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We have calculated gravitational waves induced by a test particle with eccentric orbits around
a Schwarzschild black hole. The energy and angular momentum fluxes of gravitational waves
emitted from various types of the orbits are shown. Comparing our results with those calculated by
the semi-relativistic quadrupole formula, we find that, even for orbits with » ~30 M, the amount and
wave form of gravitational radiation are predominantly determined by the relativistic property, such
as higher multipole contribution and curvature scattering effect of gravitational waves. We find that
even in the case of circular orbits the wave form is highly deformed from a sine curve, indicating the
importance of higher multipole contributions. On the other hand, the total energy flux emitted by
gravitational waves is well estimated by the semi-relativistic quadrupole formula accidentally.
Implications of these results to future detection of gravitational waves from a coalescing binary are
also discussed.

§1. Introduction

Coalescence of two compact objects, such as neutron star-neutron star, neutron
star-black hole and/or black hole-black hole binaries, is one of the promising sources
of gravitational radiation which may be detected by future laser interferometric
detectors, LIGO” and VIRGO.”  Such binaries are thought to evolve in the following
sequence: At first two compact objects move around each other with an eccentric
orbit. As gravitational waves are emitted, both the orbital radius and the eccentric-
ity gradually decrease. If the orbit becomes circular before the radius becomes too
small, regular monochromatic gravitational waves are emitted for a sufficiently long
time interval. Depending on the mass of each compact object, various phenomena
will occur. For example, for almost equal mass neutron star case, when the separa-
tion of two stars becomes smaller than the radius of the last stable circular orbit, »
~6Miot, where Mot is the total mass of the system, or a certain critical radius below
which gravitational-radiation damping is severe, they plunge into each other and
merge. Then the merging object will be a rotating black hole.

To investigate gravitational waves radiated in the above evolutionary sequence
in detail, great efforts have been made by many researchers recently. As for the final
coalescence phase, Nakamura, Oohara and Shibata®~® performed 3D post-Newtonian
hydrodynamic simulations of coalescence of neutron stars with a wide range of initial
conditions. They showed how the gravitational wave emission depends on the
post-Newtonian effect, the spin of each neutron star and the plunging velocity.
However their simulations should be considered as a first step to the study of real
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coalescing binary neutron stars because of their approximations. As for the evolu-
tion of the orbit before merging, Lincoln and Will,® and Wiseman?” performed P**N
calculations with radiation damping using the point particle approximation. They
found that for two equal mass particles, the final plunge orbit begins around » =8 Mo
where the radial velocity becomes equal to the circular velocity. These previous
investigations have revealed various important evolutionary features of two compact
stars and the gravitational radiation from such objects, and the knowledge of which
will definitely play a very important role in the construction of theoretical templates
for LIGO and/or VIRGO. Nevertheless, there are some indications that the P*?N
approximation, or the post-Newtonian expansion itself, may not give a sufficiently
fast converging series even at a fairly large orbital period.¥”” Therefore, to improve
the signal-to-noise ratio in the detection of gravitational waves from a coalescing
binary, and to prepare more reasonable initial conditions for future 3D relativistic
numerical simulations of a coalescing binary, it is neccesary to develop a different
approximation scheme which will work in a fairly (and possibly fully) relativistic
regime.

As a first step toward the above goal, in this paper we consider eccentric orbits
of a test particle in the Schwarzschild geometry and calculate gravitational waves
induced by it. Although perturbations of a black hole by a test particle have been
extensively studied,'® the gravitational radiation from general bound orbits has not
been investigated, except for circular ones. In general, compact binary systems, such
as PSR1913+16, 'V PSR1534+12'% and PSR2127+11C,"™ move with an eccentricity.
Furthermore, at the final stage of coalescence the orbit necessarily deviates from a
circular orbit. We then discuss the effect of radiation reaction to the orbital evolu-
tion in an approximate way.

In our approach, characteristic features of the gravitational radiation induced by
the fast motion in the strong gravitational field can be investigated, although the
nonlinear effect of gravity is neglected. Furthermore it has been shown that the
extrapolation of the results of perturbative test particle calculations are in fairly good
agreement with those of relativistic non-linear simulations: Gravitational radiation
efficiency in the two black hole collision simulated by Smarr'® coincides with the
extrapolated efficiency of gravitational waves by a test particle falling into a
Schwarzschild black hole.”™ The wave forms obtained in the simulation of the stellar
core collapse by Stark and Piran'® agree with those from a perturbative study of a
rotating ring falling from infinity into a Schwarzschild black hole.!” Therefore the
test particle calculations are still quite meaningful and in a sense complementary to
post-Newtonian calculations for the study of the gravitational radiation.

The paper is organized as follows. In §2 we review the generalized Regge-
Wheeler equation and show the formulation used in this paper. In § 3 the numerical
results are shown. In § 4 we discuss implications of our results to the orbital
evolution of a binary.

§ 2. Formulation

We consider gravitational waves emitted by a test particle of mass ¢ traveling
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around a Schwarzschild black hole of mass M(> ). Although many numerical
studies have been done for particle orbits which are circular,'” plunging into,"® and
scattered'®?” by the hole, the case of bound eccentric orbits has not studied so far.
Hence we first describe our method to calculate the gravitational radiation from a test
particle with an eccentric orbit. 4

Let e and pL: be the energy and the orbital angular momentum of the particle,
respectively. Throughout this paper, we set the units c=G=M=1. Since we can
restrict the particle motion on the equatorial plane without any loss of generality, the
trajectory of the particle is given by

dt_r=2_
dr y
2 2 2, 212

(L) =142 Lo+ 2 [=10),

6=7,

d L;:

Tgrp: 2 2-1)
For the eccentric orbit, € and L: are in the range,

Emn<e<eémax for 2¢v3<L.<4,

emn<e<l for L.>4, : (2-2)

where emn=[L:2+36L.—(L:2—12)*%]/54L; and emax=[L+36 L +(L;"—12)*?]/54L..
We take the origin of time coordinate t so that the orbit (»(#), ¢(#)) passes the
apastron at t=ndt(n=0, £1, £2,--+), where 4¢ is the orbital period. For later
* convenience, we also introduce the functions #(#) and ¢(7) which describe the part of
the orbit corresponding to 0<¢<A4#2. That is, (#mn)=0 and #(7mex) =42 where
#mn and 7max are the radii of periastron and apastron, respectively.

To evaluate gravitational waves emitted by a test particle, it is most convenient
to use the generalized Regge-Wheeler equation.”” Skipping details of its derivation,
the final expression to be solved is '

[t =TG4 2)7 =6} | Xinal 1) = Sunal), (2-3)

7,4 L
where »*=7+2log(#/2—1). The boundary conditions for Xmw(7) are

Xi;lnwe—z'a)r* , (7,*_) —OO)
me(i’): f)ut iwr* *
e . (r*—4o0) (2-4)

To solve Eq. (2-3), we use the Green function method. First, we construct two kinds
of homogeneous solutions with the boundary conditions,

—iwr* *_,
o1 ] . reo o,
in — : .
Aoutezwr*+Aine s , 7’*—) —+co (2.5)
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and

s | Bowe™ "+ Bne™"" , r¥o—co, |
Out_ :
g™ r*> 400, (2-6)

where Aout, A, Bouwt and B are constants. With the help of these homogeneous
solutions, the solution is given by ‘

(O)f Stma X (O)dr + 0(0)/ SmaXi

lew( 7) - 2 ZC()Am

27

In the limit » - +oo, the variable Xumw(#) is related to the TT-components of the
metric perturbation, 4. and /%y, as

h++z'hx=% f doFexplio(r*—1))» ViAo (2-8)
where

JIE

21w A (2-9)

Almw

and sYm(82) is the spin weighted spherical harmonics.

The source term Sme is constructed from a certain projection of the energy
momentum tensor of the test particle, S(¢, 7, 2), by expanding it in terms of the
spherical harmonics and by Fourier transforming it with respect to £. In the case of
a test particle coming from infinity, practically only a finite time interval of the orbit
contributes to the source term. On the contrary, in the present case, the contribution
from an infinite time interval must be taken into account. However, though we
cannot integrate the orbit for infinite time numerically, it does not cause a true
difficulty by virtue of the quasi-periodicity of the orbit:

r(t+4t)y=»(t), @(t+dt)=¢(t)+de, (2-10)

where dg is the periastron shift. Since S(¢, 7, 2) mentioned above, schematically,
has the form like®

S(t, 7, D)=pf(r)8(t—t(»)) 02 —2(r)), (2-11)

the source term is written as
T/2 .
Suma(7)= / - dt e [fde va@s,r, 2, (2-12)

where the time interval T is introduced to regularize the expression.
Using the quasi-periodicity (2-10), we can now integrate Eq. (2:12). Then taking
the limit T -0, we obtain

*) To be precise, f(#) contains differential operators with respect to 7,  and ¢, but this is not essential
here.
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Szmw(r) /12 8(60 Cl)n)slmwn(T) (2'13)

where

w=Cur+me)/4t ,
- 4¢12 .
Szmm,,(r)Z/_Atlzdt e @O £( 1) Pr(cos 0)| o=zs2 - (2-14)

Thus, we have only to evaluate the contribution from one period. Consequently, the
Fourier spectrum of the metric perturbation has a discrete: structure containing
o-functions. The explicit form of the source term is given in the Appendix.

Now we give the expressions for the energy and angular momentum fluxes
emitted as gravitational waves. For the time-averaged energy flux, it is expressed as

<C§z—§> —lim

“tim 7320l G ) » (215)

and the average angular momentum flux is expressed similarly. For convenience, we
define the amplitude Amw from Sime, (#) in the same manner as Aumo is from S maon ¥),

oo
/ S lmw}(i(r?) dr*

Amo="" 2i0Am . (2'16)

In actual numerical calculations, we divide the integration interval in the above into
three parts as (—0, 7in), [#n, 7daxl, (7max, +00). On the first interval, Sime
asymptotically behaves as ~e"*? at *- —oo and the integration can be done without
any difficulty. On the second interval, Sme diverges at both of the boundaries like
~1/y. However, this apparent divergence can be eliminated by changing the in-
dependent variable #* to ¢ in terms of the transformation dr*=—(y/e)dt. On the
last interval, Smw can be set to zero, as long as we concentrate on the out-going
gravitational waves at null infinity. '
In terms of Aume, We have
ITIEELT <%Ew—>lmw—y 2 1;,5;5 No— wn) 0| Amol?, (2-17)

where we have used the relation,
hm—— (8(w—wn))’=w—w»), (2-18)

to remove the squared d-function. Finally, we get the convergent expression for the
average energy flux as

E 1 e
<£27> 2 46;5 a)nzlAlmwnlz . (2’19)
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In the same way, the average-angular momentum flux is expressed as

<%> 2‘. 16;5 MW n) A pmaon? . : (2-20)

As for the unaveraged (i.e., time-dependent) energy and angular momentum
fluxes, we may simply use Eq. (2-8) to construct the (¢, »)- and (¢, ¢)-components of
the effective energy momentum tensor of gravitational waves. Then integrating
them over the sphere of a large radius », we obtain

dE 2167[ g A — — W) t—T1%
a’t Atz mznn w”w”'Al:M,wnAz,m,wn'e Hwn-om)(i=r )>

d]z_ 21671' Cl)n_*'C()n’
A T P

Al miond i mwgpe” O OMETT (2:21)
In the following numerical calculations A are solved for the multipoles up to /=6.
§3. Results

We have considered a wide variety of bound orbits, ranging from L.=3.51to L.
=8. For each L., we have selected ¢ by the following rule:

esznLo.oi)ﬂmm, i=0~5. (3-1)
For convenience of readers who may need actual figures of the radiation efficiency for
various eccentric orbits, the average energy and angular momentum fluxes emitted as
gravitational waves are exhaustively listed in Table I. Recently, Cutler et al.” have
calculated the same quantities for the case of circular orbits. They claimed that the
numerical error of their calculation was less than 107%. We have also calculated one
of the orbits they considered and confirmed their results to that accuracy. However,
for the results listed in Table I, we did not require such high accuracy to save the
computation time. Instead, we have required the relative error to be less than 107

From Fig. 1, it is found that if L.<4, the average energy flux of gravitational
waves increases as € becomes large, but if L->4, it has a peak at some €. This can
be explained as follows. For L.<4, the orbital period is almost the same for all &,
while the total energy radiated per orbital period increases as € increases. Hence the
average energy flux increases monotonically. In contrast, for L.=4, the orbital
period increases as € increases and eventually diverges at the limit e—1, while the
increase in the total energy radiated per orbital period remains finite. As a result, the
average energy flux decreases to zero in the limit e—1.

Given the results of the energy and angular momentum fluxes (dE/dt, dJ./dt) of
the gravitational radiation for a wide variety of the orbital parameters (e, L), one
can estimate the effect of radiation damping on the evolution of the orbit by equating
(ndeldt, pdL:/dt)=(—dE/dt, — dJ./dt), which is valid at least in the limit of small .
For a precise treatment, we will need the precise time-dependence of (dE/dt, dJ/dt)
at each point on the orbit. However, in the small g limit, the change in the orbital
parameters is small for an orbital period and we may assume the orbit is quasi-
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Fig. 1. Comparison of the average energy fluxes calculated in the fully relativistic and semi-
relativistic manners, for several typical values of the angular momentum of the test particle; L,
=(3.5, 4.0, 5.0, 6.5). The horizontal axis is the energy of the test particle.

periodic for many periods. Therefore we may replace (dE/d?, dJ./dt) by their time
averages and consider the evolutionary path of the orbit on the (e, L.)-plane. In this
case, since only the direction of the vector (de/dt, dL./dt) is relevant but not its
magnitude, we can easily construct such a path on the (e, Lz)-plane.

Figure 2 shows several evolutionary paths constructed in this way from our
numerical results. We plot these paths with respect to the energy normalized to the
difference of the maximal and the minimal possible energies, i.e., (¢— &mn)/{(Emax
— emin), we find the relative deviation from the quasi-circular path begins to increase
as L: goes down below 4. Although our results are valid only in the limit p¢<1, if
qualitative features are essentially correct even for x£=0(1) (note that ¢ can be
naturally identified as the reduced mass of the system, in which case p<1/4), the
above result may be important to constrain physically reasonable initial conditions to
be used for 3D relativistic simulations of a coalescing binary.

To see general relativistic effects of the particle motion, we have compared our
results with the calculation using the quadrupole formula. In the case of circular
orbits, an orbit can be completely specified by its period seen from the null infinity.
Therefore, we can directly compare the results with those obtained using the quad-
rupole formula, and we know that the quadrupole formula gives a fairly good
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estimate of the energy and angular Lz '
momentum fluxes for circular orbits,'”
though we will see below that it happens 5.0 7
only by chance. /
In contrast with the case of circular / 1/
orbits, in the present case, two parame- /
ters are necessary to determine the orbit. 4.5 i / Y E
Hence, if we want to make comparison 7
with the quadrupole formula, we need to [/ /
specify one additional parameter other I/ ///
than the orbital period. However wedo 4.0 \/ aa
not have such natural parametrizations. L\
Hence, provisionally we have compared AN
our results with those obtained by the RN &\
semi-relativistic approximation pro- 3.5 — B e B

posed by Ruffini and Sasaki? Specifi- 0.0 0.4 0.8
cally, the particle trajectory is deter- €—Emin
mined by the equations of motion in the , Emax—Emin
Schwarzschild spacetime but the energy Fig. 2. Expected trajectories of the orbits in the
and angular momentum losses are ((e— &mn)/(emax— &mn), L2)-plane, assuming the

. . . ffect of itational-radiati i i
evaluated as if the orbit were in flat effect of gravitational-radiation damping is
small during each orbital period. The energy

spacetime. Further, for Simplidty’ we of the particle normalized to the difference of
have taken up only the quadrupole con- the maximally and minimally allowed values
" tribution to the gravitational radiation of it.

in the semi-relativistic approximation. The idea of this approximation is similar to
- the method adopted by Kidder et al® Then we have a natural correspondence
between the orbit in the relativistic and semi-relativistic treatments, because the
trajectory is completely determined by € and L in both cases.

However, in addition, we need to specify the identification between the points in
Schwarzschild spacetime and those in flat spacetime when we apply the quadrupole
formula. Here we have identified the Schwarzschild spherical coordinates with the
spherical coordinates in flat spacetime. The reason is that 1) in the limit of the
circular orbit, the proper length of the orbit (=277) in both coordinates agrees with
each other, and 2) the energy flux at null infinity is measured in units of the Schwarz-
schild time ¢, which properly takes care of the gravitational redshift effect. In this
identification, the semi-relativistic approximation gives the same value with the
quadrupole formula in the limit of circular orbit.

In Fig. 1, we show the average energy flux calculated in both ways, ie., in
relativistic and semi-relativistic manners, for L.=35, 4.0, 5.0 and 6.5. Note that
smaller & corresponds to more circular orbit. We find the semi-relativistic qua-
drupole approximation is fairly good even in the case of eccentric orbits, as in the case
of circular orbits. The relative errors of the semi-relativistic approximation in the
energy and angular momentum fluxes for various orbits are shown in Fig. 5. We see
that for 7mn=10 the relative error is less than 8 %.

We show the wave forms in Fig. 3(a) and the corresponding energy fluxes as
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Fig. 3. Wave patterns observed from the direction of (8, ¢)=(x/4,0) for the orbital parameters
indicated in Table I (a) by T, i.e., (L2, €)=(6.50, .9916401), and (b) by 1, i.e., (L., €)=(3.50, .9449113).
The real lines are the wave forms in the fully relativistic treatment. The dotted lines are those
in the semi-relativistic approximation.

functions of time in Figd4, for (L., ¢) dE/dt/ 2
=(6.5, 0.97771), for which #mn=24.3. 106
The wave form obtained from semi- 1.2

TTTT TTTT TTITT TTTT TTTT LI
relativistic approximation is shown as - * ! ! .
before and they also coincide well. i B
Hence the semirelativistic method ¢ gFE -
seems to be a fairly good approximation C .
to the fully general relativistic calcula- 0.6 - E
tion of gravitational waves. This also .4 -
suggests that the method adopted by - B
Kidder et al.® gives a fairly. good esti- 0.2 - | I .
: 1.l 11 11 111 1111
mate of Fhe last stable orbit. 0 0J l I;0([)J 1000 1500 2000 2500 3000
In Fig. 3(b), we show the wave form (r*-t)/M
for (Lz, €)=(5.0, 0.94491). In this case Fig. 4. The energy flux as a function of time for
the orbit of the test particle is almost the same orbital parameters of Fig. 3(a), i.e.,
circular; r=21. However, the wave indicated by T in Table I. As before the real
form is substantially deformed from a line is the calculated result, while the dotted

line is the result of the semi-relativistic approx-

sine curve which would be expected if it .
1mation.

were dominated by the quadrupole.

This means that contributions of higher multipoles to the wave form are important;
= 30% for » <10, even for circular orbits.” This results seem to contradict with the
fact that the energy and angular momentum fluxes calculated in both relativistic and
semi-relativistic method coincide. The reason is as follows. In semi-relativistic
calculation, we ignore two effects, 1) back scattering of waves by space-time curva-
ture, 2) the contribution of the higher multipoles (/>3). To see these effects, we show
the following two figures; in Fig. 6 the relative error of the energy flux calculated
using the semi-relativistic formula to those by the relativistic method, but only the
contribution of the quadrupole component is shown and in Fig. 7 the ratio of quad-
rupole contribution to the total energy flux, E*-2/E*®. From Fig. 6, we can estimate
the curvature scattering effects because in semi-relativistic formula the curvature
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Fig. 5. Plot of relative errors in the semi-relativistic estimation to the fully relativistic calculation of
(a) the average energy flux and (b) the average angular momentum flux, against the periastron
radius #mn. The vertical coordinate is 80=(Qsem1_re1—Qrel)/Qren, where Q=F or J.. All orbits in
Table I are plotted. The closed circles denote the cases of almost circular orbits.
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Fig. 6. Same plot as Fig. 5(a) but compared with
the energy flux where only the quadrupole
contribution is accounted.

Fig. 7. Plot of the ratio of the quadrupole compo-
nent to the total energy flux. The closed cir-
cles are the same as above mentioned.

scattering of gravitational waves is neglected in contrast with the relativistic calcula-
tion. We find that the relative error is as large as 10 %(20 %) in excess even at 7min
~30(10) almost independent of the orbital eccentricity. On the other hand, from Fig.
7 we find that the contribution of multipoles other than the quadrupole part to the
total energy is as large as 5% even at 7mn~30 and 12 % at 7mn~10 also almost
independent of the orbital eccentricity. ‘

Thus we can say that the cancellation of these two effects happens to reduce the
relative error, although each of them is large even at #mn~30. This explains why the
quadrupole formula for the circular orbit and the semi-relativistic formula for the
eccentric orbit gives a good estimate of the energy and the angular momentum fluxes.
Hence if the observation of gravitational waves is in operation in the future, we may
directly detect the general relativistic effect on the wave form of the gravitational
radiation produced in the final phase of coalescence.
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It should be also mentioned that the dependence of 87=2 and E—2/Etotai—1 0N #min
are almost independent of the orbital eccentricity. In particular, Ei—s/Etotai— 1 #mh.

§4. Discussion

We have calculated the gravitational waves induced by a test particle with
eccentric orbits in the Schwarzschild spacetime. Comparing our results with the
semi-relativistic formula, we have found that the curvature scattering effect and the
higher multipole contributions of gravitational waves are important even in the
region far away from the event horizon. We have also found that the dependence of
these two effects on #mn is almost independent of the orbital eccentricity. This
suggests that one may improve the semi-relativistic method by adding the
phenomenological correction terms as done by Kidder et al.® (or specifying empiri-
cal identification between the Schwarzschild and semi-relativistic radial coordinates.) .

Since the semi-relativistic approximation or a certain extension of it can be dealt
with in a more analytical manner than the fully relativistic perturbation method, and
may be quite useful, it is worth while to discuss here the merits and demerits of the
semi-relativistic approximation in comparison with those of the post-Newtonian
expansion. The merits of the post-Newtonian expansion is that its applicability is
not constrained by the magnitude of x4, while the semi-relativistic approximation is
valid, if at all, only in the limit #<1. The demerits of the post-Newtonian expansion
seem to be the following four points:

1) The orbit is not determined in a sufficiently relativistic manner.

2) The higher order multipole contributions to the gravitational radiation can be
evaluated, but only the quadrupole contribution to the radiation reaction force can
be included, at least at presently available level.

3) The gravitational redshift of gravitational waves is not sufficiently taken into
account.

4) Back scattering of gravitational waves by spacetime curvature is neglected as long
as the tail terms of radiation is not included.”

A priori, point 1) is not distinguished from point 4). However the semi-relativistic
approximation naturally distinguishes them. With respect to point 4), the effect of
the boundary condition at the event Horizon is not included both in the post-
Newtonian and semi-relativistic approximations. However, the semi-relativistic
approximation can handle point 1) by definition and point 3) because of the
identification of the Schwarzschild time coordinate # with the time in the hypothetical
flat spacetime. As mentioned several times already, concerning points 2) and 4),
semi-relativistic formula is not so appropriate, but it may be possible to solve these
issues by introducing phenomenological correction terms. Furthermore, since the
semi-relativistic approximation is analogous to the conventional quadrupole approxi-
mation, it is possible to introduce a backreaction force in the equations of motion
which is consistent with the amount of emitted gravitational waves. Hence it seems
meaningful, and perhaps more reasonable than the post-Newtonian approach, to solve
such equations of motion with radiation damping, to understand the evolution of a
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compact binary in its mildly relativistic phase. If all of these are possible, it will be
a fairly simple method compared with the post-Newtonian approach because in the
latter, it is very difficult and complicated to include the higher multipole radiation
reaction and the tail term of radiation.”"* ‘

We have also estimated the effect of radiation damping on the evolution of the
orbit, assuming that the quasi-periodicity of the orbit is maintained. Although our
results cannot be applied to the case z=0(1), let us tentatively ignore this fact and
consider the implication of our results in connection with the work by Lincoln and
Will.® They pointed out that the infall velocity, #, becomes comparable to the
orbital velocity, ¢, at »~8 for the initially quasi-circular orbit of a system of equal
mass particles; #=1/4, and at » ~5 for the mass ratio 10: 1; x=10/121. If we boldly
assume that the radial infall velocity is directly given in terms of the energy loss rate
for the circular orbit, we find 7 =27%%(r —3)*?/{(» —6)E/y}. Using this crude for-
mula with E of the calculated results, the radius at which #/(#¢)=1is » ~6.5 for u
=1/4, and » ~6 for x=10/121. Of course these values differ from those calculated by
Lincoln and Will. This is because their estimate is based on the post-Newtonian
approximation and the relativistic effect is not sufficiently included, while in our
estimate, although the general relativistic effect is included, the effect non-linear in g
is not included in a consistent manner.

Apparently, in order to obtain a more reliable estimate of the orbital features in
the final phase of coalescence, some improvements are necessary both in the post-
Newtonian type approach and in the relativistic test particle type approach. As for
the latter, an immediate issue is to find a method to incorporate the radiation reaction
consistently in the calculations of the orbit and the gravitational radiation, at least in
the lowest order of w. _

In this paper, we have calculated the outgoing gravitational waves induced by a
test particle moving around a black hole to investigate the orbital evolution of a
binary system. However, when we consider the last stage of the evolution of a binary
such as black hole-black hole or black hole-neutron star binary, it is expected that the
ingoing waves through the black hole event horizon are not negligible compared with
outgoing ones. Therefore we must calculate the ingoing waves as well as the
outgoing ones. We plan to do so in a forthcoming paper.

The numerical calculations are mainly performed on a YHP-5720 work station.
This work was supported in part by the Grant-in-Aid for Scientific Research on -
Priority Area of the Ministry of Education (04234104).

Appendix

In this appendix, we summarize the explicit form of Sme in Eq. (2-3). The
expression is basically the same as given in Ref. 20), except for its specialization to
bound orbits.

Following the formulation of Ref. 21), we express the source term Suw in terms
of a new function Wine, as
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Slmm:/l;%a(a)_ Cl)n) 7/7_32 e—iwnr* VVlmwn . (A'l)
or equivalently,

S _r—- 2 —iwnr*

S mwn *T@ " I/Vlma)n , (A ¢ 2)

where w, is defined in Eq.'(2-14). The function Wiman is given as

VVlmwn(V)zir |: I/V()lmwn(r)_/;de, I/Vl,lmwn(r,)_k’/;wdrlv/:odr” I/Vzﬂlmwn(r”)] ,
(A-3)

where

W‘)(V):%Cos(wnf (7) = me(7)) 0(rmax—7) 6(r — rmn)e™™™ |

W{(r)z{(— 27(7’:2 —z'2772—‘;61>cos(wnt(r)—mqo(r))

) |
—277C15in(a)nt(7’)—mgo(r))}ei‘””’*@(rmax—r)@(r—rmm) ,

VVz”(T):{< —%——2—2 <i;+ 7> Co>cos(a)nt(7’)— me(7))

4
+ Zi%ecosin(wnt(r) — mqo(r))}ei“’”’*ﬁ(rmax— 7)0(¥ — ¥min) (A-4)
with d=7»(» —2) and y=|d»/dr|. The three constants Co,, C: and C; are given by

Co=V AT D) 0P L),
C=VALs 1Pl ),

Co=I% _ZPZ,,Z(%) , (A-5)

where A=/ —1)(/+2) and sPw(8) is defined in terms of the spin weighted spherical
harmonics s Y(8, @) as

sPm(0)=sYm(0,0). (A-6)
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