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We review the current status of our activity in higher-dimensional numerical relativ-
ity. We describe a Baumgarte-Shapiro-Shibata-Nakamura formulation in higher dimensions
together with cartoon methods which we employ. We also review numerical results which
we derive for two subjects in higher-dimensional numerical relativity: dynamical instabil-
ity of rapidly rotating Myers-Perry (MP) black holes with one rotational parameter and
high-velocity black hole collisions and scatterings. The perspective for the future is briefly
described.

§1. Introduction

Numerical relativity is probably the unique approach for exploring dynamical
problems in general relativity. In numerical relativity, Einstein’s equation,

Gab = 8πGTab, (1.1)

is numerically solved in the framework of an initial-value formulation of general rela-
tivity. In the past decade, the community of numerical relativity achieved significant
progress, and now, it is feasible to perform a longterm and accurate simulation for
the merger of binary composed of black holes and neutron stars (e.g., Refs. 1)–6) for
binary black holes and Ref. 7), 8) for others) and for high-velocity collision of two
black holes, that are among the strongest gravitational phenomena in nature.

Higher-dimensional numerical relativity is also being an important issue since
the TeV gravity scenarios9)–12) and the AdS/CFT correspondence13) were proposed.
To clarify the nonlinear dynamics in higher-dimensional general relativity, a new
implementation in numerical relativity is necessary. Higher-dimensional numerical
relativity began in 2003 by a pioneering simulation for a 5-dimensional (5D) black
string that is unstable against the Gregory-Laflamme instability.14),15) Then, several
new formulations have been developed and several simulations have been performed
in particular in the last three years.

There are three primary motivations for performing higher-dimensional numer-
ical relativity. The first one is stimulated by the fact that mini black holes may
be produced in large accelerators such as Large Hadron Collider (LHC) if the TeV
gravity hypotheses are correct. If our 3-dimensional (3D) space is a D3-brane in
large9),10) or warped11) extra dimensions, the Planck energy could be of O(TeV) and
quantum gravity phenomena may emerge in high-energy particle colliders. If the
particle energy is larger than the Planck energy in this scenario, mini black holes
could be produced16)–18) (see also Ref. 19) for a recent review). If a black hole with
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mass energy slightly larger than the Planck energy is formed in the LHC, it will sub-
sequently emit the Hawking radiation that may be detected. To accurately predict
the rate of the mini black-hole production and its detectability, it is necessary to
know the cross section for the black-hole production σBH, and the resulting mass
and angular momentum of the formed black hole. A lower bound of σBH for the
black-hole production was given in Refs. 20) and 21) by numerically solving the ap-
parent horizon at an instance of the collision of Aichelburg-Sexl particles22) in higher
dimensions (see also Ref. 23)). However, the precise value of σBH and the black-hole
production rate are necessary for precisely predicting the event rate in the particle
collider.

The second motivation is to clarify the fundamental properties of black objects
in higher dimensions. 4-dimensional (4D) black holes (Kerr black holes) have been
shown to be stable in vacuum irrespective of its mass and spin. By contrast, higher-
dimensional black objects are not always stable. For example, the Gregory-Laflamme
instability24) is known for a black string. Also, higher-dimensional rapidly rotating
black holes (i.e., the Myers-Perry (MP) black holes25)) are unstable,26)–29) and a
black hole on a Randall-Sundrum (RS) brane is also conjectured to be unstable.30)

The condition for the onset of the instabilities and the final fate after their onset are
clarified only in numerical relativity (see §3).

The third motivation comes from the hypothesis of the AdS/CFT correspon-
dence, which conjectures that the classical gravity of anti-de Sitter (AdS) spacetime
is dual to the conformal field theory (CFT) on the boundary of the AdS spacetime.
If this hypothesis holds, we may be able to obtain an idea for phenomena in CFT, for
which explicit calculations are difficult due to the strong coupling effect, by studying
the dual gravitational system. To calculate time-dependent phenomena in the grav-
ity side which is expected to be dual to the CFT phenomena of interest, numerical
relativity will play an important role.

The purpose of this article is to review our activity in higher-dimensional numer-
ical relativity. In §2, we review the Baumgarte-Shapiro-Shibata-Nakamura (BSSN)
formulation for higher-dimensional numerical relativity together with the “cartoon
methods” for implementing spacetime symmetries, that are employed in our numeri-
cal code. In §3, we summarize several test simulations which are useful for validating
numerical codes, illustrating that our codes are validated by these test simulations.
In §4, we review the simulation results obtained by our group, focusing in particu-
lar on the numerical results for rapidly rotating Myers-Perry (MP) black holes that
may be dynamically unstable against nonaxisymmetric deformation (§4.1) and high-
velocity two-black-hole collisions in a 5D spacetime (§4.2). Section 5 is devoted to a
summary and a brief discussion of the issues for the future. Throughout this arti-
cle, the unit c = 1 is used, while the higher-dimensional gravitational constant G is
explicitly shown.

§2. Formulation

There are many ingredients necessary for a successful simulation of vacuum
spacetimes in numerical relativity: formulations including methods for implementing
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spacetime symmetries for a special class of spacetime; appropriate gauge conditions;
methods for extracting gravitational waves; techniques for handling black holes; ap-
parent horizon (AH) finder; adaptive mesh refinement (AMR). These ingredients
were already developed in 4D numerical relativity. Most of them can be extended
for higher-dimensional numerical relativity in a straightforward manner. In this sec-
tion, we describe the methods of the extension of the BSSN formulation together
with the cartoon methods. For a summary of other formulations, we recommend the
reader to refer to Ref. 31).

2.1. BSSN formulation

In 4D numerical relativity, the BSSN formulation32),33) is most popular for a
longterm and stable simulation, and its extension for higher-dimensional numerical
relativity is straightforward.34) The BSSN formulation is in a sense a modified
version of the ADM formulation;35) the numerical stability is realized by a suitable
modification of the ADM formulation. In the following, we briefly review the ADM
and the BSSN formulations for D-dimensional spacetimes.

Suppose M be a D-dimensional spacetime with a metric gab. Consider a se-
quence of N -dimensional spacelike hypersurfaces Σt(hab,Kab) foliated by a time co-
ordinate t in M.∗) Here, hab is the induced metric hab := gab + nanb of Σt, where
na is the future-directed unit normal Σt, and Kab is the extrinsic curvature defined
by Kab := −(1/2)£nhab, where £n is the Lie derivative with respect to na. The
coordinate basis ta of the time coordinate t is decomposed as ta = αna + βa, where
α and βa are the lapse function and the shift vector, respectively. In terms of these
variables, the metric is written in the form

ds2 = −α2dt2 + hij(dxi + βidt)(dxj + βjdt), (2.1)

and Einstein’s equation in the coordinate basis is rewritten as

R+K2 −KabK
ab = 16πGρ, (2.2)

DbK
b
a −DaK = 8πGja, (2.3)

£thab = −2αKab +Daβb +Dbβa, (2.4)

£tKab = −DaDbα+ α
(
R

(Σ)
ab − 2KacK

c
b +KabK

)
+ βcDcKab +KbcDaβ

c +KacDbβ
c − 8πGα

[
Sab +

ρ− S

D − 2
hab

]
, (2.5)

where Eq. (2.4) is equivalent to the definition of Kab, and Eqs. (2.2), (2.3), and (2.5)
are derived from Gabn

anb = 8πGρ, Gbcn
bhc

a = −8πGja, and Gcdh
c
ah

d
b = 8πSab

using Gauss, Codazzi, and Ricci equations, respectively. Here, we defined

ρ := Tabn
anb; ja := −Tbcn

bhc
a; Sab := Tcdh

c
ah

d
b, (2.6)

∗) Latin indices a, b, c, · · · are the abstract indices, while i, j, k, · · · denote the components in

the coordinate basis.
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and S := Sc
c. R

(Σ)
ab denotes the Ricci tensor with respect to hab.

Equations (2.2) and (2.3) are Hamiltonian and momentum constraint equations:
On the initial spacelike hypersurface (i.e., initial data), these two constraints have to
be satisfied. Then, the time evolution of (hij ,Kij) is determined by Eqs. (2.4) and
(2.5). The constraint equations are automatically satisfied after the time evolution
as long as the evolution equations are solved exactly. However, these constraints are
always violated slightly in actual simulations. The violation does not grow with time
only in an appropriate formulation, which is necessary in numerical relativity. The
BSSN formulation is one of the most popular formulations with which the constraint
violation is well controlled.

The basic idea of the BSSN formulation is to increase the number of variables as
well as that of constraints to suppress the growth of unphysical modes. Specifically,
new variables, χ, h̃ij , Ãij , and Γ̃ i, are defined from

h̃ij = χhij , Kij =
1
χ

(
Ãij +

K

N
h̃ij

)
, Γ̃ i := hjkΓ̃ i

jk = −h̃ik
,k. (2.7)

Here, the conformal factor χ is chosen so that the determinant h̃ of h̃ij satisfies the
condition in the Cartesian coordinates

h̃ = 1, (2.8)

which is equivalent to setting χ = h−1/N , and Γ̃ i
jk denotes the Christoffel symbol

with respect to h̃ij . The evolution equations are derived as

(∂t − βi∂i)χ =
2
N
χ
(
αK − ∂iβ

i
)
, (2.9)

(∂t − βi∂i)K = −DiD
iα+ α

(
ÃijÃij +

K2

N

)
+

8πα
D − 2

[(D − 3)ρ+ S] , (2.10)

(∂t − βj∂j)Γ̃ i = −2Ãij∂jα+ 2α
[
Γ̃ i

jkÃ
jk − D − 2

N
h̃ijK,j − 8πh̃ijjj − Nχ,j

2χ
Ãij

]

− Γ̃ j∂jβ
i +

2
N
Γ̃ i∂jβ

j +
D − 3
N

h̃ikβj
,jk + h̃jkβi

,jk. (2.11)

(∂t − βk∂k)h̃ij = −2αÃij + h̃ik∂jβ
k + h̃jk∂iβ

k − 2
N
∂kβ

kh̃ij , (2.12)

(∂t − βk∂k)Ãij = χ
[
−(DiDjα)TF + α

(
R

(Σ)TF
ij − 8πSTF

ij

)]
+ α

(
KÃij − 2ÃikÃ

k
j

)
+ Ãik∂jβ

k + Ãkj∂iβ
k − 2

N
∂kβ

kÃij , (2.13)

where the indices of Ãij are raised and lowered by h̃ij , and TF denotes the trace-free
part, e.g., R(Σ)TF

ij = R
(Σ)
ij − R(Σ)hij/N . The Ricci tensor is decomposed into two

parts as
R

(Σ)
ij = R̃ij +R

(χ)
ij , (2.14)
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where R̃ij is the Ricci tensor with respect to h̃ij and R
(χ)
ij is the remaining part

composed of the conformal factor, written in the form

R̃ij = −1
2
h̃klh̃ij,kl +

1
2

(
h̃ki∂jΓ̃

k + h̃kj∂iΓ̃
k
)

−1
2

(
h̃il,kh̃

kl
,j + h̃jl,kh̃

kl
,i − Γ̃ lh̃ij,l

)
− Γ̃ l

ikΓ̃
k
jl, (2.15)

R
(χ)
ij =

(D − 3)
2χ

(
χ,ij − Γ̃ k

ijχ,k

)
− (D − 3)

4
χ,iχ,j

χ2

+h̃ij h̃
kl

[
χ,kl

2χ
− Nχ,kχ,l

4χ2

]
− 1

2
h̃ij

χ,m

χ
Γ̃m. (2.16)

The second derivatives of h̃ij appear only in the first term of Eq. (2.16) (i.e., each
component of hij appears to obey a simple wave equation) and this is the key point
for the numerical stability.

In summary, the variables to be evolved are χ, K, h̃ij , Ãij , and Γ̃ i, and they
follow Eqs. (2.9), (2.10), (2.12), (2.13), and (2.11), respectively. The conditions
Ãi

i = 0, third equation of Eq. (2.7), and Eq. (2.8) are regarded as the new constraints
which arise because the number of the dynamical variables are increased. As shown
above, the BSSN formulation for higher dimensions has essentially the same form as
that for the 4D case, except that some coefficients are changed.

2.2. Cartoon method

In the presence of spatial symmetries, it is better to impose such symmetries in
numerical simulation to reduce computational costs. In the previous subsection, the
BSSN formulation was described assuming that the Cartesian coordinates are used
and without assuming the presence of any symmetries a priori. In this subsection, we
describe the so-called cartoon method for imposing symmetries in such a formulation.

2.2.1. Cartoon method
The cartoon method was originally proposed by Alcubierre et al.36) as a pre-

scription for an efficient numerical simulation of axisymmetric 4D spacetimes. The
essence in this method is to employ not curvilinear coordinates that possess coordi-
nate singularities, but the Cartesian coordinates. First of all, we briefly review the
original idea of the cartoon method.

In an axisymmetric 3D space, the Cartesian coordinates (x, y, z) are introduced
so that the z-axis becomes the symmetry axis of axisymmetry (U(1) symmetry) (we
refer to this case as “x = y, z” which indicates that the spatial structures in the x
and y directions are equivalent). In the Cartesian coordinates, the U(1) symmetry
does not explicitly appear in equations, and we cannot evolve the geometric variables
straightforwardly only with the data on, e.g., the (x, z)-plane because y derivatives
of them are needed. In the originally cartoon method, a few grid points in the
neighborhood of the (x, z)-plane are prepared. Then, the data at a grid point (x, y �=
0, z) is generated using the data at a point (ρ, 0, z) (i.e., on the (x, z)-plane) where
ρ =

√
x2 + y2, using the U(1) symmetry. Here, an appropriate interpolation has

to be done because the point (ρ, 0, z) is not located on a grid in general. Once the



Higher-Dimensional Numerical Relativity 287

data at the grid points y �= 0 are known, y derivatives at y = 0 are calculated and
the data on the (x, z)-plane is evolved toward the next time step. The symmetric
relation is α(x, y, z) = α(ρ, 0, z) for a scalar function, and those for vector and tensor
functions are also derived by the relations that the Lie derivative of functions with
respect to the Killing vector becomes zero.

We described the method for extensions of the cartoon method to 5D space-
times (4D spaces) in the cases of three types of symmetries, i.e., the U(1) symmetry
(“x, y, z = w”), the U(1)×U(1) symmetry (“x = y, z = w”), and the O(3) symme-
try (“x = y = z, w”) denoting the Cartesian coordinates by (x, y, z, w).34) For the
U(1) symmetry, the extension is straightforwardly done. The cartoon method for
the U(1)×U(1) symmetry is similar to that for the U(1) symmetric case except that
two cartoon operations are required in this case. In the case of the SO(3) symmetry,
the symmetric relations are different from that for the U(1) symmetric case, but
they can be derived in a similar manner (see Ref. 34) for details).

2.2.2. Modified cartoon method
In the original cartoon method, we have to prepare the extra grids in all the

symmetric directions. For this reason, as the dimensionality D is increased by 1, the
required grid number always increases by a factor of 5 (if we use the 4th-order finite
differencing), and thus, a lot of memories are still required for a large value of D.
However, this can be avoided by a prescription shown below.29)

As an example, we here consider an N -dimensional space with the coordinates
(x, y, z, w1, ..., wn) where n = D − 4, and suppose that this space has the O(D −
3) symmetry with respect to (z, w1, ..., wn) (i.e., “z = w1 = · · · = wn”). The
simulation is supposed to be performed on the (x, y, z)-plane. Here, we introduce

ρ =
√
z2 +

∑n
i=1w

2
i , and in the following, indices a and b denote x or y. The

symmetric relation of a scalar function is

α(x, y, z, wi) = α(x, y, ρ, 0), (2.17)

and from this relation, the derivatives are evaluated as

α,wi = α,awi = α,zwi = 0, α,wiwj = (α,z/z)δij. (2.18)

The derivatives of vector and tensor functions with respect to wi can be derived in
a similar way using the symmetric relations. Then, all the derivatives necessary for
solving the evolution equations can be evaluated without preparing the extra grids.
The derivatives with respect to wi are replaced with those to z or a simple algebraic
relation. This implies that additional finite differencing operation is absent. Due to
this fact, the computational costs do not increase significantly with this prescription,
and the simulation is effectively performed in the 3 + 1 manner, as in the case that
we employ curvilinear coordinates.

§3. Method for code validation

To confirm the reliability of a code newly developed, benchmark tests are nec-
essary. One of the standard tests is to check the convergence of numerical results
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with varying grid resolutions: The numerical solution has to show a convergence
property that is expected in the employed scheme. Another method is to simulate a
spacetime for which an analytic (or semi-analytic) solution is known and to confirm
that the numerical results agree with the analytic solution. Here, we summarize
the 5D spherically symmetric black hole spacetime in the Gaussian normal coordi-
nates which is useful for the benchmark tests, and show that our code accurately
reproduces the solution.

3.1. Geodesic slice of Schwarzschild-Tangherlini spacetime

First, we show an analytic solution of the 5D spherical black hole in the geodesic
slicing. The well-known metric form of this black hole (the so-called Schwarzschild-
Tangherlini metric) is

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

3 , f(r) = 1 − r2S
r2
, (3.1)

where dΩ2
3 is the line element of a 3D unit sphere and rS is the Schwarzschild-

Tangherlini radius rS =
√

8GM/3π. Because the coordinates in this metric are not
well-behaved inside the event horizon, we rewrite the metric of this spacetime in
terms of the Gaussian normal coordinates starting from the t = 0 hypersurface as

ds2 = −dτ2 +

[
r20 + (rS/r0)2τ2

]2[
r20 − (rS/r0)2τ2

] dR2

R2
+
[
r20 − (rS/r0)

2 τ2
]
dΩ2

3 , (3.2)

where r0 is defined by

r0 = R

(
1 +

r2S
4R2

)
. (3.3)

The spacetime domain which these coordinates cover is explained as follows. Con-
sider a geodesic congruence of test particles that are initially at rest. Then, each
geodesic labels the radial coordinate and its proper time is equal to the time coordi-
nate. At τ = 0, the spatial slice agrees with the Einstein-Rosen bridge written with
the isotropic radial coordinate R. This is analogous to the Novikov coordinates in
the 4D Schwarzschild spacetime.37),38) This line element shows that the RR com-
ponent of the metric grows and diverges at τ = r20/rS , at which the slice hits the
singularity.

In the line element (3.2), τ and R are always time and radial coordinate, and
thus, this coordinate system can be employed in numerical relativity. In this test, a
simulation is done with the gauge conditions α = 1 and βi = 0, until the computation
crashes approximately at the crash time τcrash = rS . Figure 1 shows a comparison
between the analytic solution (solid curves) and the data34) with grid size Δx/rS =
0.1 (crosses, ×) and 0.05 (circles, �). Here, the snapshots of xx component of the
conformal 4D metric h̃xx along the x-axis are drawn for τ/rS = 0.5, 0.6, 0.7, 0.8, and
0.9. This shows that the numerical solutions agree approximately with the analytic
solutions (3.2) (solid curves): The values of h̃xx rapidly increase and blow up around
x = 1. It is also checked that the deviation of the numerical solutions from the
analytic one shows the 4th-order convergence in a code implementing a 4th-order
finite differencing.34)
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Fig. 1. Snapshots of h̃xx along the x-axis for τ/rS = 0.5, 0.6, 0.7, 0.8, and 0.9. The unit of x is

rS/2. The grid resolutions are Δx = 0.1 (×) and 0.05 (�). The solid curves denote the analytic

solutions. The figure is taken from Ref. 34).

Fig. 2. The sequence of maximal slicing surfaces in the Kruskal diagram of the Schwarzschild-

Tangherlini spacetime for D = 5. The dotted curves show the r = const. The limit surface is

given by r =
p

2/3rS . The figure is taken from Ref. 41).

3.2. Limit surface of Schwarzschild-Tangherlini spacetime

As the second analytic solution, we refer to the limit surface of the maximally
sliced evolution (i.e. evolution keeping K = 0) of a Schwarzschild-Tangherlini space-
time. In the 4D Schwarzschild black hole, it was shown that the sequence of the
maximal slices never hits the curvature singularity but asymptotes to the so-called
limit surface,39) for which an analytical expression of the limit surface, suitable in
numerical relativity, was given, e.g., in Ref. 40). The limit surface provides a useful
test-bed for calibrating numerical-relativity codes because it is a stationary solution
for the black hole. Namely, if we adopt the limit surface as the initial data, the
spacelike hypersurface has to be unchanged during the time evolution under certain
gauge conditions.

The limit surface for the higher-dimensional black hole is derived by Nakao et
al.41) Figure 2 displays the Kruskal diagram of the 5D Schwarzschild-Tangherlini
spacetime. The sequence of maximal-sliced hypersurfaces (starting from the time-
symmetric slice) is shown by the solid curves. The sequence asymptotes to r =
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Fig. 3. The analytic solutions of α, βx, Ãyy, and χ along the x-axis for the limit surface of the 5D

spherical black hole (solid curves), and the numerical data after the time evolution at t = 50rS

(�). Here, the unit of the length is rS/2. The data remains approximately stationary in the

time evolution. The figure is taken from Ref. 34).

√
2/3rS , which is the limit surface, and the formula for the limit surface can be

given analytically also in the 5D case. The limit surface turns out to be conformally
flat, and thus, we can introduce the spherical-polar coordinates (R, φi) in the flat
space. The relation between R and the Schwarzschild radial coordinate r is

R =
r

6

(
3 +

√
3 [(rS/r)2 + 3]

)( (5 + 2
√

6)
[
3 − 2(rS/r)2

]
2(rS/r)2 + 15 + 6

√
2 [(rS/r)2 + 3]

)1/
√

6

. (3.4)

In terms of the BSSN variables,

χ =
(
R

r

)2

, α =

√
1 −

(rS
R

)2
χ+

4
27

(rS
R

)6
χ3, (3.5)

βR =
2

3
√

3
χ2
(rS
R

)3
, ÃR

R = −3Ãφi

φi
= − 2√

3
χ2 r

3
S

R4
. (3.6)

Here, r has to be written as a function of R numerically, and then, the nontrivial
components can be calculated.

Figure 3 plots the values of α, βx, Ãyy, and χ along the x-axis at a selected time
slice. Adopting the data shown by the solid curves as the initial condition, we evolved
this spacetime using the dynamical gauge condition together with Γ -driver.34) The
data at t = 50rS (after the time evolution) are plotted by the circles. It is confirmed
that all the BSSN variables are approximately unchanged in time. In this manner,
we can check the reliability of the code using the limit surface solution.
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§4. Simulations

In this section, we review our numerical results for two subjects in higher-
dimensional numerical relativity: One is on the bar-mode instability of rapidly ro-
tating Myers-Perry (MP) black holes with one rotational parameter28),29) and the
other is on high-velocity black-hole collisions.42)

4.1. Bar-mode instability of Myers-Perry black holes

The MP black holes have been inferred to be unstable against certain perturba-
tions.26),27) The dynamical instability of rapidly rotating Myers-Perry (MP) black
holes with one spin parameter25) was explored in Refs. 28), 29) by fully nonlinear
simulations, and it was shown that the MP black holes are indeed dynamically un-
stable if they are rotating sufficiently rapidly, and that the most unstable mode is
the bar-mode.28),29) In this subsection, we review this study.

4.1.1. The Myers-Perry black holes
In D-dimensional spacetimes, the spacetime can have �(D − 1)/2� independent

rotational parameters (i.e., the independent components of angular momentum ten-
sor) where �x� indicates the largest integer not greater than x. The black hole
solutions of spherical horizon topology with arbitrary number of rotational parame-
ters in higher-dimensions were found by Myers and Perry.25) Hereafter, we consider
only MP black holes with one spin parameter for which the metric is given by∗)

ds2 = −dt2+ μ

Σ
(dt−a sin2 θdϕ)2+

Σ

Δ
dr̂2+Σdθ2+(r̂2+a2) sin2 θdϕ2+r̂2 cos2 θdΩ2

D−4,

(4.1)
where

Σ = r̂2 + a2 cos2 θ, Δ = r̂2 + a2 − μ/r̂D−5. (4.2)

In this case, the spacetime has a U(1) symmetry with respect to the rotational plane
and an O(D−4) symmetry with respect to the directions orthogonal to the rotational
plane. μ and a are related to the mass M and angular momentum J by

M =
(D − 2)ΩD−2μ

16πG
, J =

2
(D − 2)

Ma. (4.3)

The location r̂ = rK(M,J) of the event horizon is given by the equation Δ(rK) = 0.
For D = 5, the event horizon exists only for a < μ1/2, whereas it exists for any value
of a for D ≥ 6.

4.1.2. Previous studies
First, we summarize the history for the stability analysis of the MP black hole. A

standard method for this is a linear perturbation study. If the variables of the linear
perturbation equations are separable, the resulting equation reduces to an ordinary
differential equation and its analysis may be done analytically or semi-analytically.
Although linear perturbation equations in the MP spacetime have been extensively
studied for a metric perturbation, the separation of the variables was succeeded only

∗) In this section, we use the units of G = 1 = c.



292 H. Yoshino and M. Shibata

for a tensor-mode perturbation.49),50) For other modes, the stability has not been
found yet by this analysis.

The next best method may be to numerically solve partial differential equations
for linear perturbation equations without carrying out the separation of the variables.
The first numerical analysis was done by Dias et al.27) In this study, an axisymmetric
perturbation (i.e., the perturbation that keeps the U(1) × O(D − 4) symmetry)
was studied and 2D simultaneous partial differential equations were solved. They
discovered that MP black holes with the ultra high spin (a� μ1/(D−3)) are unstable
against axisymmetric deformation. However, no numerical study has been done for
nonaxisymmetric perturbation that breaks the U(1) symmetry.

Alternatively, Emparan and Myers analyzed the stability of MP black holes using
two different analysis methods.26) In one analysis, they take the so-called black
membrane limit of ultra spinning MP black holes. The ultra spinning MP black
holes for D ≥ 6 with a� μ1/(D−3) become extremely oblate. For such an extremely
oblate black object, instabilities analogous to the Gregory-Laflamme instability are
expected to set in. This discussion was applied to axisymmetric instabilities, and
indeed, the numerical analysis of Dias et al. confirms this prediction.27)

The other analysis was based on black-hole thermodynamics: They compared
the horizon area of a rotating MP black hole with that of two boosted Schwarzschild-
Tangherlini black holes, which recede from each other, fixing the total gravitational
energy and angular momentum. The horizon area of a MP black hole is

AMP = ΩD−2r
D−2
K

(
r2K + a2

)
, (4.4)

whereas sum of the area of two boosted black holes is

2AS = 2ΩD−2rS(m)D−2, (4.5)

where rS(m) is the horizon radius of a Schwarzschild-Tangherlini black hole. Here,
the ADM mass M and the mass m of each black hole are related as M = 2

√
m2 + p2

where p is the magnitude of the momentum of each black hole. The angular mo-
mentum of the system J is given by J = bp, where b is an “impact parameter”, i.e.,
the distance between two black holes in the direction orthogonal to the momenta,
chosen to be b ∼ rS(M) as a typical value. If AMP < 2AS , the configuration of two
boosted black holes may be preferred to the MP black hole thermodynamically. If
this is the case, it is expected that the MP black hole becomes unstable against non-
axisymmetric perturbation, the horizon may pinch off, and the system may change
to a state of two boosted black holes. By this discussion, the MP black holes are
predicted to be unstable for

q := a/μ1/(D−3) � 0.85 (D = 5), 0.96 (D = 6), 0.99 (D = 7), 1.00 (D = 8).
(4.6)

Here, we introduced a non-dimensional rotational parameter q which is used later.
In contrast to the former discussion, this discussion can be applied to D = 5 as well
as D ≥ 6, and the predicted critical parameter for the onset of the instability is much
smaller than that for the Gregory-Laflamme-like axisymmetric instability (i.e., the
instability can set in for a smaller black hole spin). Therefore, the nonaxisymmetric
perturbation was predicted to be the primary instability.
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4.1.3. Setup of the problem
The prediction by Emparan and Myers seems to be qualitatively correct. How-

ever, for strictly verifying that the instability sets in and for quantitatively clarifying
the criterion for the onset of the instability, we have to solve Einstein’s equation,
which can be done only by a numerical-relativity simulation. In the following, we
review our latest work.

The simulation was done in the following procedures. First, the MP black hole
was written in the quasi-isotropic coordinates in which the radial coordinate is de-
fined by

r = rh exp

[
±
∫ r̂

rK

dr̂′√
r̂′2 + a2 − μ/r̂′(D−5)

]
. (4.7)

This is analogous to the isotropic coordinates of the Schwarzschild-Tangherlini space-
time (i.e., the radial coordinate for which the spatial part of the metric becomes con-
formally flat), and the initial spacelike hypersurface possesses two asymptotically flat
regions and one throat (i.e., the structure similar to the Einstein-Rosen bridge). In
this quasi-isotropic coordinates, the horizon is located at r = rh. This spacelike
hypersurface does not cross the physical curvature singularity of the MP spacetime.
Then, the initial data is written in the (x, y, z, wi) coordinates

x = r cos θ cosφ, y = r cos θ sinφ,
√
z2 +

∑
i

w2
i = r sin θ, (4.8)

where the (x, y)-plane corresponds to the plane of the rotation.
Next, a small nonaxisymmetric perturbation is added to the conformal factor of

the BSSN variables, χ, as

χ = χ0

[
1 +Aμ−1(x2 − y2) exp(−r2/2r̂2K)

]
, (4.9)

where χ0 is the value of unperturbed initial data, and A is a small number 
 1.
This perturbation breaks the U(1) symmetry with respect to (x, y)-plane and keeps
the O(D − 4) symmetry with respect to z and wi directions.

Adopting the initial data, we evolved the system by SACRA-ND code, which is
a higher-dimensional version of SACRA code.51) This code employs the 4th-order
finite differencing in space and the 4th-order Runge-Kutta method in time with an
AMR algorithm. The modified version of the cartoon method explained in §2.2.2 is
employed to impose the O(D−4) symmetry. The so-called puncture gauge condition
was adopted, and the parameters of the gauge conditions were carefully chosen for
stable simulations (see Refs. 28), 29) for details).

4.1.4. Numerical results
The left panel of Fig. 4 shows gravitational waveforms of m = 2 mode extracted

in a local wave zone as a function of a retarded time for D = 5. For q � 0.85,
the amplitude exponentially damps with t for t ≥ 8μ1/2. This shows that the black
hole is stable. By contrast, the amplitude for q � 0.87 remains approximately
constant, and that for q � 0.89 grows exponentially in time. This implies that
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Fig. 4. Left panel: h+ and its absolute value as functions of retarded time for a/μ1/2 = 0.85, 0.87,

and 0.89 (dashed, long-dashed, and solid curves) for 5D MP black holes. Right panel: Evolution

of distortion parameter η of the apparent horizon for q = 0.80–0.89. The figures are taken from

Ref. 28).

Fig. 5. Left panel: Time evolution of a distortion parameter η for D = 6 and for the initial spin

qi = a/μ1/3 ≈ 1.039, 0.986, 0.933, 0.878, 0.821, 0.801, 0.781, 0.761, 0.750, 0.740, 0.718, and

0.674 (from the upper to lower curves) with A = 0.005. Right panel: The same as the left panel

but for D = 7 and for qi = a/μ1/4 = 0.960, 0.903, 0.844, 0.813, 0.783, 0.767, 0.751, 0.735, and

0.719 (from the upper to lower curves). The figures are taken from Ref. 29).

for q > 0.87 the black hole is unstable against nonaxisymmetric deformation. The
right panel of Fig. 4 shows the evolution of a distortion parameter η, defined by
η := [(l0 − lπ/2)2 + (lπ/4 − l3π/4)2]1/2/l0 where lϕ denotes the proper circumferential
length between θ = 0 and π/2 for a fixed value of ϕ evaluated on the apparent
horizon. This parameter indicates the degree of deviation from the axisymmetry,
with η = 0 for an axisymmetric surface. As the figure shows, the value of η grows
exponentially for q � 0.87, while η damps for q � 0.86. This also shows that
the rapidly rotating black hole with q � 0.87 is unstable against nonaxisymmetric
deformation. The critical parameter for the onset of the instability is qcrit � 0.87.

Figure 5 shows the time evolution of the distortion parameter η for D = 6 (left
panel) and D = 7 (right panel). Here, the definition of η is slightly modified as
η := 2[(l0 − lπ/2)2 + (lπ/4 − l3π/4)2]1/2/(l0 + lπ/2). As in the 5D case, the value of η
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Table I. The values of the critical rotational parameter qcrit for the onset of the bar-mode instability

for D = 5–8.

D 5 6 7 8

qcrit 0.87 0.74 0.73 0.77

Fig. 6. Left panel: + modes of gravitational waveform (solid curve) emitted from an unstable black

hole for D = 6 and for qi = 0.801 as a function of a retarded time defined by t − r where r is

the coordinate distance from the center. η/2 is also plotted as a function of t (dashed curve).

Right panel: The same as the left panel but for qi = 0.986. The figures are taken from Ref. 29).

exponentially damps in time if q is small, but it grows exponentially for q larger than
a certain critical parameter qcrit. The value of qcrit is � 0.74 and 0.73 for D = 6 and
7, respectively. The critical parameter qcrit for the onset of the instability is much
smaller than that for the onset of the axisymmetric instability reported in Ref. 27)
irrespective of dimensionality D. The results are summarized in Table I.

The solid curves of Fig. 6 plot gravitational waveforms in the longterm simula-
tions where the initial value of q is qi = 0.801 (left panel) and 0.986 (right panel)
for D = 6. The amplitude of gravitational waves grows in time in the early phase
and then saturates when the distortion parameter becomes of order 0.1 at t = tpeak.
After the saturation, the amplitude exponentially damps. The reason is as follows.
Associated with the growth of the nonaxisymmetric deformation, emissivity of grav-
itational waves is enhanced, and energy and angular momentum are significantly
extracted from the black hole (although the area increases). As a result, the value of
the non-dimensional spin parameter q decreases, and eventually, it becomes q � qcrit
when the growth of the amplitude saturates at t = tpeak. Gravitational waves con-
tinue to extract energy and angular momentum even after the saturation and the
final state is a stable state with the value of q = qf which is smaller than qcrit. The
time, t = tpeak, for qi = 0.986 is smaller than that for qi = 0.801. This is because the
growth rate of the instability for qi = 0.986 is larger than that for qi = 0.801, and
therefore, energy and angular momentum are extracted more efficiently. The dashed
curves of Fig. 6 plot half of the distortion parameter η of the apparent horizon. It
agrees approximately with the amplitude of gravitational waves, indicating that the
distortion of the apparent horizon is not due to a gauge mode and gravitational
waves are generated by the distortion of the system.

Figure 7 shows the real part of the gravitational-wave frequency as a function
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Fig. 7. Real part of gravitational-wave frequencies ω/m (where m = 2) for selected values of the

spin parameter for D = 5 – 7 (points) together with ΩH as a function of q = a/μ1/(D−3) for

D = 5 – 7 (from the upper to lower solid curves). The units of the vertical axis are μ−1/(D−3).

The values q = qcrit for the onset of the bar-mode instability are also shown for D = 5 – 7 (from

the right to left dotted lines). The figure is taken from Ref. 29) with modification.

Fig. 8. Left panel: The growth rate 1/τ of η in units of μ−1/(D−3) as a function of q (solid curve)

for D = 6. The dashed curve denotes ΩH/2π. Right panel: The same as the left panel but for

D = 7. The figures are taken from Ref. 29).

of q for D = 5, 6, and 7. The curve for the superradiance condition52) ω ≤ mΩH is
also shown for each value of D, where m = 2 and ΩH is the angular velocity of the
horizon. It is well known that the superradiance condition is the condition such that
waves can extract energy and angular momentum from a black hole without violating
the area theorem by Hawking. The superradiance condition is a necessary condition
for subtracting energy from the black hole by waves. However, it is only a necessary
condition and not the sufficient condition for the onset of the dynamical instability
found in Refs. 28),29). In the superradiance often discussed, one considers to inject
rather an artificial ingoing wave for which the frequency satisfies this condition.
For such an artificial wave, the reflected waves are amplified. For the dynamical
instability to occur, gravitational waves have to be spontaneously excited by unstable
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Fig. 9. Left panel: Time evolution of Cp/Ce for D = 6 and for non-dimensional spin parameters

not much greater than qcrit, qi = a/μ1/3 = 0.821, 0.801, and 0.781. The corresponding initial

values of Cp/Ce are ≈ 0.587, 0.602, and 0.618, respectively. The results with A = 0.02 and 0.005

are plotted for qi = 0.801, and the results with A = 0.02 are plotted for qi = 0.821 and 0.781.

The solid and dashed curves denote the results for high and low resolution runs, respectively.

The thin dotted line denote Cp/Ce = 0.647 which is the value of Cp/Ce for q = qcrit. For

qi = 0.821, the simulation was stopped at t/μ1/3 ≈ 370 because the black hole reaches an

approximately stationary state. Right panel: The same as the left panel but for the large initial

spins qi = 0.878, 0.933, 0.986, and 1.039 with A = 0.005. Cp/Ce ≈ 0.542, 0.499, 0.460, and

0.422 at t = 0, respectively. The figures are taken from Ref. 29).

quasinormal modes. Namely, such a mode has to satisfy not only the superradiance
condition but also the condition that the imaginary part of the quasinormal mode is
negative. Figure 8 shows the inverse τ−1 of the growth time scale of the instability
for D = 6 (left panel) and 7 (right panel), which corresponds to the imaginary part
of the quasinormal modes. It indeed becomes negative for q > qcrit.

The final state eventually reached after the onset of the bar-mode instability for
D = 6 and 7 was also clarified in Ref. 29). For this purpose, the time evolution of the
value of q was approximately followed by evaluating the degree of oblateness of the
horizon, Cp/Ce, where Cp = (l0 + lπ/2)/2 and Ce is the proper circumferential length
between ϕ = 0 and π/2 along the equatorial plane θ = π/2 on the horizon. For
a spherically symmetric surface, the value of Cp/Ce is unity, and it monotonically
decreases as the spin of the MP black hole increases (as the oblateness of the horizon
surface increases). In Ref. 29), the value of Cp/Ce was followed, and using the
relation of Cp/Ce(q), the spin, q, is approximately determined.

Figure 9 shows the value of Cp/Ce as a function of time. The value of Cp/Ce

increases with time, indicating that the black hole spin decreases. Here, we focus
on the curve starting from Cp/Ce � 0.62, shown in the left panel. The initial value
of q is qi = 0.781, and the value Cp/Ce, which corresponds to q = qcrit = 0.74, is
shown by the dotted line. The curve crosses the dotted line at t/μ1/3 � 200, which
agrees approximately with the time at which the growth of the gravitational-wave
amplitude saturates. The final value of Cp/Ce is � 0.68, and the corresponding value
of q is qf � 0.705. Thus, a stable and moderately rapidly spinning black hole is the
final outcome. Next, we focus on the curve starting from Cp/Ce � 0.42 shown in the
right panel. In this case, the initial value is qi = 1.04. The value of Cp/Ce increases
with time also in this case, and crosses the line for q = qcrit. Then, it relaxes to a
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stable state with the value Cp/Ce � 0.75, which corresponds to qf = 0.61. Again, a
stable black hole is the final outcome. It is interesting to note that for a high initial
spin, the final spin is smaller.

To summarize, the MP black holes are dynamically unstable against nonaxisym-
metric bar-mode deformation if they are spinning sufficiently rapidly. As a result of
the onset of this instability, energy and angular momentum are extracted from the
black hole by gravitational waves which are spontaneously excited by an unstable
quasinormal mode.

It should be noted that we could not follow the evolution of the black hole for
qi � 1. The reason is perhaps that the spatial hypersurface for the large values of q
has a very long throat near the event horizon, while the coordinate region to span
this throat is limited, and hence, the resolution in space is not sufficient. In this
case, the horizon pinch-off might happen as discussed by Emparan and Myers,26)

and it is an interesting remaining issue to clarify the evolution of the instability for
this parameter regime.

4.2. High-velocity collision of black holes in D = 5

The second topic in this section is the high-velocity collision of two black holes for
D = 5,42) which is directly related to the mini black hole production at accelerators.
The results of a simulation also indicate the possible formation of a naked singularity,
and thus, the cosmic censorship hypothesis may not hold in higher dimensions.

4.2.1. Brief history
Here, we briefly summarize the current status for the simulation of high-velocity

collision of two black holes. This issue was first explored for D = 4: Sperhake et
al.53) performed simulations of the head-on collision of two equal-mass black holes.
Subsequently, Shibata, Okawa, and Yamamoto54) performed simulations of a high-
velocity grazing collision of two black holes (i.e., collision with a nonzero impact
parameter b) using the SACRA code.51) Their result indicates that the condition for
the black hole merger is approximately bv/4GE � 1.25 for v → 1 (E is the energy
of each incoming particle) which is by 50% larger than the condition b/4GE � 0.84
for the apparent horizon formation in the collision of Aichelburg-Sexl particles at
the instant of the collision.21),23) The radiated energy ΔE and angular momentum
ΔJ were evaluated as ΔE/MADM ≈ 25 ± 5% and ΔJ/JADM ≈ 65 ± 5%, and the
resulting black hole near the threshold value of b is a rapidly spinning Kerr black
hole with the Kerr parameter a/MBH � 0.8 ± 0.1, where MBH is the mass of the
resulting black hole. This result for the high-velocity grazing collision of two black
holes was further refined by Sperhake et al.,55) where they took close attention to
the “zoom-whirl” behavior and to the case where a rapidly rotating with q ∼ 0.97 is
formed.

The numerical results for the head-on collision of two black holes in higher-
dimensional spacetimes for D = 5 were reported in Refs. 44)–46). Because two black
holes are initially at rest in their setup, the velocities of the black holes are relatively
slow. The first simulation of a high-velocity collision of two black holes for D = 5
was reported by Okawa, Nakao, and Shibata.42) In the following, we review the
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results of this simulation.

4.2.2. Setup
To prepare a boosted black hole initial data, the Bowen-York56) and Brandt-

Brügmann57) formalisms are most popular (see also higher-dimensional generaliza-
tion58),59)). However, the initial data generated by this formalism is known to contain
a lot of unphysical radiation. The alternative method, suitable for the high-velocity
collision of black holes, was proposed in the 4D case in Ref. 54). Their idea is to
first prepare the initial data of one black hole in motion by boosting a Schwarzschild
black hole of mass m0, and then, to superpose those of two boosted black holes. Since
there is a nonlinear interaction between two black holes, just superposing the two
solutions causes the violation of Hamiltonian and momentum constraints. However,
if the initial distance between the two black holes is sufficiently large, violation of
the constraints is small, and hence, may be ignored. This method works well also
for D ≥ 5.

Specifically, the method of Refs. 54), 42) is as follows: First, the Schwarzschild-
Tangherlini black hole solution in the isotropic coordinates is prepared:

ds2 = −α2(r̄)dt̄2 + ψ2(r̄)(dw̄2 + dx̄2 + dȳ2 + dz̄2), (4.10)

where

ψ(r̄) = 1 +
(
rS(m0)

2r̄

)2

and α(r̄) =
2 − ψ(r̄)
ψ(r̄)

. (4.11)

For this seed metric, the Lorentz transformation

t = γ(t̄∓ vw̄), w = γ(∓vt̄+ w̄), x = x̄, y = ȳ (4.12)

and then, the spatial translations w → w∓d/2 and x→ x∓b/2 are performed. Note
that d is the coordinate separation along the w direction and b the impact parameter
of the two black holes. Then, we have the two metrics

ds2± = −γ2(α2
± − v2ψ2

±)dt2 ± 2γ2v(α2
± − ψ2

±)dtdw + ψ2
±(B2

±dw
2 + dx2 + dy2 + dz2),

(4.13)
with α± = α(r̄±), ψ± = ψ(r̄±), and B2± = γ2(1 − v2α2±/ψ2±) with

r̄± =
√
γ2(w ∓ d/2 ± vt)2 + (x∓ b/2)2 + y2 + z2. (4.14)

Equation (4.13) describes the black holes (±) located at (w, x, y, z) = (±d/2,
±b/2, 0, 0) with the velocity v = (∓v, 0, 0, 0). From these metrics, the extrinsic
curvature K±

ij can be determined for the black holes (±). Then, the extrinsic curva-
ture for the initial data of the two-black-hole system is set to be

Kij = K+
ij +K−

ij + δKij , (4.15)

where δKij is a correction due to the mutual nonlinear interaction between the two
black holes. Because it is sufficiently small for a large value of d � rS(m0), it may
be approximated as δKij = 0 as far as the truncation error is larger than it. The
initial spatial metric hij is written in the form

hijdx
idxj = (Ψ + δΨ)2(B2dw2 + dx2 + dy2 + dz2), (4.16)
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Fig. 10. The values of the impact parameters bB and bC , for which black holes are confirmed to

merge to a single black hole (for b ≤ bB) and to be scattered away (for b ≤ bC), as functions of

the initial velocity v. The figure is taken from Ref. 42).

where

Ψ = ψ+(r̄+) + ψ−(r̄−) − 1 and B2 = γ2

[
1 − v2

Ψ4
(2 − Ψ)2

]
. (4.17)

Here, δΨ is a correction due to the mutual nonlinear interaction and it is also set to
be zero for a choice d� rS(m0).

4.2.3. Numerical results
Adopting the initial data described in the previous subsection, numerical sim-

ulations were performed using SACRA-ND code with the moving puncture gauge
condition. In contrast to the 4D case, the collision process is simply divided into
two cases: two black holes merge at the instance of the first collision; or after the
first contact, they scatter away to infinity. Figure 10 shows the values of bB and bC
as functions of v. Here, the implications for bB and bC are as follows: For b ≤ bB,
the numerical simulation confirms that two black holes merge to be a single black
hole and for b ≥ bC , two black holes go away to infinity after the scattering. For
v ≤ 0.6, the values of bB and bC are identical, implying that the simulations are
successfully performed for any value of the impact parameter to determine the final
fate. By contrast, for v ≥ 0.65, bB and bC are different, because for bB < b < bC ,
the simulation crashes soon after the collision: The largest value of b for the black
hole formation would be between bB and bC , but the simulations were not able to
determine the threshold value.

Then, the authors focused attention to the behavior of a curvature invariant
K := (6

√
2E2

P )−1|RabcdRabcd|1/2 in the scattering process for b(> bC) → bC . Here,
EP is the Planck energy EP :=

√
3π/8G and the normalization factor (6

√
2E2

P ) of K
is adopted as the value of |RabcdRabcd|1/2 at the horizon of a black hole with mass EP .
Figure 11 displays the maps of K for various stages (before collision, at the instant of
collision, after collision from left to right) in the scattering process of two black holes
for v = 0.7 and b = 3.38Rg. At the instant of the collision, the curvature invariant
K steeply increases around the center of mass, and it subsequently decreases with
increasing the separation of two black holes after the scattering. The maximum value
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Fig. 11. Maps of K in the scattering of two black holes with v = 0.7 and b = 3.38Rg before

scattering (left), at the instant of the collision (middle), and after scattering (right). Here, Rg

is the gravitational radius of each incoming black hole Rg = rS(m0) (therefore the gravitational

radius of the system is rS(2E) =
√

2γRg). The figure is taken from Ref. 42).

Kmax of K is estimated to be

Kmax � 50
(
EP

2E

)
, (4.18)

where E = γm0 is the energy of each incoming particle. For the scattering of two
black holes with energy E � (few)EP , the value of K becomes O(10). Furthermore,
the value of Kmax steeply increases with decreasing the value of b toward bC . This
suggests that a region outside the horizons, where the curvature is so large that the
effect of quantum gravity may play an important role, could appear in the trans-
Planckian scattering.

If this happens, the hypothetical mini-black-hole phenomena at accelerators fre-
quently discussed may have to be changed: The black hole production rate becomes
smaller and instead we may observe more phenomena of quantum gravity. Unfor-
tunately, the simulations have not provided a totally reliable evidence for/against
the naked singularity formation. Obviously, further analyses for bB < b < bC with
v ≥ 0.65 are necessary in the future.

§5. Summary

In this article, we reviewed the current status of our activity in higher-dimensional
numerical relativity. As described in §2, the formulation necessary for stable simula-
tions of higher-dimensional spacetimes has been established, and the reliable numer-
ical codes have been implemented as shown in §3. In §4, we reviewed two subjects
which have been explored by our codes; the fully numerical analysis of the dynamical
instability of rapidly rotating MP black holes and the high-velocity collision of two
black holes. We expect that a wide variety of extensions will be possible in the near
future. For example, the simulation of unstable black objects such as black rings60)

is an interesting subject. The Gregory-Laflamme instability of a Kerr string and the
dependence of the fate of the instability on the dimensionality D are also interesting.
Among others, the refinement of the simulation of the high-velocity black hole colli-
sion seems to be a very important remaining issue to clarify the possible phenomena
of mini black hole and quantum gravity in LHC.
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In §1, we introduced AdS/CFT correspondence as one of the subjects for higher-
dimensional numerical relativity. To study the issues of AdS/CFT correspondence
in numerical relativity, a formulation to handle the spacetimes with a negative
cosmological constant Λ < 0 has to be developed. The formulation for handling
Λ < 0 is also necessary for simulating black hole dynamics in the Randall-Sundrum
braneworld scenarios.

Another interesting direction in the future is to develop formulations and codes
for simulating spacetimes in Gauss-Bonnet gravity62) (or, more generally, Lovelock
gravity63)). The Gauss-Bonnet gravity is a theory derived from a Lagrangian density
with higher-order curvature terms, L = R+αGBLGB and LGB = R2−4RMNR

MN +
RKLMNR

KLMN , but is a well-behaved theory in the sense that the 3rd and 4th-order
derivative terms of the metric do not appear in equations. The presence of the Gauss-
Bonnet terms is predicted by low-energy limit of heterotic string theory. Because
the higher-curvature terms may become important in mini black hole production
at accelerators and it causes a lot of interesting phenomena such as instabilities of
spherically symmetric black holes,64) exploring the dynamics of the higher-curvature
theory will be an interesting subject. The (N + 1)-formalism for Gauss-Bonnet
gravity, which corresponds to the ADM formalism in general relativity, was developed
by Torii and Shinkai,65) and the first numerical study for the black hole initial data
in Gauss-Bonnet gravity was done by Yoshino.66) Further development in this field
is expected.

References

1) F. Pretorius, Phys. Rev. Lett. 95 (2005), 121101.
2) M. Campanelli, C. O. Lousto, P. Marronetti and Y. Zlochower, Phys. Rev. Lett. 96 (2006),

111101.
3) J. G. Baker, J. Centrella, D. I. Choi, M. Koppitz and J. van Meter, Phys. Rev. Lett. 96

(2006), 111102.
4) P. Diener et al., Phys. Rev. Lett. 96 (2006), 121101.
5) F. Herrmann, I. Hinder, D. Shoemaker and P. Laguna, gr-qc/0601026.
6) M. Boyle, D. A. Brown, L. E. Kidder, A. H. Mroue, H. P. Pfeiffer, M. A. Scheel, G. B. Cook,

and S. A. Teukolsky, Phys. Rev. D 76 (2007), 124038.
7) M. D. Duez, Class. Quant. Grav. 27 (2010), 114002.
8) M. Shibata and K. Taniguchi, Living Rev. Rel. (2011), to appear.
9) N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 429 (1998), 263.

10) I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 436 (1998),
257.

11) L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999), 3370.
12) L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999), 4690.
13) J. M. Maldacena, Adv. Theor. Math. Phys. 2 (1998), 231; Int. J. Theor. Phys. 38 (1999),

1113.
14) M. Choptuik, L. Lehner, I. I. Olabarrieta, R. Petryk, F. Pretorius and H. Villegas, Phys.

Rev. D 68 (2003), 044001.
15) D. Garfinkle, L. Lehner and F. Pretorius, Phys. Rev. D 71 (2005), 064009.
16) T. Banks and W. Fischler, hep-th/9906038.
17) S. Dimopoulos and G. Landsberg, Phys. Rev. Lett. 87 (2001), 161602.
18) S. B. Giddings and S. Thomas, Phys. Rev. D 65 (2002), 056010.
19) P. Kanti, Lect. Notes Phys. 769 (2009), 387.
20) H. Yoshino and Y. Nambu, Phys. Rev. D 67 (2003), 024009.
21) H. Yoshino and V. S. Rychkov, Phys. Rev. D 71 (2005), 104028.
22) P. C. Aichelburg and R. U. Sexl, Gen. Relat. Gravit. 2 (1971), 303.



Higher-Dimensional Numerical Relativity 303

23) D. M. Eardley and S. B. Giddings, Phys. Rev. D 66 (2002), 044011.
24) R. Gregory and R. Laflamme, Phys. Rev. Lett. 70 (1993), 2837.
25) R. C. Myers and M. J. Perry, Ann. of Phys. 172 (1986), 304.
26) R. Emparan and R. C. Myers, J. High Energy Phys. 09 (2003), 025.
27) O. J. C. Dias, P. Figueras, R. Monteiro, J. E. Santos and R. Emparan, Phys. Rev. D 80

(2009), 111701.
28) M. Shibata and H. Yoshino, Phys. Rev. D 81 (2010), 021501.
29) M. Shibata and H. Yoshino, Phys. Rev. D 81 (2010), 104035.
30) H. Yoshino, J. High Energy Phys. 01 (2009), 068.
31) H. Yoshino and M. Shibata, Prog. Theor. Phys. Suppl. No. 189 (2011), 269.
32) M. Shibata and T. Nakamura, Phys. Rev. D 52 (1995), 5428.
33) T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59 (1998), 024007.
34) H. Yoshino and M. Shibata, Phys. Rev. D 80 (2009), 084025.
35) R. Arnowitt, S. Deser and C. W. Misner, in Gravitation: An Introduction to Current

Research, ed. L. Witten (Wiley, 1962), p. 227.
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