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We investigate the stability property of binary neutron stars (BNSs) just before the merging in
the first post-Newtonian(PN) approximation. Stability analysis is performed making use of equilib-
rium configurations for synchronized BNSs which are obtained by the numerical scheme developed in
a previous paper. NSs are modeled by means of the polytropic equation of state with the polytropic
exponent I'=2 and 3. From numerical calculations, we find that as in the Newtonian case, in the PN
approximation, the secular instability will occur for synchronized BNSs at a critical angular velocity
e before the surfaces of the two stars come into contact. The PN correction changes not only the
gravitational attraction force between two NSs, but also the configuration of each NS of a binary
system. As a result, £ in the PN approximation is ~10—15 9 larger than that in the Newtonian
case for a NS of mass Maom~14 M, and radius »a~10—15km. The implication of this property to
the orbital evolution of BNSs just before merging is discussed.

§1. Introduction

The last stage of coalescing binary neutron stars (BNSs), in which gravitational
waves of frequency 10—1000 Hz are emitted, is one of the most promising sources of
gravitational waves for kilo meter size laser interferometric detectors such as LIGO"
and VIRGO.? Evolutions of these compact BNSs are as follows: When the orbital
separation of BNSs is sufficiently large compared with the NS radius, BNSs evolve in
an adiabatic manner, radiating gravitational waves on a much longer time scale than
the orbital period, because the general relativistic (GR) gravity is not particularly
strong. In such an inspiraling phase, they can also be regarded approximately as two
point masses, because the hydrodynamic effect is not important.®* On the other
hand, when the orbital separation of BNSs becomes comparable to the NS radius, the
hydrodynamic effect becomes important for the evolution of BNSs, and also the GR
gravity becomes very strong. In such a phase, NSs do not behave as point masses,
and also the binary evolves not in the adiabatic manner, but in the dynamical manner
to merge.

These evolution scenarios imply that the nature of the signal of gravitational
waves changes around a transition region between the inspiraling and merging
phases. Gravitational waves emitted at this transition region carry important infor-
mation about the NS radius,”® which can be used to determine the equation of state
(EOS) of NS matter.? Thus, investigations of gravitational waves in the merging
phase, in particular, around the transition region from the inspiraling phase to the
merging phase are very important. The purpose of this paper is to investigate the
transition region incorporating the GR effect as well as the hydrodynamic effect.

As a trigger of the transition, recently, the tidal effect was pointed out by Lai et
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al..”® They showed that when the orbital separation of BNSs becomes small, each
star of binary system is significantly deformed by the tidal force of the companion
star. In such a case, a tidal field due to the deformation of each star is generated,”
and as a result the circular orbit of the BNSs becomes unstable.

When we consider the tidal effect in the binary system, we need to know the
configuration of each star, because the tidal effect on each star depends on its
structure. Thus, when we consider the tidal effect on BNSs, we must take into
account GR effects because GR gravity plays an important role in determining the
configuration of a NS. This means that in order to know whether the tidal effect is
important or not, we must investigate the evolution of BNSs just before the merging,
taking into account not only the hydrodynamic effect, but also the effect of the GR
gravity on each star of a binary system. For this purpose, we perform the PN
calculation to obtain equilibrium configurations for synchronized BNSs in circular
orbits and investigate the stability property of BNSs.

As pointed out by Kochanek, and Bildsten and Cutler,'® the synchronization of
BNSs is realized only when the viscosity of the NS matter is extremely large and the
circulation of the system is effectively dissipated. Hence, in order to understand the
stability property for realistic BNSs, we must investigate BNSs in non-synchronized
orbits, taking into account the case where the circulation of the system is approxi-
mately conserved.'” However, we do not have a numerical method of obtaining
accurately the equilibrium configuration of non-synchronized BNSs, in contrast to the
case of synchronized BNSs. Fortunately, the stability property of the non-
synchronized binary seems to be similar to that of the synchronized one in the
Newtonian case, as shown by Lai et al.”® Therefore, investigation of the stability
property of synchronized BNSs should be a guideline for that of other types of BNSs.

This paper is organized as follows. In § 2, we briefly show the basic equations
for obtaining the PN configuration of uniformly rotating bodies, and define various
quantities in the first PN approximation. In § 3, we show numerical results for
synchronized BNSs in circular orbits. Paying attention to the angular momentum
and energy of the binary systems as a function of the orbital separation, we investi-
gate the stability property of BNSs just before the merging, and the GR effect on it.
Section 4 is devoted to a summary. Throughout this paper, ¢ and G, respectively,
denote the speed of light and the gravitational constant.

§ 2. Basic equations

As shown in a previous paper,'? in the first PN approximation, the equilibrium
configuration for a uniformly rotating self-gravitating system of a polytropic EOS,

P=(I'-1)pe=Kp", (2-1)

is obtained from the following sets of equations:'"'?

KF r-i__ 1 < KF I"—l)2
r—1° 22\ T—1°
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X 2 -
=U——£+{%+§(2RZU—XQ+ /5'?)} +const, (2-2)
and

AU=—4xGo, 2-3)
AP =—47Gox , (2-4)
AP,=—47Gpy, (2-5)
AX0-47er<s+2U+—3£> (2-6)
AXo=87CoR?, 2-7)

where o, €, P, K, I and £ denote the mass density, the specific internal energy, the
pressure, the polytropic constant, the polytropic exponent, and the angular velocity
(de/dt), respectively. R? denotes x®+y? and S, is given by

gsv:'“[—;‘ (xﬁ1+ypz)+‘%” (xzpz’y‘I‘yzpl‘x—xyﬁ],y—xyPZ,I)] . (2-8)

In this paper, we will obtain the equilibrium configuration of BNSs of equal masses.

The numerical method of obtaining these configurations is the same as that in a

previous paper.'? To solve the Poisson equations numerically, we use the Cartesian

coordinate and take a homogeneous grid with grid number (Ny, Ny, N.)=(89, 89, 45).
In the first PN approximation, we have the following conserved quantities:

(1) the conserved mass

M*pr*dsx , (2’9)
where o« is the conserved mass density, which is defined as
. 1 [ *
ox=p{1+—=5 5 +3U (2-10)
c‘\ 2
and v*=R%0Q%

(2) the ADM mass
MADM=/p{1+§(02+%U+ e)}d-'*x, (2-11)
(3) the total energy™®
_ v _ 1., 1(5 iy
B=fole+y g U+ (§otr

5
2
+svz+*§v2+2£U—%U2>} ‘ (2-12)

sz-i-—.QZm

and
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(4) the total angular momentum'

7= fo| Rf1+% <02+6U+e+§)}+%]d3x . (2-13)
The mass M« is conserved throughout the entire evolution of the system, even if there
exists a dissipation process such as the emission of gravitational waves. Thus, when
we consider a sequence of constant My, it may be regarded as an evolution sequence
of the system. We note that E is derived from Mapm— M+ in the second PN order. In
the following, we use these quantities to argue the stability property of BNSs. For
the sake of convenience, we also define the position of the mass center for each star
of binary as

xo"=ML*fp*x"a’3x : (2-14)

In the following section, we use Egs. (2:12) and (2-13), and substitute the numeri-
cal results of p, U, and so on, directly into Egs. (2:12) and (2-13) to estimate E and
J. For this case, numerical values of £ and J unavoidably involve the higher order
PN terms in unexpected forms. Thus, £ and J defined above are conserved quan-
tities only in the limit v?/c?, U/c?, e/c*<1, and otherwise they are not. This point
should be kept in mind.

It is also important to note that a solution obtained from Eq. (2-2) is a good
approximation of a GR solution only in the case when the PN correction is small.
This is because we solve Eq. (2-2) without using the PN expansion, in contrast with
the treatment by Chandrasekhar,'” and as a result, the solution involves not only
correct first PN terms, but also extra higher PN terms, which are not correct terms
in general. Thus, a solution obtained from Eq. (2-2) by the above procedure is a
correct approximate solution of a GR solution only in the limiting case v*/c?, U/c?, €/c*
<1. Otherwise, it is not the approximate solution in the strict sense.

Finally, we define physical units for the sake of convenience as

Rs= Gll24(D =

1.477 km and 0s= g:s =6.173x10" g/cm?®, (2-15)
where M,=1.989x10* g is the solar mass.
§ 3. Numerical results

In this paper, we choose I'=2 or 3 as the polytropic exponent. According to
models of the EOS for NSs, I' is 2<1'<3,'® so that this assumption is appropriate for
a realistic NS. In each case, we define the polytropic constant as

-1 2 —
K:{Zﬂ Gra for I'=2, (3-1)

2.524 GM,'rs® for I'=3,

where 72 and 7s are parameters which are used to adjust the stiffness of the EOS. If
we consider a spherical star in the Newtonian theory, 72 and a= rs(M/M,)"*, where M
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is the mass of the spherical star, become
radii of polytropic stars of the polytrope
exponents I'=2 and 3, respectively.
Since in a previous paper'? we
showed various numerical results for
BNSs with I'=2, we mainly present
numerical results for the I"=3 polytrope
in this paper. First of all, in Fig. 1, we
show the total energy and angular
momentum as a function of the orbital
separation 7,/a, where 7, denotes the
distance between two centers-of-mass,
for the Newtonian configuration. In the
figures, £ and J are shown in units of
E/(GM?/4a) and J/(G(M/2)**a'?). The
innermost circles (i.e., the circles corre-
sponding to the minimum of #,/az) denote
values where the surfaces of the two
members of the binary system come into
contact. As in the case I'=2,""? it is
found that the minimums of £ and J
appear at a critical point 7erst. As
pointed out by Lai et al.,”® this indi-
cates that the secular instability occurs
at 7eie.  Since this is not the dynamical
instability point, this does not mean that
7erie 1S the radius of the innermost stable
circular orbit(ISCO), but it means only
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Fig. 1. The energy(£) and the angular momentum

(J) as a function of 7;/a for BNSs of I'=3 in
the Nowtonian case. The energy and the
angular momentum are shown in units of
E/(GM?*/4a) and J/(G(M/2)**a"'?). Here, M
and a are the total mass of the system and
rs(M/2M,)"", respectively.

that BNSs cannot maintain uniformly rotating orbits if » < 7. However, as shown
by Lai et al.,”"® the dynamical instability point will always appear very near the
secular instability one, so that we may expect that the ISCO is located at » < rerme.
Now, we discuss the stability property of PN configurations. First of all, in
Table I, we show several quantities of spherical stars in the PN approximation; 74 is

the areal radius, which is defined as

Table I. Various quantities of spherical stars of mass Mx=1.4 M, for the I'=3
polytrope with different polytropic constants (i.e., different 73) in the PN
approximation. r4 and 7. are the areal radius and the coordinate radius,
respectively. As mentioned in a previous paper,'? the typical error size of

each value will be ~0.2—0.3 %.

7s/Rs 8 9 10 12 15 20
74/Rs 8.035 9.087 10.14 12.27 15.45 20.75
7elRs 7.115 8.135 9.170 | 11.23 14.37 19.61
Maom/M, 1.343 1.346 1.348 1.353 1.358 1.365
rac?/GMaom | 5.982 6.752 7.523 9.068 | 11.37 15.20
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rA=re{1+—617U(re)} : (3-2)

where 7. is the coordinate radius of the
spherical stars. From Table I, we see
that the PN effect makes the radius of
spherical stars small, and this effect is
stronger for smaller 7; (i.e., softer EOS).
This property plays an important role
in the following discussion. In Fig. 2,
we show relations between J and 7./ax
for BNSs of mass Mx=2.8 M, and »3/Rs
=8, 10, 15 and 40 (filled circles, open
circles, filled squares and open squares,
respectively) in the PN cases as well as
the Newtonian sequence(dotted circles).
Note that the Newtonian sequence may
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Fig. 2. The angular momentum as a function of
7olax for BNSs with I"'=3 and several EOSs in
the PN approximation. The angular momen-
tum is shown in units of J/(G(Mx/2)*?as?),
where My=28 M, and a«=rs(Ms/2M)"5,
respectively. Filled circles, open circles, filled

squares, and open squares denote the PN
sequence of 73/Rs=8, 10, 15 and 40, respective-
ly. Dotted circles denote the Newtonian
sequence, which way be regarded as the case
73/Rs—c0 in the PN approximation.

be regarded as the case 73/Rs—co in the
PN approximation. Here, 7,=2|x/|
(zs' is defined in Eq. (2-14)), and
ax=r{Mx/M,)"®. E and J are shown
in units of E/(GMi/4a«) and
JI(G(M]2)**ax'?). Figure 2 shows that the minimums exist at critical value of
separations, 7erit, in each case. As in the case I'=2,"" 7ert for PN configurations is
~10—20 % smaller than that in the Newtonian case for realistic models of NSs.
This is due mainly to the fact that in the PN approximation, the PN gravity makes
the radius of each star of BNSs small compared with the Newtonian case. In reality,
we find from Table II that 7./ax is ~0.85 for »3=8Rs and ~0.9 for 3=15 Rs. Thisis
consistent with the results shown in Fig. 2.

Let us investigate the influence of this property on 2. In Fig. 3(a), we show the
relation between f= ../, which is the frequency of gravitational waves at 7crit, and
rac?/GMapm, which denotes the compactness of a spherical star, for BNSs of M.
=28 M,. Filled circles and squares denote f for I'=3 and 2 in the PN approxima-
tion, respectively, and dotted and dashed lines are those in the Newtonian case for I’
=3 and 2, respectively. Note that in the Newtonian cases, 74¢*/GMumn=7.c’/GM,
and Q. scales as 74 %% In Fig. 3(b), we also show f=%Q/7 as a function of 73/Rs
for '=3. It is found that when we compare £ in the PN approximation with that

Table II. Critical angular velocities (2r/7) and separations (7ern/as) for
the I'=3 polytrope with different polytropic constants (i.e., different »s)
in the PN approximation. /7 is shown in units of Hz. Note that
the typical error size of each value for Qene/7 and rern/ax is ~1 %.

7s/Rs 8 9 10 12 15 20 40
een/m(Hz) 970 798 675 504 351 222 75
Verit/@s 2.73 | 2.78 | 2.81 | 2.87 | 2.95 | 3.02 | 3.16
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in the Newtonian case, fixing the com- 1200
pactness of NSs or the EOS, the former
is always larger than the latter, and for
realistic models of 5<74c?/GMapm<10,
the deviation is 100 Hz. Let us argue
the reason for this property in the fol-
lowing.

In the first PN approximation, the
angular frequency of two point masses

in circular orbits is¥ (@) rac/GMany
Q= Gr‘}y <1_3E” 2%), (3:3) 1200...TI' L L B ITTT:
1000 —\ @ -
where M and 7 are the total mass of the - 3
system and the ratio of the reduced mass e 800 [— o -
to the total mass, respectively. In the :soo Z_ ® _Z
case of an equal mass binary system, 7 is r Py .
1/4. Thus, we may write i as 400 |- .
| INEATE A A e

- GM<_£ GM) ellls 10 12 14 16
Lori= rgrlt 1 8 7critC2 +00 ’ (b) r3

(3-4)

Fig. 3. (a) The frequency of gravitational waves

where 80 denotes a correction due to the at the critical separation #er, F=35%r/7, as a

tidal field, the spin angular momentum
of each star, and so on.” In the follow-
ing, we regard this as a small quantity.
In reality, 62/Q is at most a few % in

function of the compactness of the spherical
NS, 74c?/GMaom. Filled circles and squares
denote f for the PN sequences of I'=3 and 2,
respectively. Dotted and dashed lines show f
for the Newtonian sequences of I'=3 and 2,
respectively.

the Newtonian case.”'?

Since 7erit in the PN approximation
is smaller than that in the Newtonian
case, we can write it as #erie=#eritn(1
—§), where 7erie, v denotes 7erit for a Newtonian sequence, and ¢ is a constant ~0.1—0.2
which depends on the EOS. Using this expression, Eq. (3-4) is rewritten as

Qo™ .chn,N(l +—‘;—6 —% rgﬁz

(b) /=% /m as a function of r:3/Rs. Filled
circles and the dotted line denote f of the PN
and Newtonian sequences, respectively.

)+a2, (3-5)
where e,y is £2rit for a Newtonian sequence. Present numerical calculations show
that the second term in the brackets is always larger than the third term. If we
assume that 62 in the PN approximation is a small correction as in the Newtonian
case and it may be safely neglected, . is always larger than Leun: For 5
< 7a?|GMam <10, Qerie is ~10—15 9% larger than &erie,v. Although this argument is
very rough, it seems essentially to explain the quantitative difference between Qe
and -chlt,N-

Finally, to check the applicability of the first PN approximation to this problem,
in Fig. 4 we show the relation between Qerias**(M«/2)™"* and GMaom/rac* for BNSs
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of mass M«=28 M,. In the first PN 64
. R . - | T 17 1 1 I—l_r] I | LI I
approximation every quantity should
behave approximately as g o2 § i
S 6
(Newtonian order quantity) 3 ®
< 58
g [
+0@4—4%M—><(PN correction) . i
racC o] E
(3-6) sE @
. . . 52 lllIIlIlIIIIII']l
Hence, in order to check the applicabil- o .05 A A5
ity of the first PN approximation it is a GM,p,, I1,c?

good test to see whether this relation

. Fig. 4. el @/ (Mo /2))? i
holds or not. From Fig. 4, we find that g 4 Qnlal/(Mu/2)" as a function of the

compactness of NS, GMaom/rac? for BNSs of

for GMaom/rac®<0.1, a linear relation mass M«=2.8 M,. The error bar is drawn to
such as Eq. (3:6) holds, but for represent typical error size, ~1%. We can
GMapm/74c?20.1 it does not. Hence, the see that for GMapm/r4c*<0.1, the linear relation
first PN approximation is good only for between the two quantities approximately

. holds. Otherwise, it does not. This implies
the case when each NS of BNSs is not that the first PN approximation is sufficient as

extremely compact, GMADM/VACZSO'I; the approximation of a fully GR configuration
according to a realistic NS model,' 0.14 only for the case GMaom/7ac*<0.1.

< GMaou/74c?<0.2, so that the solution

in the first PN approximation is not accurate enough as an approximate solution of
a fully GR configuration. To investigate the stability property of a realistic BNS, we
need to include further PN corrections, such as second PN corrections.

§4. Summary

Making use of solutions of the equilibrium configuration for synchronized BNSs
which are obtained by means of the numerical method developed in a previous
paper,'® we have considered the stability property of BNSs just before the merging.
Our conclusions are as follows.

(1) As in the Newtonian case, in the PN approximation, the secular instability for
synchronized BNSs of a realistic EOS (i.e, I'=2~3 and 7 or 7 (Mx/M,)""~10
—15 km) will occur at a critical angular frequency Lt before the surfaces of the two
NSs of a binary system come into contact.

(2) When we compare £ in the PN approximation with that in the Newtonian case,
fixing the compactness of each NS (i.e., GMaom/7ac?) or the EOS, the PN value is
10-15 9% larger than the Newtonian value for realistic BNSs.

(3) The reason for the result (2) is mainly that the PN effect makes the radius of each
NS smaller than that for the Newtonian case.

In particular, we would like to emphasize the result (3): the effect of the first PN
correction to each NS of a binary system is very important to determine £« of BNSs
just before merging. Recently, Lai and Wiseman'® obtained the ISCO of BNSs. In
their approach, they tried to determine the ISCO of BNSs using the hybrid equation
of motion (EOM)'” incorporating the tidal effect of each NS of BNSs into the EOM.
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Also, Ogawaguchi and Kojima' calculated the orbital evolution of BNSs just before
the merging using a similar procedure to Lai and Wiseman. Their results are worth
noting because they took into account the GR effects as well as the tidal effects.
However, they took into account the relativistic effect only of the orbit, and they did
not consider the relativistic correction to the tidal effect (i.e., relativistic correction to
the configuration of each NS). As we pointed out above, the relativistic effect on the
two NSs of a BNS system will play a role as important as the relativistic effect on the
orbit in determining the critical stability point. Therefore, their treatments will not
be accurate enough.

Finally, we briefly discuss the implication of our present results to the location of
the ISCO. As mentioned above, 7ci: denotes the point where the secular instability
occurs, so it does not denote the point of the ISCO. The ISCO will be determined by
the dynamical instability point. However, the above simple argument for the fre-
quency shift of the secular instability point due to the PN correction seems to hold for
the frequency at which the dynamical instability occurs, fuyn. Thus, we may expect
that the PN corrections will shift fun to a larger value overall.
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