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Based on a framework of the hydrodynamics for a fluid star of mass m orbiting a Kerr black hole
of mass M >m, relativistic Roche-Riemann ellipsoids for incompressible fluids are considered. It is
found that in the relativistic Roche-Riemann limit for the irrotational Roche-Riemann ellipsoid
moving at the innermost stable circular orbit around Kerr black holes, the angular velocity, £,
becomes £2?~=0.0636377r0. We also argue implications of present results on the final fate of black
hole-neutron star binary systems.

§1. Introduction

The final fate of close binary systems of stellar mass black hole (BH) and neutron
star (NS) is taken interest from two reasons. One is that they are regarded as one of
the most promising sources for kilo-meter-size laser interferometric gravitational
wave detector such as LIGO.” When the binary is close enough, gravitational waves
from them will be detected up to the tidal disruption of the NS or the plunging of the
NS into the BH. In particular, gravitational waves from the final phase will bring us
a wide variety of information about a highly relativistic phenomenon. The other
reason is that BH-NS binaries are proposed as one of the likely candidates for y-ray
burst sources.? A scenario suggests that if the NS is tidally disrupted before plung-
ing into the BH, some of the matter will form a disk around the BH, which releases
a sufficient energy to produce the y- ray bursts. A key assumption in this scenario is
that the NS is tidally disrupted by the BH before coalescence to be the accretion disk
around the BH. Thus, in either point of view, it is necessary to clarify the final fate
of the BH-NS binary systems.

To investigate the dynamical evolution of BH-NS binaries just before the coales-
cence accurately, we need a fully general relativistic simulation, but it is a very
difficult problem. Hence, in this paper, we simplify the problem imposing the follow-
ing assumptions in analysis;

(1) we assume that the mass of NSs is sufficiently smaller than that of BHs and that
the center of mass of a NS moves along the geodesic in the BH spacetime.

(2) the radius of the NS is assumed to be much larger than its Schwarzschild radius,
and we use the Newtonian hydrodynamic equations for describing internal structure
of the NS.

(3) we assume that the radius of the NS is much smaller than the background
curvature of the BH spacetime; this implies that the external tidal forces can be
evaluated by the tidal tensor obtained by Fishbone,® Mashhoon® and Marck,” in
which the tidal tensor field is derived from the geodesic deviation equation by
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analogy.

Thus, the general relativistic effects are taken into account only in the orbit and tidal
tensor on the NS orbiting a BH. Since the general relativity plays an important role
to determine the internal structure of NSs and also the gravity from the NS affects the
orbital motion of BH-NS binaries, analysis performed under these assumptions is a
very rough one. However, it will bring us a guideline to this problem. More
accurate analysis must be done in future works.

The paper is organized as follows: In § 2, we review the hydrodynamic formula-
tion for the fluid moving around a Kerr BH which has been developed previously.”~®
In § 3, we present equilibrium configurations of relativistic Roche-Riemann ellipsoids.
Numerical results for a relativistic Roche problem were shown by Fishbone previous-
ly.® Here, we include the internal motion of the fluid to consider Roche-Riemann
sequences which are likely realized in BH-NS binaries.”” We show the Roche-
Riemann limit* for various sets of orbital radius and spin parameter of Kerr BH. In
§ 4, we investigate the stability (i.e., tidal disruption point) of the Roche-Riemann
ellipsoid near the Roche-Riemann limit performing the time evolution of the dynami-
cal equations. We will show that for the irrotational Roche-Riemann ellipsoid
(IRRE), the point where the dynamical instability sets in approximately coincides
with the Roche-Riemann limit. We discuss implications of results obtained in §§ 3
and 4 on the final fate of BH-NS binaries in § 5. Hereafter, we use the units c=G=1.

§ 2. Formulation

A formalism of the hydrodynamics for a fluid star orbiting a Kerr BH has been
developed by Fishbone,” Mashhoon® and Marck.” In their formalism, they consider
a self-gravitating fluid star of mass m and characteristic radius R>m. Assuming
that the mass of the BH, M, is much larger than m, the trajectory of the star is chosen
as a geodesic around the Kerr BH characterized by three constants of motion (E, L,
C), where E, L and C denote the energy, the angular momentum of z-component and
the Carter constant. Since the background curvature scale (=M) is assumed to be
much larger than R, the tidal field by the BH to the fluid star is derived from the
geodesic deviation equation. In this paper, we consider the hydrodynamics of the
fluid star in the equatorial plane of a Kerr BH (i.e., C=0). In this case, equations of
motion for a self-gravitating fluid star orbiting a Kerr BH of mass M>m and spin a
is as follows:

dui_ 0P 3 & '
O dr = T ax, Pax, PR, 2-1)

where r is the affine parameter of the geodesic, X: is the coordinates chosen to be
orthogonal to the geodésic, u: is the velocity of the internal motion of the fluid, p is
the density, P is the pressure, and ¢ is the Newtonian potential which obeys

*) Here, the Roche-Riemann limit is defined as the place along a Roche-Riemann sequence where a star
of certain density orbiting a BH has the maximum orbital angular frequency (or the minimum orbital radius).
This implies that inside this radius, no equilibrium state of the star is possible, but this does not always imply
that the star is disrupted there.
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A¢=47rp. (2-2)

C:;;=Cj: is the tidal tensor, defined as

Cu—ﬂ<1 37 +K cos iﬂ’) (2'3)
sz—ﬂ (1 37 +K sin’ W) (2-4)
M
Co=2 (1+3%), (2-5)
2
Clz=021=—3—r]l%— r :;K cos¥sin¥, (2:6)
Ci3=Cs1=Cs=Cs=0 ’ (2°7)

where “1”, “2” and “3” components denote the axes of an orthonormal tetrad which
is parallel-propagated along the geodesic, and they are chosen as follows;** the 0-
axis is chosen to be tangent to the geodesic; the 3-axis is determined to be perpendicu-
lar to the equatorial plane (i.e., parallel to the z-axis), and the 1- and 2-axes are
perpendicular to the 3-axis. In the Newtonian limit (»>>M), the 1- and 2-axes are in
the equatorial plane. # is the radial coordinate in the Boyer-Lindquist coordinates,
and K denotes (L—aE)?. (Note that the Newtonian limit can be taken by setting K
=(.) ¥ is a rotation angle and obeys the following equation,”

o= (L— aE)E+a

» +K ESw, (2‘8)

where “-” denotes 3/0r. In the case of a circular orbit at »=#, E, L, K and Se
become

3/2 __ 1/2 1/2
p=n e tall | (2-9)
1/2 _ 1/2 1/2 2
- M Ao Bl It (2+10)
%)) .
K=ri(4—1), (2-11)
Se=/ X, (2-12)
o

where Po=r®—3Mro+2aM"*rs** and do=r’—2Mro+a’. Note that at the innermost
stable circular orbit (ISCO), where dE/dro=dL/dr,=0, 4/P; is equal to 4/3 irre-
spective of spin parameter a.”

Following Chandrasekhar” and Mashhoon,” we perform the coordinate transfor-
mation from the tetrad frame to a rotating frame as

*) Note that 2- and 3-axes chosen in this paper are those defined as 3- and 2-axes in Ref. 5).
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3
l‘s’zjgl TUXJ , (2‘13)

where z: denotes the coordinates in the rotating frame, and 7y is the matrix which
represents the orthogonal transformation,

3 R
gllTUT,-L=6,~k. (2-14)

Here, T3 is the transpose of Ty (i.e., Tx). In the following, we only consider the
rotation around the 3-axis. Hence, we explicitly write 7y as

cosa sina 0
Ts=| —sina cosa 0 |, (2-15)
0 0 1

where ¢ is an argument and we define ¢ as £.
Then, we consider relativistic Roche-Riemann problems for incompressible
fluids.® In this problem, p satisfies

_|po=const x*/ar’+ x,*fas®+ x:* [as® <1,
7o otherwise , (2:16)

where ai(7), ax(r) and as(r) are semi-axes, and they satisfy (@ia2as)’=Ro
={3m/(47p0)}"*=constant. Then, inside the fluid star, P and ¢ are written as

3 xiz
P=Pc(1— 217) , (2+17)
3
¢=—mp(Ao— iglA,-x,-z) , (2-18)
where
Amaaa | Grsi Dwr=(ai+u)ed+u)ad+u), (2:19)

and An=2¢a,-2A,~.7’

Next, we define the vector &;=x:/a:. The ellipsoidal shape of the fluid star does
not change under the transformation #:=2;S4(7)Z;(0) if Sy is an orthogonal matrix,
ie, 3S5Sk=04." This implies that the fluid star can have another degree of
freedom for the internal motion, vorticity. Since we consider the vorticity only
around the 3-axis in the following, we set Sy as

cosf sing 0
Sy=| —sing cosB 0 |, (2-20)
0 0 1

where 8 is a variable and we define A= 8.
Equations of motion for a:, £ and /1 become as follows:¥
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d1=a(2* (2-21)
= az(92+ Az) 2a:821— 27!9002Az+ P2 - sz(lz , (2 * 22)
(2-23)
51=—d1A+sz—Clzdz, (2-24)
62=d2/l—d1.9—c~21a1 s (2'25)
where C~U=2k.lTikcleJy and
b=a1A— a8, (2-26)
be=—a: A+ a2 . (2-27)
Explicit forms of non-zero components for Cy are
Cu=M {1 BI—j—I(—cosz(¢'~a)}, (2-28)
Co=2 1 37K sini( v-a)}, (2-29)
o= (1+3—§) , (2-30)
C=Can= —3%”— ¥ +K sin(¥ —a)cos(¥ —a) . (2-31)

Introducing A=y 7p, 7, 2=2/ /70, and A=A/ 7p,, we rewrite Egs. (2-21)~(2-25) as

1= a( 02+ A2 — 20:04 — 20, A+ ﬂip — f;; a, (2-32)

dz—dz(.gz'f‘/lz) 2(21.QA 2a:A:+ ﬂfJPZZz —‘}C‘z‘i“az , (233)
_ 2P. Cas Lo

ds=—2asAs +—7rpoza3 T’po as, (2 34)

bi=— A+ ¢80~ Ciz a: (2-35)

oo
z Cu
b= 2/1 al.Q— 0o a, (2'36)
where
bi=al—a. @, (2-37)
522—(12/{‘1'611!5. (2'38)

Hereafter “-” denotes 8/0A. P. is determined by the incompressible condition =g
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=0 and written as

ch ~Gla .-2)[ ( ) o+ ./12)+2.Q./1("2 ;)+4] (2-39)

Finally, we define the energy, the angular momentum and the circulation of the
internal motion of the fluid,*

3 ~ ~ ~
En=TP [ L5062+ % (a4 N @+ ) - 20:0a00 - 240 (2-40)
le=% {(a®*+a?)2—2a1a:1}, (2-41)
Cr=nmia(20- 1419, (2-42)

If Ein<0, the star is in a gravitationally bound state, but if Ein2>0, it will be tidally
disrupted. We note that Ein: and Lin are not the conserved quantities when the tidal
effects from the BH exist,” while Cr is the conserved quantity.

§3. Equilibrium configurations
In this section, we derive equilibrium configurations of the fluid star in circular

orbits around a Kerr BH. In the case of equilibrium, ¢,= &:= b:=0, a=¥=J/M/r’t
and 2= M/r,’. Thus, the following three equations determine the equilibrium state:

0=a - 2w 00~ 207 A+ ZP ¢ 130,205 j’;’ , (3-1)
_ 2 2Pc

0—dz /1 —2a1az.QA 2as A2+ (3'2)

0= —2a2As+ if . a3292< vy 2). (3-3)

If A=0, these equations reduce to those derived by Fishbone.® Note that for the case
¥ =q, the 1-axis is tangent to the radial coordinates of Kerr.
Following Chandrasekhar,” we introduce

_az ' .
Q2= a’ (3 4)
_as .
a3= @ ’ (3 5)
_a’ltal A .
/= 2aia2 L2 (3-6)

Then the circulation and the angular momentum of the fluid are written as

Cp=27ra1az.Q(1—f) , (3'7)
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2
L.m=%ma129<1+arzz— 1‘:?222 ) .

(3-8)

Note that in the case when the viscosity of the fluid star is negligible, Cr conserves
even if the dissipation due to gravitational waves exists. Thus, if the fluid star at a
large separation from the BH does not have the spin angular momentum initially (i.e.,

f=1 and =1 at »>M), the circulation is zero throughout the whole evolution.

Eliminating £ and Pe/os® from Egs. (3-1)~(3-3), we get
Al—‘ (1’32A3 _ 461’22f2/(1 + 022)2—4(122f/(1 + (Izz)‘l‘S(l + dsz)do/Po_ZQaz

Al— a’zzAz o 40’22(1 - a’zz)fz/(l +a22)2+SAo/Po ) (3-9)
T [T T T[T rrrt
.06 — -
o L i
04 — —
02 — —
0 N |.| e AN e
0 2 4 .6 .8 1

-1
cos” a,/(m/2)
Fig. 1. £? as a function of &=cos'as/(x/2) at the ISCO for f=0(solid line) and f=1(dotted line).

.09 T T T 11T
Q..
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07 —
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---------------- 0.06364
06 099 08 %l - A
1 10 100
r/M

Fig. 2. 2. as a function of » for a/M=0, 0.9, and 0.999 and for 7=0(solid lines) and f=1(dotted
lines).
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Thus, the equilibrium configuration is obtained as follows: first, we fix f; then, once @
is given, as is determined from Eq. (3:9). When @ and @ are determined, 2 is
calculated from

—2 A - e A+ B (- )] (3-10)

First of all, in Fig. 1, we show the variation of £? as a function of
G:=cos'as/(7/2) at the ISCO for f=0 (i.e., the Roche ellipsoid; solid line) and f=1
(i.e., the IRRE; dotted line). Although the maximum value of £? is changed by the
relativistic correction and the internal motion of the fluid star, the shapes of the
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Fig. 3. £22: as a function of f at the ISCO(a) and at infinity(b).
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function 2(6)* are regarded as the typical one for Roche and Roche-Riemann
sequences irrespective of the relativistic effect; i.e., 2 has a maximum B2, at 6:~0.6
—0.7. Hereafter, we call the configurations at &= Q... the Roche or Roche-Riemann
limits. In Fig. 2, we show 22 at a given 7 as a function of 7/M for a/M =0, 0.9 and
0.999. For these BHs, the radii of the ISCO, 7isco, are 6M, ~2.32M and =1.18M,
respectively. Solid lines denote the cases f=0, and dashed lines denote the cases f
=1. At the ISCO, £%,:~0.066399 for F/=0% and ~0.063637 for f=1. Note that, at
infinity, i.e., in the Newtonian limit, it becomes =20.09009 for =0 and ==0.08509 for f
=179 In Fig. 3, we show 2% at the ISCO (a) and at infinity (b) as a function of f.
It is found that due to the relativistic correction, Qe decreases about 15 9, but the
effect of the circulation is small.

In Fig. 4, we show @ and as at 2= as a function of £, respectively. Solid and
dotted lines denote a» and as at the ISCO, and dashed and long-dashed lines denote a.
and as at infinity. A general feature is that irrespective of the general relativistic
effect, for the Roche ellipsoid, a2 is always greater than a; at the Roche limit, and for
the IRRE, as is always greater than a- at the Roche-Riemann limit. In any case, if .
becomes smaller than ~0.48—0.51, the incompressible fluid star will reach the Roche-
Riemann limit.

In Figs. 5 and 6, we show sequences of the IRRE as a function of » for a=0
(Fig. 5) and 0.9M (Fig. 6). For each a, we show (a)£?, (b)az, (¢) En: and (d) Lin;, where
the units of Em and Lt are m?/Ry and m*2Ry'?, respectively. In each figure, oo is
chosen to satisfy £=Q. at the ISCO (solid lines), @=r at 7o=r1sco+0.5M (dashed
lines), and @=Z.r1:/ /2 at the ISCO (dotted lines). If the orbital radius of the fluid star
is assumed to decrease only due to the emission of gravitational waves, these lines
may be regarded as the evolution sequences. From figures, we can see that @, Fint
and Lin rapidly change only near the Roche-Riemann limit. Since the models indicat-
ed by dotted lines do not reach the Roche-Riemann limit at the ISCO, these quantities

54

Fig. 4. @ and @ as a function of /. Solid and dotted lines donote a; and @ at the ISCO, and dashed
and long-dashed lines denote @ and a at infinity.
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Fig. 5. (a)2? (b)as, (c)En: and (d)Lm: as a function of #, for sequences of the IRRE and for a=0.
Here, the units of Eine and L are m?/Ro and m*?R,"?, respectively. oo is chosen to satisfy £ =0
at ru=7(sco(501id line), .Q~=.Q~cm at »o=7r1sco+0.5 M(dashed line), and Q.:chlt/ﬁ at
7= rnsco(dotted line), respectively.
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Fig. 6. The same as Fig. 5, but for 2=0.9 M.
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only mildly change throughout the whole sequence. This is trivial because in such a
binary, the density of the fluid star is high enough that the tidal effect can be safely
neglected and the star is approximately regarded as a spherical one.

§4. Time evolution of equilibrium configurations

In this section, we investigate the dynamical stability and the fate of the dynami-
cally unstable star integrating dynamical equations. The basic equations are
Eqgs. (2-32)~(2-36),

U= and d¢=49. (4-1)

TPoTo"

Note that the orbit of the fluid star is fixed as a geodesic circular orbit. In the case
of circular orbits, ¥ —a may be regarded as a misalignment angle between the axis
a, of the ellipsoid and the line joining the centers of the BH and the fluid star.

We numerically integrate these equations forward in time using a fourth-order
Runge-Kutta method.® As initial conditions, we adopt equilibrium solutions
obtained in § 3 except for a small perturbation as

ar\=nai, G:=—na: (4-2)
3_|ll LILBLLE LN LR L= 'oe—lll TTTTITUTTY el b
S LI wE |03
. 2F 4 5 02F =
< :J 3 I oF =
¥ 4E 1 P .nE =
= = -04 F- =
0"1|A||||||||||l||||‘ -.06 g lovalaasalsns S
0 5 10 15 20 0o 5 10 15 20
0 LIl LRLLEE RN RARE
ol LA
2F :
(17] - - -
-4 -
_6 llllillllillllillll -
0 5 10 15 20 0 5 10 15 20
/T T/T

Fig. 7. Time evolutions of Roche-Riemann ellipsoids with s small perturbation shown in Eq. (4-2).
We show (a)ai(£)/a(0) and ax(t)/@(0); (b ¥ —a)/(2x); (c)Eint/(m*[Ro); (d)Lint/(m**Ry'). The
units of the time(r) is 7. As initial conditions, the Roche ellipsoid at 7=risco With
2 =0.5050(solid lines) and @,=0.5070(dotted lines) are used.
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or
sziggr|t(1 + E) 3

where 7 and £ are small parameters. We set 7 as 107, It is noted that we adopted
other types of perturbations instead of the above, but we obtained the same results
concerning the stability. In time evolutions, we have two constraints; one is that go
=0, thus, a1a2as=R*=constant, and the other is conservation of the circulation Cr.
We find that in numerical calculations, two constants of motion are kept constant with
sufficient accuracy.

Hereafter, in figures, we show time evolutions of (a) a:(#)/a:(0) and a.(%)/a:(0), (b)
(T—a)/(27x), (¢) En/(m*/Ry) and (d) Lin/(m**R¢"?). The units of time(r) are
T=2n/r°/M. We choose the orbital radius as »o=171sco in all cases.

First, we consider time evolutions of relativistic Roche ellipsoids. The dynami-
cal stability of them was investigated in the second paper of Fishbone.? He found
that the instability sets in for a configuration somewhat more distorted than the
Roche-limit configuration; for #o=171sco, @=0.5110 at the Roche limit, while the
dynamical instability sets in at @=0.5051.¥ This implies that a Roche ellipsoid is
dynamically stable even if it is more deformed than the Roche-limit ellipsoid. In
Fig. 7, we show numerical results of the time evolution from the initial configurations
with @=0.5050 (solid lines) and &=0.5070 (dotted lines). As mentioned above, the
former is the unstable configuration and the latter is the stable one, and the numerical

(4-3)

.0002

.5145_llllllll|llllll(é)l_le (b)
== 3 .0001
< 512 S 3 8 e a ,
-~ .51 7S LN y; Y & I 0 — I‘ y 1‘ i Jf
S R/ O I W - = by v Ny S
-508 3 -.0001 [~
'506;1 glosaabenaales s _.0002-
0 5 10 15 20 0 5 10 15 20
15-! 1 LILBLIL LILILELE B AR =
552 E © 148 - | | | (d)-E
-.554 E— .146 : -....}....‘f.‘.b..a..f.:a.“.:.:.».a;—-
w - - = 3
-556 B~ o~ o~ -y = A44 —
-.558 142 —
- :‘lIIIIIIIIIIIIIIIIII:
-.56 14
0 5 10 15 20 0 5 10 15 20
/T /T

Fig. 8. The same as Fig. 7, but numerical results shown are those started from different initial
As initial conditions, we use the Roche ellipsoid at 7= #1sco with @2=0.5100 including

conditions.

a small perturbation in £(see text). Note that in Fig. 8(a), we only show ax(¢)/a.(0).
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results demonstrate those facts. For the unstable ellipsoid, @1 and ¥ —a become
larger and larger, and a: and as become smaller and smaller. Thus, the configuration
of the ellipsoid becomes spindle-like one with time evolution, and direction of the
major axis of the spindle also deviates from the radial direction. For >47T, En
becomes positive. This implies that at that time the ellipsoid is tidally disrupted.

In Fig. 8, we show the time evolution of the Roche ellipsoid started from initial
configurations with @=0.5100 including the perturbation shown in Eq. (4:3). (In
Fig. 8(a), we only show a:(t)/a:(0).) Solid, dotted and dashed lines denote the cases
£=5%107%, £=3%10"* and £=0. In these cases, we do not add the perturbation
shown in Eq. (4-2). For £=0, the configuration is stable, and it is also demonstrated
in the numerical calculation. For £=3x10"* and £=5X%10"*, @ is over £ in either
case, but their fates are different; for the former case, the ellipsoid is stable and purely
oscillating, while for the latter case, the ellipsoid is unstable and soon tidally disrupt-
ed. Thus, for the Roche ellipsoid beyond the Roche limit, the stability analysis seems
useless. Instead, we need a stability analysis for oscillating ellipsoids, and results
shown in Fig. 8 suggest the following conclusion: If an incompressible star reaches
the Roche limit, it is stable. However, if the orbital radius slightly shrinks due to a
mechanism such as emission of gravitational waves, the Roche ellipsoid changes to an
oscillating state. However, it will soon become unstable for a further shrink of the
orbital radius before it reaches the dynamical instability point for the Roche ellipsoid,
a2==0.5051.

3:|||| lllllllllll(é)llz .giinl ”IIII'”II(B)'E-
' 2:_ B ?'0(2)5_ E
S E {1 B.efE =
= = -04 & —
0'||||“|1|||n|||||||‘ __06'-'||||l|1||||||||1u'
0 5 10 15 20 0 5 10 15 20
0_|||| llll'llllll(é)ll: 5 )
C . A
-2 7 3
w B —~ -
B = 2
I 3 A J
L 0 L ! ~
‘6 ) O A At O ) I A AR A 0
0 5 10 15 20 0 5 10 15 20
/T /T

Fig. 9. The same as Fig. 7, but numerical results shown are those started from different initial
conditions. As initial conditions, we use the IRREs at 70=r1sco with a2=0.4880(solid lines), and @
=0.4900(dotted lines) including a small perturbation shown in Eq. (4-2).
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Then, we consider the stability of relativistic IRREs which are likely realized for
BH-NS binaries.” As initial conditions, we adopt the configuration beyond the
Roche-Riemann limit (2.=0.4880), and slightly different, but tidally stable state @
=0.4900. In either case, $2~0.063637. Note that at the Roche-Riemann limit, e
~(.48895 and £22~0.063637. In Fig. 9, we show numerical results: Solid and dotted
lines denote time evolutions for configurations of @=0.4880 and 0.4900, respectively,
and we find that the former is dynamically unstable and the latter is stable. The
numerical results indicate that the point where the dynamical instability sets in is very
near the Roche-Riemann limit for the IRRE. This has also been pointed out for
Newtonian case previously.” Thus, for the IRRE, the dynamical stability limit will
be almost equal to the Roche-Riemann limit.

Finally, we note the following fact; at the time of the tidal disruption, Lin
becomes about ten times of the initial value getting the tidal torque from the BH.
According to the theory of accretion disks around BHs, the final fate of the accreting
fluid will critically depend on the angular momentum.'® Thus, the gain of the
angular momentum by the tidal torque may play an important role for subsequent
evolution of the fluid.

§ 5. Discussion

In § 3, we find that for the IRRE, $2,.>0.063637 holds, where the minimum value
is taken at the ISCO. Thus, if the density of a fluid star is larger than
M/(0.063637 7o), the star is never tidally disrupted. Let us apply this result to
BH-NS binary systems in order to derive a rough value of the tidal disruption limit
for NSs. According to the above estimate, a NS is tidally disrupted by a BH if the
mass of the BH satisfies the following condition:

4 1/2 .M—):’/Z(&.):HZ_ ( 1.4M© )1/2( RO )3/2( GM )3/2
M s’"(3><0.063637> ( vl ) T464Me(—, T0km/) \ 7/ °

(5:1)

where Me denotes the solar mass. Thus, if we assume that typical mass and radius
of NSs are 1.4Me and 10 km, respectively, it will be tidally disrupted by a Schwarzs-
child BH of mass<4.64 M, by a Kerr BH of spin ¢=0.9M and mass<19.3Me and by
the extreme Kerr BH(a=M) of mass<68.2Me. We note that the difference of the
maximum value of BH mass simply comes from the fact that the radius of ISCO is
smaller for larger spin parameter of Kerr BH. Since the approach in this paper can
be applied to the binary systems which satisfy M>m, these are very rough estimates
for the tidal disruption limit. But, it will be a guideline to a correct estimate.

Finally, we comment on the deviation of the ISCO for the IRRE due to the
quadrupole moment of the fluid star induced by the tidal force of the BH. The total
energy of the system is approximately written as

Etat( VO)_—-E(VO) +Eint(7'0) +Equad( 7’0) ’ (5 '2)

where Equea is the correction by the quadrupole moment of the fluid star, which
changes the orbital velocity of the star and the orbital binding energy between the BH
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and the star. The ISCO is determined from

dEior _
7 =0. (5-3)

dE/dr, satisfies

dE | >0 for 70> 7isco,
dro <0 for 7<7isco. (5'4)

In this paper, we find dEn/dre<0 throughout‘ the whole sequences of the IRRE. On
the other hand, we do not know how to estimate Fquaa accurately up to now. To see

an order of magnitude of Equaq, Wwe use the Newtonian formula® which holds only for
ro>M ,

Equadz% 2al—al—asd). (5+5)

In this formula, dEquad/d70<0. Therefore, both En and Eaquea contribute to increase
the radius of the ISCO. Note that the order of magnitude of dEin/d7 is ~ Rom?/re®
and that of dEquaa/dro is ~RimM/r,*. In the BH-NS binary, M/ro~ m/Ro near the
ISCO, so that |dEint/dro| ~|dEquas/dro| there. Thus, to evaluate the deviation of the
ISCO accurately, the accurate formula for FEquas is necessary. A present rough
estimate shows, however, that the tidal effect seems to make the radius of the ISCO
larger by order (Ro/r0)*~(Ro/r0)(m/M), which is not a negligible factor to determine
the correct ISCO as pointed out by Lai et al.® and other recent works.'~'®
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