R")dt*+2B:dtdx* + yidxidx’ . 2-2)

Using the (3+1) formalism, the Einstein equation, Gu =87%Tw — Agu, is split into the
constraint equations and the evolution equations. The former set of equations
constitutes the so-called Hamiltonian and momentum constraints. These become

R—K;K¥+K*=167E+2A, (2-3)
DiKij—DjK=87[]j s (2'4)

where Ky, K, R and D, are the extrinsic curvature, the trace part of K, the scalar
curvature of a 3D hypersurface and the covariant derivative with respect to 7y,
respectively. E and J; are defined as

E=Tun*n",
Ji=— Twn®y’;. (2' 5)
Evolution equations for the metric and extrinsic curvature become

2 y=—2aKy+ Db+ D, (2-6)

—(%Kﬁ=a(Ri,-+'KKﬁ—2Ki )~ DDsa— alys

-+-(D,-B”’)Kmi+(Di,8”‘)Km+B’”Dng—87ta<Su+%yﬁ(E—S’l)), 2-7)

2 y=2y(-aK+D), (2-8)
2 K=a(R+K?)—D'Dia+ BDK +47a(S'—3E) =304, (2-9)

where Ry, ¥ and Sy are, respectively, the Ricci tensor with respect to 74, determinant
of 7:; and
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So=Tur"7%. (2-10)

To distinguish among the expansion part, wave part and non-wave part in the 3
D metric, we use 75=a(t)2¢ 'y instead of 75, where a(t) is assumed to denote the
scale factor of the flat universe which depends only on ¢. In the following, we only
consider the flat universe and use Cartesian coordinates for simplicity. Then we can
define det(7;)=1 and y=a%¢'2. We also define Ay as

Av=ayAv=a 9 Ks—§7K). (2-11)
We should note that in our notation, indices of Ay are raised and lowered by 7, so

that the relations A%;=A*; and AY=4?¢*A¥ hold. Using these variables, the evolu-
tion equations (2:6)~(2+9) can be rewritten as

] 4
4 Fo=—20dt 7 Lt 7,0 - L 5,9 (2:12)

%fiﬁ:# [a(Rﬁ—?n,- ) (DiDjé—%ygD“D.a)]+a(KA —2A,AY)

408" 5 OB 5.2 9B" & A8 (sﬁ-%msn), (2-13)

3 : ox’ 3 ox™
dy a, ¢ . 08 :
+ 2a¢_%< aK+ or’ )’ 2-14)
d Fi g 1 i i
4 K=o A +5K°)~D'Dia+4za(S'+E)—ad, (2-15)
dt 3
where
d_ 0 g9 ._da .
it P ad =y )::- (2-16)
The constraint equations are also written as
dy=Lry- 2nE¢5a2—L—<A A”——K2+2A) (2-17)
D" A —54*DK =874, (218)

where Z, D: and R are the Laplacian, the covariant derivative and the scalar
curvature with respect to ¥, respectively.
We split R; in Eq. (2:13) into two parts as

R{J‘:Rg‘f‘Rs, (2-19)

where Ry is the Ricci tensor with respect to 7, and

2D —2 FuD*Dus+ -5 (D)D)~ Tl D)D) . (2-20)

Making use of the property det(7,)=1, Ry is written as

RY=—
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Rii=% [#*(Fo.nt Fuin— Fow)+ PHu(Foit+ Fus— o)l —TETE,  (2-21)

where ,; denotes 3/dx’ and I'% is the Christoffel symbol with respect to 7. We split
7 and 7Y as 85+ hy and 6+ FY, where 6y denotes the flat geometry, and rewrite Ry
as

E’.;,-=—%— [—hoaet Bt R+ 0l byt Bui— ki)

+ A hy,in+ huigx— b)) — FETE (2-22)

Now, let us consider the gauge conditions. As for the spatial gauge, we adopt the
transverse gauge as

h::i,j=0 . (2‘23)

This condition is guaranteed if ky,;,=0 at {=0 and B‘ always satisfies

B Fun=(—2aAs+ Fubls+ Fabla— 2 74B') (2-24)

W
By means of the transverse gauge, we can erase the vector part in 44 and guarantee
that %:; only contains the tensor mode in the PN order.!”® Thus, we need only take
into account the linear term in 2y because we will perfom the PN approximation. In
this case, Eq. (2-22) becomes

Ro=——doahs, (2-25)
where Jna: is the Laplacian with respect to ;. In the linear order in 44, the traceless
property k=0 is also guaranteed, so that we may call this gauge condition the pseudo
TT (transverse-traceless) gauge. Note that R=0 is guaranteed in the pseudo TT
gauge condition.

As for the slice condition for a, we first set

K=-3H(t)+Q, (2-26)
where
H(t)2=( Z((f)) )z= 8”‘;,;’(’) +4. (2-27)

H(t) and po(t) are the Hubble parameter and the homogeneous density of the flat
universe, respectively. For simplicity, we define po as an averaged value of Da3,
where D denotes the conserved mass density (see below Eq. (2:56)). @ is an arbitrary
function which is determined in fixing the slice condition. Here, in determining €, we
should note that the coordinate time in Eq. (2:27) is not the proper time, but rather a
coordinate time in the PN approximation. This means that Eq. (2:27) has different
meanings in different slice conditions, and we should carefully consider a natural
extension of the homogeneous expansion law to that for the PN approximation. If
we choose an inappropriate slice condition in the PN approximation, the undesirable



16 M. Shibata and H. Asada

gauge mode will appear in geometric variables (see § 2.2). Fortunately, we know that
we may choose =0 in the Newtonian approximation, so that for the present case, Q
should be determined in the PN order. We will specify this in the next section.

If we fix @, Eq. (2-15) becomes an equation to determine « as:

R : 2
D,-D"a=47m(S,-"+E)+a(Ai,~A”+87rpo)—127tpo—%,?——2a%0+a%. (2+28)

Using the gauge conditions, Eq. (2:13) is rewritten as

fA i+ 3aHA ;= ¢‘ 7 [— 5 dnachy +a(R°’ ERLLLS ”")
— (DiDja~—:3~7uD”Dha)] +o{QA;—2A.A4"%)

B At B A — 33'" wli— SIW(S--—%MS’1>,

where we use the pseudo TT gauge condition as well as the linear approximation for
hi; in the above equation. Combining Egs. (2-12) and (2-29), we obtain the equation
of gravitational waves for % in the flat universe. In the wave equation for %,
however, the source term for %y appears first in the second PN order.}® Since we
only consider the first PN correction in the following, we neglect % in this paper.

We note that the above equations do not contain the /1 term explicitly, except for
the equation to determine the expansion law, (2:27). Therefore, the above formula
can be used for the cases A=0 and A+0 only if we control Eq. (2-27).

Finally, we give the equations for matter. Since in this paper we consider the
evolution of the density fluctuation after decoupling of matter and radiation, we adopt
pressure-free dust as matter. (We also consider N-body systems in Appendix B.)
The energy momentum tensor for the dust is written as

T*=pu"u", (2-30)

where «* and p are the four velocity and the density, respectively. p obeys the
continuity equation

7 u(ou*)=0, (2-31)
where V7. is the covariant derivative with respect to g«. The explicit form becomes

oD, a(Dv’) _ 0,

o S t—5" o (2-32)

where D= pa¢®a®u® is the so-called conserved density. The equations of motion are
derived from
V.T#=0. (2-33)

The explicit form becomes
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aSi a Si j) S S 9_,' 1 S. S j
at (8.; g ’ Bt ZSO ok k'i ’ (234)
where

S.-=Du,-=af¢saapu°ui(= ¢6a3]i) ,

0__ 0_ 763 0)2, _E¢6613
S°=Du’=a¢®a®o(u°) (_—a ),

=t g TS (2-35)

2.2. Cosmological post-Newtonian approximation

In this section, we consider the first PN approximation of the above equations.
First of all, we review the PN expansion of the variables in the expanding universe.
In the expanding universe, we can introduce three non-dimensional parameters which
are independent of each other in general:”

__av
e=—-,
C
=al _Hal
— L c ’
_(P—po 1/2 .
=(52) e

where v, L and / denote the peculiar velocity, the horizon scale and the characteristic
length scale of the density fluctuation in the comoving frame, respectively. In the
cosmological PN formalism, we usually consider the velocity field ¢v* to be generated
by the density fluctuation p—po. In this case, the following relation holds:

€
X~ (2-37)

Also, we must impose the condition a@/<L in the PN approximation, so that «#<1.
Hence, we have two independent small parameters, € and «~¢€fx. Note that there is
no limitation on %, so there is no imposed relation between € and «. For the galactic
scale, x becomes ~10° at the present time, so we should impose the condition € >«. In
this paper, we mainly consider the large-scale structure =100%'Mpc. In this case, it
is expected that y increases from <1 to ~1 and may exceed unity throughout the
evolution of the density fluctuation. In such systems, the relation between € and « is
not simple, so that, in the following, we derive the first PN equations of motion by
means of ¢! expansion. Note that since €, x=0(c™), any contributions from both €
and « are included in the derived equation, and it can be used for any system formally
if € and « are less than unity. This is because in any case, the leading term among
1PN terms is greater than the higher PN terms, i.e., the equations derived here provide
the PN correction always valid up to 1PN order.

For later convenience, we also mention the linear approximation.” In the linear
approximation, we assume €< ¢ and yx, €<1, and any limitations on & are not imposed

)
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only if the relation €<« is satisfied. In
the case @<, the linear approximation
becomes very good because £>e~0, and
x<1 in the early stage. Hence, we usu-
ally adopt the linear approximation in
the early stage and after x becomes
large (i.e., €< x), the Newtonian approxi-
mation is used. In the PN approxima-
tion, the relation x ~ €/« holds, so that if
e<k is satisfied, y<1 is naturally guar-
anteed. When we consider the linear
limit in the system where the PN approx-
imation holds, we only need to take the
limit <1 or €£1, keeping £<1. In Fig.
1, we describe the conceptual figure
about the cosmological PN approxima-
tion and linear approximation.

Extending Chandrasekhar’s descrip-
tion of the PN expansion in the
asymptotic flat space-time'® to the cos-
mological PN approximation, the four
velocity is expanded as

u°=1+{ia2v2

Lov+ U}+ 0(c™),

| Uo=— :1+{%a202— U}+ O(C_‘)] ,

1

u‘=v":1+{7azvz+ U}+ O(C")] ,

[

u=a’|v +{B‘3’+ (azv +3U)}+0(c“5)],

x.u
i

|

|

llnear 11m1t . }
Newtoma{l limjt

|

1

K = constant x

Fig. 1. Conceptual figure of the post-Newtonian
(PN) approximation. The horizontal and ver-
tical lines denote y and ¢, respectively. In the
PN approximation, the relation x~ e/x holds,
and the constraints €, x<1 is needed. How-
ever any limitations for y are not imposed.
On the other hand, x, €€1 and «>»¢ must be
satisfied in the linear approximation. If we
try to take the linear limit in the system where
the PN approximation holds, i.e., x~ €/¢ and ¢,
x<1, we only need to take the limit x<1 or €
<1 keeping £<1.

(2-38)

where terms in the bracket {} denote each first PN term, and U and 8. are the

Newtonian potential and the first PN term of 8¢, respectively (see below).
to that defined in Eq. (2-35), and v*=v'v".

v’ is equal

Note that in the above, the expansion is -

in ¢!, so that O(c™*) denotes O(e* "k"), where #=0,1,2. All geometric variables
relevant to the present paper are expanded. We have:

a=1_U+a(4)+... ,
¢=1+¢(2)+... ,
Bi=ﬂf(3)+“ 3
ho=h$+-,
Q=Q%+-,
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Ag=AR+-, (2-39)

where subscripts (7) denote the PN order (¢™"). The PN expansion of the relation
u"u.= —1 becomes

(au®P=1+ yYuu;
=14+a*v*+ O(c™"). (2-40)

Before writing the equation for the metric variables, we need to point out that we
have a freedom in choosing the density in the Newtonian order, o».!* This is because
we have no reason to consider o as the density in the Newtonian order. To choose
o~, we only require that in the Newtonian limit, it reduces to p. For example in the
linear approximation theory, a gauge invariant quantity is more important than p
—po®  As we will discuss in Appendix A, if we choose other quantities instead of
the gauge invariant quantity, it is not guaranteed to be a physical density fluctuation
in the linear approximation theory. Thus, we adopt o~ in order that o~ — po becomes
a gauge invariant quantity for ¢<1. Although in the linear approximation theory,
there exists an arbitrary combination of the gauge invariant quantities,'’® we here
choose pv=p(1—2U)* as the density in the Newtonian order. (The reason for this
choice is described in Appendix A.) According to this choice, we can naturally extract
a growing density fluctuation in the case a<1. Then, by using Eq. (2-28), we find that
U should satisfy

AfmU=—47r(p~—po)a2+47rapm.(t)az . (2'41)

Here, do~.(¢) is a non-linear and PN term which is added in order to guarantee that
the average of the right-hand side of Eq. (2:41) becomes zero, i.e., {ox — po— Son>=0
(as for the averaging, see Eq. (2:56) below). From the Hamiltonian constraint, we
also find

a_ U .
¢gO= 5 (2-42)

As for o, we write it as

2
ao=+x. (2-43)

Then, from Eq. (2-28), equation for X becomes

Dnat X =41a*(2onva* v — oo U +4(pon—00) U) — az( Q¥+ Z%Q“”) +4ra*dpn .
(2-44)

From this equation, we find that X is a gauge-dependent term, because @ determines
the slice condition for the first PN order. Since an inappropriate choice of the slice
condition may lead to the appearance of an unphysical mode,'”*? in determining the
slice, we must specify some guiding principles by which we can choose an appropriate
slice naturally. Here we impose two principles; 1) the Newtonian limit can be

*) We may choose ov=p—2Upo.
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naturally taken (i.e., €, k<1), and 2) in the linear stage (i.e., e<x and ¥<1), the
behavior of the geometric quantities should agree with that of the gauge invariant
quantities in the linear approximation. Condition 1) is trivially satisfied in any Q.
As for condition 2), we attempt to take the linear approximation of Eq. (2:44). We
should consider X as appearing only in the non-linear order, so that Eq. (2-44)
becomes

QO+24Q9=— 40U+ QR +22QR2, (2+45)

where QA is the non-linear part of Q®. This is the equation for . In this case,
the equation for X becomes™®

D X =8na*(pna* v +2(on — po) U)+4naSon — az( QR+ 2-%—6?5?2) . (2-46)

In the case A=0, if U happens to be a non-linear term, we may also use another simple
slice as

Q®=—3HU+ QR (2-47)
and
D X =87a*(ona*v?+2(on— 00) U)+ a*SHU — Q$) —2HQR) . (2-48)

From this point, we refer to these slices as cosmological post-Newtonian (CPN) slices,
because they are natural extensions of the PN slice for the case po=0,'" and in the
case of the linear limit, these slices reduce to Newtonian slices (zero-shear hypersur-
face slice).'” In the next section, we will apply the latter CPN slice condition as well
as the constant mean curvature slice Q=Q®=0 to the PN version of the 1D
Zel’dovich solution'® as simple examples. The importance of the choice of Q@ is
shown.
From Eq. (2-24), the relation between AY and B:® becomes

—2A9+ BB+ B~ 25,8710 (2-49)
A® must also satisfy the momentum constraint. Since A does not contain the TT

part and contains only the longitudinal part, it can be written as

A=W+ WR—25,W3, (250)

where W;® is a vector on the 3D hypersurface and satisfies the momentum constraint
in the first PN order as

1
3

From Egs. (2-49) and (2-50), the relation

Dnac Wi+ W=+ QP=80na?v" (2:51)

*) Here, Q) should be used to guarantee that the average of the right-hand side of Eq. (2-46) becomes
zero.
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BO=2W;® (2+52)
holds, and in the lowest PN order, Eq. (2:14) becomes
AU+HU)+QP=58, (2-53)
where
-~ oU
U— at )zi

Hence, Eq. (2:51) is rewritten as
dnatB:¥=16mona’v' + QP —(HU 4+ U,) . (2-54)

This is the equation for the vector potential in the first PN formalism.

In actual numerical simulations, the term U in Eq. (2-54) may make it difficult to
maintain numerical accuracy,' if we simply perform the time differentiation of U.
To avoid this, we need to solve the following equation to estimate HU + U,

Dna HU + U) =4 wa*(onv').s | (2-55)

which is derived from Eqgs. (2:53) and (2-54).
Now, we consider the equations of motion. In the first PN approximation, the
continuity equation becomes

D | d(Dv’) _ :
o + a7 =0, (2-56)

where D=pnxa®(1+5U+a*v?/2). If we average Eq. (2:56) in a large volume, V, we
obtain {D)=poa’=constant, where <D is the averaged value of D over V.* The
equations of motion become

3S: , (Sw’) _

3
at | or

Da| Ly (U= UU— XD+ vBR+30°U=DF:, (2:57)

where F; denotes the total force term. For the later convenience, we split this term
into Newtonian and PN parts as F’ + F/”, which are, respectively,

Fr= Ui,

FMN=-UU:— X+ dzUj13§.3z2+%aZUZUi . (2-58)

Equation (2-57) shows that we need to solve six Poisson equations for U, X, HU+ U,
and B:® (Egs. (2:41), (2-46), (2-54) and (2-55)) and one ordinary differential equation
(2+45) to determine the force term in the equations of motion.

Using the relation, S:=Du:, Eq. (2:57) can be rewritten as

*) In the case of a periodic system, we use the scale of the periodicity as V for averaging, and in the case
of the non-periodic system, we use the horizon scale. In the former case, <D is exactly constant. In the
latter case, it is not exactly constant, but can be regarded as a constant within a sufficient accuracy.
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where v? is calculated from

2,2
v‘=—ﬂi‘3’+(l— azv _SU)G_Zui- (2+60)

Therefore, we can apply the formalism not only to the simulation of dust fluid (solving
Eqgs. (2-56), (2-57), and Poisson equations by the Eulerian method), but also to the
simulation of N-body systems (solving Eq. (2:59) by the Lagrangian method and
Poisson equations by the Eulerian one). We note that in the case of the simulation
of the N-body system, we adopt an energy momentum tensor which is different from
that in Eq. (2-30). (See Appendix B.)

Finally, we point out the following important point: Although the geometric
quantities depend on a gauge variable Q®, the evolution of the density perturbation
and the velocity field do not. Let us demonstrate this point. Substituting the rela-
tion

2.0 a’v? 2 (3)
ui=a*v'{1+ 7 +3U )+ a*8:®, (2-61)

into Eq. (2-59), the equations of motion become

(—%+v aa >{a2v"(1+azzvz+3U)}=F.~—(a—at+v ) 2BO=F,. (2-62)
F; is rewritten as
F=U— U0~ X~ 2 CE0) 3 oy, (2-63)

Here, X and 3:® depend on @®. However, parts of the solution (which we denote as
X and B°) for X and 8:® which depend on Q® become

X0 (29,

ot
= Q) . (2-64)
Hence,
20Q
X,?+L“af—'l=0 . (2+65)

Thus, F: does not depend on @, and neither do the density fluctuation and the
velocity field. The reason is that the gauge fixing for the density fluctuation is
achieved by the choice of pw, not by @®. Q% only affects the evolution of geometric
quantities.

§3. Post-Newtonian correction to the 1D Zel’dovich solution
In this section, to see the effect of the PN correction, we make use of the

Zel’dovich solution in the Einstein-de Sitter universe,'®"!” which describes the evolu-
tion of the 1D density fluctuation in a Newtonian cosmology. The Zel’dovich solution



Post-Newtonian Equations of Motion in the Flat Universe 23

is described as
r=g+B(t)Si(q)..,
v*=B(£)Si(q).q,
on=po(1+ B(t)S1(q).sa) ", (3-1)

where Si(g) and B(¢) are the functions depending only on ¢ and ¢, respectively. We
assume that Si(g),¢ is a non-dimensional and monochromatic function of order unity,
e.g., sinkqg, where % is a wave number of the Fourier spectrum of the density fluctua-
tion in the comoving frame. (We also define S: to be monochromatic, e.g., as —k&~"
coskq.) By means of the Euler equation, U is calculated as

U=(a2§+2aa3)(sl(q)+ c.+—23— (Stq+ Cz)), (3:2)

where C; and C: are constants which are concerned with the transformation of the
time coordinate. Hereafter, we set Ci=C,=0 for simplicity. Substituting Eq. (3:2)
into the cosmological Poisson equation (2-41), the equation for B becomes

§+2—Z—B=47rpoB . (3-3)

Using the relation a=(#/t,)*”®, where f is the present time, solutions for B become
B(t)xa(t) and/or B(t)oca(t) 2. (3-4)

In the following, we only consider the growing mode and rewrite B(¢) as B(¢)=Boa(t)
=phok'a(t), where b is a non-dimensional constant which approximately determines
the epoch when the first caustic (o — o) is formed. Note that due to the choice a(%)
=1, we may regard 2zk! as the present scale of the density fluctuation. We also
mention that the applicability of the Zel’dovich solution is restricted; it is applicable
only before a caustic is formed, where 1+ BSi,¢0=0.1>'"

Before proceeding further, we review features of the Zel’dovich solution. Since
the time scale of the growth of the density fluctuation is about H ' in the Zel’dovich
solution, the peculiar velocity av* has an order of a*4™'H ~ a**(kt)) ' ~ax. Thus, the
Zel'dovich solution describes a system with e~ ax.

Next, let us constrain the parameter of the Zel’dovich solution. Since we assume
that the length scale of the density fluctuation is less than the horizon scale, the
relation

a(t)%’r—<H'1, : (3-5)

must hold throughout the whole time. Using a(¢)=(#/t,)** and H=2/(3t), Eq. (3-5)
becomes

3
4 () =S5, oo

The most strict constraint is imposed at an initial time. If, for example, we set the
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initial condition at a redshift 1+z~100, Eq. (3-5) becomes

407 (1+2
kto>=3 (100

)m>>1 : @7

Then, the Zel’dovich solution can be applied to the density fluctuation such that

~ g 2T .
& B S01, (3-8)
where & and # denote the present values.
Now, let us calculate the PN correction. We first consider the constant mean
curvature slice @=0. Using the Zel’dovich solution, Eq. (2-54) for 8:=(8:,0,0)
becomes™

Si,q

.___9_, 3rr3
Aﬂx— B()a H 1+Boa51,qq ’

2 (3-9)

where we make use of

AU\ _3 . s
ox ):— 2 Boa’HS1q,

i _a_ _i 2 4173 Sl,qSI,qq .
)| U= S Bl e (3-10)

and

: _3_) -1 i)
ox/: 1+ BoaSie 0q /¢’

OY_0\ __BidSe 9 .
ot )I_ ot )q 1+ ByaSi,qq 0q )t : (3 11)

Assuming that the system has a periodicity with respect to g, i.e., 8¢+ gn)=B8(q)
and X(g+gn)=X(q), where g is a constant (e.g., 27&7"), the equation is integrated
as

Bx,x:%BoaaHssl . (3’ 12)

Equation (2-46) for X becomes

1
1 +B0(ZSl,qq ’

(3-13)

AXz—g—BoasH‘[ZBoSiq —% 1+ 5190(151,4,97)(51 +—§—Boan,q>]

and it is integrated as
Xe=3Boa® B~ [Suda+ B3 [Stda—228: 10+ C2) =2 BrtaSka]
(3-14)

where C; is a constant introduced to guarantee the periodicity of X. Gathering the

*) We omit the subscript (3) of /. Also, in this section, 4 denotes the flat Laplacian.
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derivatives of the potential, Eqgs. (3-10), (3-12) and (3-14), and substituting them into
Eq. (2-58), the total PN force term is evaluated as

F =3Bt 2 [sida+ B~ [Stada+95:81.4— C.)+2BoaSta |
(3-15)

Taking into account Si1~#%7', Si,¢¢~% and a®*H*~ t™*, the order of the magnitude of
F™ becomes ~%73#*. On the other hand, that of F:" is ~k'4% So that, the PN
correction force is of order x’~ (kf)~% smaller than that of the Newtonian force.

However, as we conjectured in § 2, X and F:™ involve a spurious gauge mode
which is proportional to a~!, (The reason why it is a spurious mode is that the early
evolution (a<1) of the metric quantities is described by the linear perturbation theory
and that in this case, the behavior of X should agree with that of U. See Appendix
A.) As we show in § 2, this unwanted behavior does not affect the behavior of the
density fluctuation, so if we are only interested in the evolution of the density
fluctuation, one may think that the choice of @® is not important. However, in the
numerical simulation, this is crucial. X and F:¥ «a™! in the early phase, and F:"™"
may surpass Fy" for a<1. In such a case, #:™" is also dominated by the spurious
gauge mode. In an ideal calculation, a cancellation between the spurious modes in £x
and %™ occurs, and the spurious mode in v#v is excluded. However, this is not
always guaranteed in the numerical simulation if a truncation error is generated.
Thus, to see physical modes correctly we should not use the constant mean curvature
slice in the numerical simulation.

Then, we try to perform the same calculations using a CPN slice. In the case of
the Zel’dovich solution, U is the non-linear term, so we can choose as

Q®=—3HU —%B0204H3Cb , (3-16)

where C, is a constant. In this case, the terms concerning the PN force become

Bew=—"Bia*H Sa+Cs), | (3-17)
XI=BBOZ(ZSH4|:/<14_3S%,<1 ‘_%’Cb)dq - 3SlSl,q+ C.z:_ BOdSl,q(_i)_Siq +%Cb>:l 3
(3-18)

and in total

F=—3B¢a HY (25103 C)da =3 $:Sua+ Com g BuaSialStat C),
(3-19)

where C; is a constant. In this slice, no spurious gauge modes in X and F:™ (cca™)
appear. This shows that the CPN slice is a good choice.

Then, let us consider the effects of the PN force on the evolution of the velocity
field and the density fluctuation.* First, we integrate the equation for #:. To solve

*) Hereafter, the calculation is performed using the CPN slice.
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it, we split . into the Newtonian and PN parts as
ur=u +u" . (3-20)

Since u:" =a’vs*, the equation for Newtonian order becomes

FY

P

vfs,,.q+2%v~’= (3-21)

Here, we know that the solution of va* is BodS1,. %z should obey the equations of
motion in the PN order, and the equation becomes

PN PN, T . I PN 2 (aUNx)2 z|,x
Urtigt us VR =F7" +a B+ 2 +3U o UN,x . ) (3'22)

The left-hand side of Eq. (3:22) is rewritten as

' m;%m (=" (14 BoaS1,00)).t14 . (3-23)

Using this property, we can integrate Eq. (3-22) as follows:

2
atu N = —Z-Bo—Hsa‘[f( 13 Sf.q—iCb)dq*' Cx__g‘SlSl.q

1+BOdSl,qq —4_ 8
+—§-Boa{sl,qq( f (45f,q—%cb)dq—{l—55151,q+ cx)—%siq—%cbsl.q}
+3BE S 0Sua( — g Stat 5G] (3-24)
and v#vy becomes
x B02 3 4[ i 2 __
vhv= s Ha (zc,+ 1 f(17sl,q 9Cb)dq)
+iBoa{sl (/(513% —63Cs)dg+24C )+3133 —54C,S }
20 ,99 ' q b F 1,9 Jl,q
+2—18302a251,qsl,qq(31 S?,—54 c,,)] . (3-25)

Next, we calculate the time evolution of the density fluctuation, which is also
straightforward. We write the conserved density D as

D=pna*(1+8en) . (3-26)

Then the evolution equation for v becomes

Y G A .
Orw,tla= (1+30051,qq).q ) (3-27)

Substituting Eq. (3:22) into Eq. (3:27), we obtain the evolution equation for density
fluctuations generated by the PN force, but unfortunately, this cannot be calculated
analytically. Although the calculation is easily done by numerical integration, we
only perform an order estimate for the evolution of 8ev using the linear approxima-
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tion, i.e., a€1. The order of magnitude of each mode in d-v becomes

bon+l ”

6PN ~ Wa

Here, we note that there is no spurious mode in d-v. This is a natural consequence
of the choice of py=p(1—2U). The ratio of the Newtonian and PN modes of the
density fluctuation can be also written as

for n=>1. (3-28)

n~ﬁa"" for n>1. (3-29)

Hence, the PN effect is always a factor of (kf) 2 smaller than the Newtonian effect.
This means that for the small-scale density fluctuation (£f%>1), the PN correction can
be neglected. Also, the effect of the PN term is very small in the early stage of the
evolution (a<1). However, we cannot conclude that the PN terms are always
negligible. In the last stage (2<1) of the evolution of density fluctuations on a very
large scale, the PN correction may become important. To explain this point, instead
f 7», we use the ratio between the Newtonian velocity and the PN velocity, because

e do not know the detailed behavior of 7, in the last stage. In the late stage of the
evolution, the order of the magnitude of »: for each mode is written as

~ bo" n—-1__ bon L n—1 .
Ty (kto)2(1+BodSl,qq) a zkto)z £o a fOI‘ 1 = ”SS . (3 30)

Recall that b determines the epoch when the first caustic (o —o0) is formed at a place
g=q.. If the epoch is a redshift of z, b becomes 1+2,. In the realistic evolution of
the density fluctuation, the density does not diverge, and instead, some structure will
be formed around g~qi. Also, in the other coordinate points, the density fluctuation
will continue to grow. Let us consider such a point where |©— pol /00 becomes =1 at
2=0. Assuming that the Zel’dovich solution can be a good approximation for g+
and z< 2y, 7» for such points can be approximately written as
n
ro~ k}O)z ((11132_1 ﬁ for 1<n<3. (3-31)

If z;~5 and p/eo~10 with n=3, r,~several X10*(kf)~? at 2=0. Thus, in the late
stage, the PN correction may contribute to the evolution of the very large-scale
structure with the scale kf <100 (27&~' 2200~ 'Mpc).

§4. Summary

In this paper, we have investigated the PN equations of motion in the flat universe
and their effects on the evolution of the large-scale structure of the universe. In the
first part of this paper, we formulate the cosmological PN equations of motion making
use of the (3+1)formalism in general relativity. To derive equations of motion
which are useful for an actual analysis, there exist two important points, one being the
choice of the density in the Newtonian order (ox), and the other the choice of the
gauge condition. As for ow, we choose ov=p(1—2U) so that p~— po denotes a gauge



28 M. Shibata and H. Asada

invariant density in the early stage of the universe (a<1). As for the gauge condi-
tion, we choose the pseudo TT gauge and CPN slice condition to eliminate the
spurious gauge modes. In this formalism, the force term in the equations of motion
is calculated from the six potentials which are derived by the six Poisson equations
as is in the Newtonian case (although there is only one potential U in the Newtonian
case). Therefore, these can be used for an actual numerical simulation if we use a
standard numerical technique such as the partlcle mesh method.”

In the second part of this paper, using the derived formula, we analyzed the PN
correction of the Zel'dovich solution. In the analysis, we use not only the CPN slice,
but also the constant mean curvature slice (K= —3H) to show the importance of the
choice of the slice condition. It is found that in the case of the constant mean
curvature slice, the spurious evolution mode for the metric appears, but for the CPN
slice, it does not. This shows that we should carefully choose the slice condition to
see the physical phenomena in the PN equations of motion correctly, and that for that
purpose, the CPN slice is useful. We also perform an order estimate of the effect of
the PN correction to the evolution of the density fluctuation. We find that 1) the PN
correction is not important when ¢<1 and/or when the scale of the density fluctuation
is not too large (£¥<1), but 2) for the very large-scale structure of the universe (>100
h~'Mpc), the PN correction may become important in the late stage of the evolution
(i.e, in the highly non-linear regime of the density fluctuation). However, estimates
we perform in this paper are crude, and to see the quantitative effect of the PN
correction, a numerical simulation is required.

Although we do not have significant observational results as for the very large
scale 2100 2'Mpc,® there are observations which suggest that non-linear density
fluctuations of very large scale do exist.*”” Moreover, substantial progress is expect-
ed in the area of the observation of the large-scale structure because several projects
such as the SDSS project® will be in operation, and the results will be brought out in
this decade. Such observations may find very large-scale structure of the universe.
Preparing for the time when we could confirm the existence of such very large-scale
structure, we should investigate the PN correction quantitatively and clarify whether
it is important or not. To answer these questions, we need to perform detailed
numerical calculations of the evolution of the very large-scale structure including PN
correction.
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Appendix A

In this appendix, we consider the linear approximation theory in the Einstein-de
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Sitter universe (i.e,, 4=0) to determine the behavior of the metric quantities and the
matter variables in the early stage of the universe. In the linear theory, the equations
under the pseudo TT gauge condition become

6+2HO+B+2HB=a"%4A, (A-1)
d+69+0=0, (A-2)
6¢+3HA+Q—B=0, (A-3)
AA=—47poa (8 —3A)+a((Q+2HQ), (A-4)
where
A=1—a, (A-5)
8=L-1, (A+6)
o=v':, (A7)
B=§', (A-8)
p=¢—1. (A-9)
From Egs. (A-1)~(A-4), the equation for & can be derived as
5+2HS -5 H*8=—3HA+3HA. (A-10)

By using n=08—3HC, where C=A or 4C=a*f+ B), the equation is rewritten as

Sut2HEn—3 H*8n=0. (A-11)
Here, = denotes a gauge invariant quantity,*'? and from this equation, we obtain the
two evolution modes of the density fluctuation dnca and <a 2

Now, let us suppose that we must solve the equations without the gauge invariant
quantity. Then, we must solve the coupled equations (A-4) and (A-10). Since the

following discussion does not depend on @, for simplicity, we choose the CPN slice as

Q=—%H2c. (A-12)

In this case, Eq. (A+4) becomes a simple equation as
AA=—4700a*(6 —3HC) = —47x00a°Sn) . (A-13)

If we use the gauge invariant quantity = and consider only the growing mode ¢, we
immediately find that the solution for A becomes oca’. Then, since 3HC=2A

*) In the paper of Bardeen, this is expressed as e». There also exists another gauge invariant density
fluctuation €, and we may use it or a linear combination of e and ¢; instead of ex. In this paper, we use
€m because its growing mode has a simpler form than that of ;. Thus, en makes it easier for us to extract
the growing mode, especially in numerical computations.
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=constant, ¢ has the spurious mode ~2A. This means that if we use & instead of &n,
the undesirable mode will appear. Therefore, in order to see the physical density
fluctuation, we must choose d= as a density fluctuation instead of ¢ (i.e., we had better
choose pn=p(1—2U) as a density in the Newtonian order).

Finally, we note that the above argument is independent of the choice of @; unless
we adopt a gauge invariant quantity as the density fluctuation, the spurious mode
necessarily appears irrespective of the choice of @. Therefore, in order to delete the
spurious gauge mode, the gauge invariant choice of the density fluctuation is only one
method.

Appendix B

We discuss the energy momentum tensor for N-body systems in this appendix.
In the case of the N-body system, the energy momentum tensor is not defined as Eq.
(2-30), but as

T =S G g2/ (1) =S B L (B-D)

where m, and 2,"(¢) denote an inertial mass and a trajectory of a particle, respective-
ly, and p» denotes the mass density around a particle. Here, p and os=Da™2 become,
respectively,
_1 . Y
=Smppa (2] 8O —2/(O)N=0n),
pa=Tmpa~ 0z’ —24(2)). (B-2)

In the PN approximation, p and p~ are expressed as

2,,2
o=Simea (1L~ 30 )80’ - /(1) (B-3)
and
2,,2
on=Simoa*(1- 2= —5U )69’ ~2(1)) (B-4)
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