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We study gravitational waves emitted in the late inspiral stage of binary neutron stars by analyzing the

wave form obtained in numerical-relativity simulations. For deriving the physical gravitational wave forms

from the numerical results, the resolution extrapolation plays an essential role for our simulations. The

extrapolated gravitational-wave phases are compared with those calculated in the post-Newtonian (PN) and

effective-one-body (EOB) formalisms including corrections of tidal effects. We show that the extrapolated

gravitational-wave phases in numerical relativity agree well with those by the PN and EOB calculations for

most of the inspiral stage except for a tidally dominated, final inspiral stage, in which the PN and EOB

results underestimate the tidal effects. Nevertheless, the accumulated phase difference between our

extrapolated results and the results by the PN/EOB calculations is at most 1–3 radian in the last 15 cycles.
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I. INTRODUCTION

The inspiral and merger of coalescing compact binaries
are among the most promising sources for kilometer-sized
laser-interferometric gravitational-wave detectors [1–3]. A
statistical study based on the stellar evolution synthesis
(e.g., Refs. [4,5]) suggests that detection rate�1–100 yr�1

may be achieved by advanced detectors such as advanced
LIGO [6], advanced VIRGO [7], and KAGRA (LCGT) [8],
which will be in operation in this decade.

One of the key goals after the first detection of gravita-
tional waves from inspiraling black hole–neutron star
(BH-NS) binaries and binary neutron stars (NS-NSs)
achieved in the near future will be to extract binary pa-
rameters such as mass, spin, and radius of each object in
the binary systems. In particular, the mass and quantities
related to the finite size of the neutron star will provide us
the essential information for the equation of state (EOS) of
the neutron-star matter. The mass of two neutron stars will
be determined with a high accuracy & 1%, if the
gravitational-wave signals in the inspiral stage are detected
with the signal-to-noise ratio * 10 [9].

It is more challenging to determine the parameters re-
lated to the finite size of neutron stars. Several methods to
measure such a quantity by observing the gravitational-
wave signals from NS-NS and BH-NS binaries have been
already proposed [10–17]. In particular, extracting the tidal
deformability of neutron stars from the gravitational-wave
signals from NS-NS inspirals is one of the convincing ways
[18]. For realizing this method, one needs to go beyond the
point-particle approximation to model the gravitational
wave form in NS-NS inspirals. In other words, one has to
derive the gravitational wave form in NS-NS inspirals
including tidal effects, which influence the dynamics of
the binary systems in the late inspiral phase (e.g.,
Ref. [19]). When the tidal deformability of a neutron star

can be measured by the gravitational-wave observations,
one can constrain on the neutron-star matter EOS. Once the
neutron-star EOS is known, one also can measure the
relationship between the luminosity distance and the red-
shift of the binary using only the information of the gravi-
tational wave form through the tidal deformation of the
inspiralling neutron stars [20] with more refined detectors
such as the Einstein telescope [21]. Therefore, modeling
the gravitational wave form in NS-NS inspirals including
tidal effects is important not only from astrophysical point
of view but also from the viewpoint of nuclear physics and
cosmology.
For the early stage of NS-NS inspirals (f & 400 Hz), a

post-Newtonian (PN) gravitational-wave form was derived
by Flanagan and Hinderer including the leading-order tidal
effects [18]. It shows that the tidal interaction affects the
evolution of the gravitational-wave phase only through a
single parameter, namely, the tidal deformability of a
neutron star, up to the leading order. They also showed
that the tidal deformability of a neutron star could be
measurable by the advanced gravitational-wave detectors
by using the gravitational-wave signals for 10–400 Hz, if
the tidal deformability of a neutron star is sufficiently large
or if we observe an event with a high signal-to-noise ratio
(see also Ref. [22]).
More recently, focusing on the late stage of NS-NS

inspirals (f > 400 Hz), Damour and his collaborators
[23] explored the measurability of the tidal deformability
with the advanced gravitational-wave detectors. They used
an effective-one-body (EOB) formalism for modeling
the wave form in NS-NS inspirals including tidal effects
up to 2PN order. They concluded that the tidal deform-
ability of a neutron star can be measured by the advanced
gravitational-wave detectors for the gravitational-wave
signals of which the signal-to-noise ratio is higher than
16 for any EOS that satisfies the constraint of the maximum
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mass� 1:97M� [24]. The key assumption of their study is
that the EOB formalism is valid up to the contact point of
the two neutron stars.

In the stage just before the merger, nonlinear hydro-
dynamics effects play a crucial role for the evolution of
NS-NS binaries [25]. In addition, higher-PN tidal correc-
tions may yield a polelike behavior of the tidal interactions
near the last unstable orbit [26].

For better understanding the precise motion and the
wave form in this late inspiral stage, a numerical-relativity
(NR) simulation is probably the best approach (see, e.g.,
Refs. [27–29] for a review of this field). Recently, long-
term simulations for NS-NS inspirals were performed by
three groups [30–32] aiming at the derivation of accurate
gravitational wave forms for the late inspiral stage. Baiotti
and his collaborators performed a NR simulation employ-
ing a �-law EOS and compared the resulting wave forms of
the highest resolution simulation with the analytic models
calculated in the EOB and Taylor T4 formalisms [30,33].
They suggested that the tidal effects might be significantly
amplified by higher-PN tidal corrections even in the early
inspiral phase.

Bernuzzi and his collaborators performed a simulation
with �-law EOS (� ¼ 2, and the compactness of a neutron
star is 0.14) [34,35]. In Ref. [34], they studied the con-
vergence of the numerical results for NS-NS inspirals.
They concluded that the convergence of the simulation is
second order up to contact. They also compared the result-
ing extrapolated wave form with that of the Taylor T4
formalism for the point-particle approximation and for
including the tidal corrections. They found that the accu-
mulated phase difference is about 1.5 radian at contact for a
particular model of the NS-NS binary. In the subsequent
paper [35], they compared the wave form derived by the
highest resolution simulation with the wave form calcu-
lated in the EOB formalism. They found that the EOB
formalism including tidal corrections up to the next-to-
next-to-leading order is currently the most robust way to
describe the wave form of NS-NS inspirals. In addition,
they excluded the huge amplification of the tidal correc-
tions suggested in Ref. [30].

In this paper, we study NS-NS inspirals by NR simula-
tions with three different EOSs and compare the extrapo-
lated NR wave forms with those calculated in the EOB and
Taylor T4 formalisms. Here we extrapolate NR data with a
new extrapolation procedure, the time and phase extrapo-
lation. For studying the dependence of the tidal effects on
the neutron-star matter EOS, we employ a piecewise-
polytropic EOS of Ref. [36], which can approximately
describe the EOS based on nuclear theoretical calculations
and is more realistic than the �-law EOS adopted in
Refs. [30,34,35]. In this paper, (i) we obtain the physical
gravitational-wave phase by extrapolation; (ii) we then
compare the extrapolated wave forms with those of the
analytic models calculated in the Taylor T4 and EOB

formalisms; (iii) we clarify the tidal effects on the
gravitational-wave phase and show the validity of the
analytic modeling in the late inspiral phase.
The paper is organized as follows. In Sec. II, we briefly

review the analytic modeling of gravitational waves emit-
ted from a tidally interacting binary system. In Sec. III,
we summarize the formulation and numerical schemes
employed in our numerical code SACRA, and review the
EOS employed in this study. In Sec. IV, we describe our
method of data analysis of the numerical wave forms, the
radius extrapolation, and the resolution extrapolation. In
Sec. V, we compare the extrapolated gravitational-wave
phase with those derived in the analytic modeling.
Section VI is devoted to a summary. Throughout this paper,
we adopt the geometrical units of c ¼ G ¼ 1 where c and
G are the speed of light and the gravitational constant,
respectively.

II. TIDAL EFFECTS IN A BINARY SYSTEM

In this section, we describe analytic models for the
calculation of gravitational waves emitted from NS-NS
inspirals in close orbits. We briefly summarize the defini-
tion of the tidal deformability of a neutron star, and we give
the PN and EOB descriptions of the tidally interacting
dynamics of close NS-NS binaries.

A. Tidal deformability of a neutron star

In a close binary system for which the separation
between two stars is a few times larger than the stellar
radius, each star is deformed from its hypothetical equilib-
rium shape in isolation due to the tidal fields. Assuming
that neutron stars are spherically symmetric in the zeroth
order, such deformation can be described as the linear
responses of neutron stars to external tidal fields [37–39],
as long as the degree of the tidal deformation is small. In
this linear theory, one assumes that the mass quadrupole
moment of a star Qij is proportional to the external quad-

rupolar tidal fields Eij as

Qij ¼ ��Eij; (1)

where � is the quadrupolar tidal deformability of the star.
This relation is called the adiabatic approximation for the
tidal deformation of a star, which is valid only when the
time scale in the change of the weak tidal field is much
longer than the dynamical time scale of the star. The tidal
deformability is related to the quadrupolar tidal Love
number k2 by

� ¼ 2

3
R5k2; (2)

where R is the radius of the (spherical) star in isolation. For
a given EOS and a central density, one can calculate the
quantities mass, R, k2, and � of neutron stars by solving the
Tolman-Oppenheimer-Volkoff equations and the metric
perturbation equations [37,38].
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B. The post-Newtonian description for the motion
of a tidally interacting binary

The motion of tidally interacting NS-NS binaries in
close orbits is affected by the stellar internal structure.
As long as the degree of the tidal interaction is small, the
correction of this effect can be described only through the
tidal deformability � [40]. The evolution of the orbital
angular velocity in the inspiral of a tidally interacting
binary is described by

dx

dt
¼ Fðx;MA;MB; �A; �BÞ; (3)

where x ¼ ðM!Þ2=3 with ! being the angular velocity of
the binary and M being the total Arnowitt-Deser-Misner
(ADM) mass at the infinite separation. The subscript (A or
B) refers to each component of the binary. The function F
can be decomposed into the following two parts:

F ¼ Fppðx;MA;MBÞ þ Ftidalðx;MA;MB; �A; �BÞ; (4)

where Fpp is the contribution of the point-particle part, and

Ftidal is the contribution associated with the tidal interac-
tions. In this work, we adopt the Taylor T4 approximant for
the Fpp [41],

FT4
pp ¼ 64�

5M
x5
�
1�

�
743

336
þ 11

4
�

�
xþ 4�x3=2 þ

�
34103

18144
þ 13661

2061
�þ 59

18
�2

�
x2 �

�
4159

672
þ 189

8
�

�
�x5=2

þ
�
16447322263

139708800
� 1712

105
�� 56198689

217728
�þ 541

896
�2 � 5605

2592
�3 þ �2

48
ð256þ 451�Þ � 856

105
lnð16xÞ

�
x3

þ
�
� 4415

4032
þ 358675

6048
�þ 91495

1512
�2

�
�x7=2

�
; (5)

where � ¼ MAMB=M
2 is the symmetric mass ratio, and

� ¼ 0:577126 . . . is a Euler’s constant. As shown by Boyle
and his collaborators [41], the evolution of the angular
velocity of the Taylor T4 approximant agrees well with
those of the NR simulations for the inspiral of equal-mass
nonspinning binary black holes up toM!� 0:1. We adopt
the tidal part that is derived by Vines and his collaborators
[40] as follows:

Ftidal ¼ 32MA�B

5M7

�
12

�
1þ11

MA

M

�
x10þ

�
4421

28
�12263

28

MB

M

þ1893

2

�
MB

M

�
2�661

�
MB

M

�
3
�
x11

�
þðA$BÞ: (6)

In particular, for the case of equal-mass binaries, Ftidal is
given by

Ftidal ¼ 52

5M
x10k2C

�5

�
1þ 5203

4368
x

�
; (7)

where C ¼ MA=RAð¼ MB=RBÞ is the compactness of the
neutron star. Although the tidal interaction affects NS-NS
inspirals only at 5PN order, its coefficient is of order 104

for typical neutron stars of radius 10–15 km, k2 � 0:1, and
C� 0:14–0:20, and thus, it plays an important role in the
late inspiral stage.

C. Effective-one-body formalism for the motion
of a tidally interacting binary

The EOB formalism maps the dynamics of two point
particles to the Hamiltonian dynamics of an effective parti-
cle moving in an effective external potential [42–44].
Because the EOB formalism goes beyond the adiabatic
approximation for binary inspirals, it is suitable for describ-
ing the late inspiral stage of a binary, for which the adiabatic

approximation is not very accurate. In this work, we employ
the resummed EOB description that is largely the same as
that in Ref. [45] for the point-particle part and as that in
Ref. [23] for the tidal part.
The EOB effective metric is defined by

ds2eff ¼ �AðrÞdt2 þDðrÞ
AðrÞ dr

2 þ r2ðd�2 þ sin2�d�2Þ; (8)

where ðt; r; �Þ are the dimensionless coordinates and
their canonical momenta are ðpr; p�Þ. We replace the

radial canonical momentum pr with the canonical momen-
tum pr� , where the tortoiselike radial coordinate r� is

defined by

dr�
dr

¼
ffiffiffiffiffiffiffiffiffiffi
DðrÞp
AðrÞ : (9)

Then the binary dynamics can be described by the EOB
Hamiltonian

Ĥrealðr; pr� ; p�Þ ¼ 1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�ðĤeff � 1Þ

q
� 1

�
; (10)

where the effective Hamiltonian is defined by

Ĥeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
r� þ AðrÞ

�
1þ p2

�

r2
þ 2ð4� 3�Þ�p

4
r�
r2

�s
: (11)

The metric component AðrÞ is decomposed into two
parts as

AðrÞ ¼ AppðrÞ þ AtidalðrÞ; (12)

where AppðrÞ is the point-particle part and AtidalðrÞ is asso-
ciated with the tidal effects. The point-particle part up to
the 5PN order is given by
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AppðrÞ ¼ P1
5½1� 2uþ 2�u3 þ a4�u

4 þ a5�u
5 þ a6�u

6�;
(13)

where a4 ¼ 94=3� 41�2=32, u ¼ 1=r, and P1
5 denotes a

(1, 5) Padé approximant. In the definition of AðrÞ, there
are two analytically undetermined parameters ða5; a6Þ,
which correspond to the 4PN and 5PN corrections. Here,
we adopt the values ða5; a6Þ ¼ ðð�5:828� 143:5�þ
477�2Þ�; 184�Þ following Ref. [45].

The tidal part of AðrÞ is given by

AtidalðrÞ ¼
X
l�2

� �lu
2lþ2ÂlðuÞ; (14)

where Âl includes the PN tidal contributions for each
multipole, and �l is its coefficient. This coefficient is
related to the tidal Love number kl and the compactness
of two stars by

�l ¼ 2
MBM

2l
A

M2lþ1

kAl
C2lþ1
A

þ ðA $ BÞ: (15)

In this work, we include only the tidal-interaction part of
the lowest multipole l ¼ 2. Up to the next-to-leading order,

Âl¼2 is given by [46]

ÂðAÞ
l¼2ðuÞ ¼ 1þ �ðAÞ

1 u; (16)

where �ðAÞ
1 ¼ 5MA=2M. The tidal-interaction term up to

the 2PN corrections is currently known, and the coefficient
�2 is larger than�1 [26]. In addition, an analysis in the test-

mass limit (MA � MB) suggests that the tidal part Â
ðAÞ
l¼2 has

the polelike behavior near the last unstable orbit located at
3MB (the light ring orbit). Thus, it is reasonable to expect
that the higher-PN corrections would amplify the tidal
effects. In this work, we employ the resummed version
of the tidal metric including up to the next-to-next-to-
leading order given by [26]

ÂðAÞ
l¼2ðuÞ ¼ 1þ �ðAÞ

1 uþ �ðAÞ
2

u2

1� r̂LRu
; (17)

where

�ðAÞ
2 ¼ 337M2

A=28M
2 þMA=8Mþ 3; (18)

and

r̂LRð�; �2Þ ¼ 3

�
1� 5�

33
þ 4

36
�2 þOð�2; �2�; �

2
2Þ
�

(19)

is the dimensionless radius of the light ring orbit.
For the calculation of the binary orbit, we solve the EOB

Hamilton equations [42–44]

dr

dt
¼ AðrÞffiffiffiffiffiffiffiffiffiffiffiffi

D0
3ðrÞ

q @Ĥreal

@pr�
; (20)

d�

dt
¼ @Ĥreal

@p�

; (21)

dpr�
dt

¼ � AðrÞffiffiffiffiffiffiffiffiffiffiffiffi
D0

3ðrÞ
q @Ĥreal

@r
þ F̂ �

pr�
p�

; (22)

dp�

dt
¼ F̂ �; (23)

where D0
3ðrÞ is a (0, 3) Padé approximant of DðrÞ [45], and

F̂ � is the radiation-reaction force given by

F̂ � ¼ � 1

8��!̂

X8
l¼2

Xl
m¼1

ðm!̂Þ2
��������
R

M
hlm

��������
2

: (24)

Here, !̂ ¼ d�=dt, hlm denote the multipolar wave forms,
and R is the radius of extracting gravitational waves. The
wave forms are described by

hlm ¼ h0lm þ htidal;Alm þ htidal;Blm ; (25)

where h0lm denotes the inspiral and plunge wave form for a

binary black hole of mass MA and MB, and htidal;Alm is the

contribution due to the tidal deformation of star A. In this

work, h0lm is given by Eqs. (13)–(22) of Ref. [45] and htidal;Alm

is basically given by Eqs. (A14)–(A17) of Ref. [23].
Because the 2PN term associated with the tidal effect in
the wave form is currently unknown, we include the con-

tributions of the tidal effect to htidal;Alm up to the 1PN term

even for the case that the next-to-next-to-leading order
term is taken into account in the radial potential.

III. NUMERICAL RELATIVITY SIMULATION

In this section, we briefly describe the formulation and
the numerical schemes of our NR simulation employed in
this work.

A. Evolution and initial condition

We follow the inspiral and merger of NS-NS binaries
using our NR code, called SACRA, for which the details
are described in Ref. [47]. SACRA employs a moving
puncture version of the Baumgarte-Shapiro-Shibata-
Nakamura formalism [48–50] to solve Einstein’s equations
imposing the equatorial symmetry (and � symmetry for
the equal-mass cases). In the numerical simulations, a
fourth-order finite differencing scheme in space and time
is used implementing an adaptive mesh refinement algo-
rithm. At refinement boundaries, a second-order interpola-
tion scheme is partly adopted. The advection terms are
evaluated by a fourth-order noncentered finite differencing
[51]. A fourth-order Runge-Kutta method is employed for
the time evolution. For the hydrodynamics, we employ a
high-resolution central scheme based on the Kurganov
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and Tadmor scheme [52] with a third-order piecewise-
parabolic interpolation and with a steep min—mod limiter.

In this work, we prepare seven refinement levels both for
efficiently resolving two neutron stars by the finest resolu-
tion domains and for extracting gravitational waves in a
local wave zone. More precisely, two sets of four finer
domains comoving with each neutron star cover the region
of their vicinity. The other three coarser domains cover
both neutron stars by a wider domain with their origins
fixed approximately at the center of the mass of the binary.
Each refinement domain consists of the uniform, vertex-
centered Cartesian grids with ð2N þ 1; 2N þ 1; N þ 1Þ
grid points for ðx; y; zÞ with the equatorial plane symmetry
at z ¼ 0 imposed. The half of the edge length of the largest
domain (i.e., the distance from the origin to outer bounda-
ries along each axis) is denoted by L, which is chosen to be
larger than �0, where �0 ¼ �=!0 is the initial wavelength
of gravitational waves and !0 is the initial orbital angular
velocity. The grid spacing for each domain is hl ¼
L=ð2lNÞ, where l ¼ 0–6. In this work, we choose N ¼
60, 54, 48, and 42 for the resolution study. With the highest
grid resolution, the semimajor diameter of each neutron
star is covered by about 100 grid points.

We prepare NS-NS binaries in quasiequilibrium states
for the initial condition of numerical simulations by using a
spectral-method library, LORENE [53]. To track more than
eight orbits, the orbital angular velocity of the initial
configuration is chosen to be M!0 ¼ 0:019 (f ¼ 400 Hz
forM ¼ 2:7M�), whereM� is the solar mass. The neutron
stars are assumed to have an irrotational velocity field,
which is believed to be an astrophysically realistic con-
figuration [54,55]. The parameters for the initial models
are listed in Table I.

B. Equation of state

In this work, we employ a parametrized piecewise-
polytropic EOS proposed by Read and her collaborators
[36]. This EOS is written in terms of four segments of
polytropes

P ¼ Ki	
�iðfor 	i � 	 < 	iþ1; 0 � i � 3Þ; (26)

where 	 is the rest-mass density, P is the pressure, Ki is a
polytropic constant, and �i is an adiabatic index. At each
boundary of the piecewise polytropes, 	 ¼ 	i, the pressure

is required to be continuous, i.e., Ki	
�i

i ¼ Kiþ1	
�iþ1

i . Read
and her collaborators determine these parameters in the
following manner [36]. First, they fix the EOS of the crust
as �0 ¼ 1:357 and K0 ¼ 3:594	 1013 in cgs units. Then
they determine 	2 ¼ 1:85	nucl and 	3 ¼ 3:70	nucl where
	nucl ¼ 2:7	 1014 g=cm3 is the nuclear saturation density.
With this preparation, they choose the following four pa-
rameters as a set of free parameters: fP1;�1;�2;�3g. Here
P1 is the pressure at 	 ¼ 	2, and from this, K1 and Ki are

determined by K1 ¼ P1=	
�1

2 and Kiþ1 ¼ Ki	
�i��iþ1

i .

Therefore the EOS is specified by choosing the four pa-
rameters fP1;�1;�2;�3g. In this work, we choose the three
sets of piecewise-polytropic EOS, APR4 [56], H4 [57], and
MS1 [58], as listed in Table II.
We describe the low-density part of the EOS only with a

single polytrope, because the elastic property of the crust
yields a very small correction to the tidal number [59].
Thus, our approximate treatment for the low-density part is
acceptable.

C. Extraction of gravitational waves

Gravitational waves are extracted by calculating the
complex Weyl scalar �4 [47] from which gravitational
wave forms are determined by

hþðtÞ � ih	ðtÞ ¼ � lim
r!1

Z t
dt0

Z t0
dt00�4ðt00; rÞ: (27)

TABLE I. Key parameters for the initial models adopted in the present numerical simulation. M0 is the sum of the ADM masses of
two neutron stars in isolation; � is the symmetric mass ratio; MADM

0 and JADM0 are the ADM mass and angular momentum of the

system, respectively;M� is the baryon rest mass;!0 is the angular velocity. We also show the setup of the grid structure of our adaptive
mesh refinement algorithm. �x ¼ h6 ¼ L=ð26NÞðN ¼ 60Þ is the grid spacing for the highest resolution domain with L being the
location of the outer boundaries for each axis. N specifies the grid size of the simulation with maximum N ¼ 60. �2 is the parameter
related to the tidal deformability. !contact is the orbital angular velocity at the contact of the two neutron stars (see Sec. VB). Here we
use the unit M� ¼ 1.

Model M0 � MADM
0 JADM0 M� M!0 �x=M �2 M!contact N

APR4 2.7 0.25 2.68 7.65 3.00 0.019 0.0438 62.3 0.151 (42, 48, 54, 60)

H4 2.7 0.25 2.68 7.66 2.94 0.019 0.0560 215 0.112 (42, 48, 54, 60)

MS1 2.7 0.25 2.68 7.67 2.92 0.019 0.0595 332 0.103 (42, 48, 54, 60)

APR4-1215 2.7 0.24691358 2.68 7.28 3.01 0.0221 0.0438 65.8 0.151 (40, 50, 60)

H4-1215 2.7 0.24691358 2.68 7.56 2.94 0.019 0.0560 207 0.114 (40, 50, 60)

TABLE II. Parameters of the piecewise-polytropic EOS, the
compactness, and the tidal Love number of the neutron star of
mass 1:35M�.

EOS logP1ðdyne=cm2Þ �1 �2 �3 Cð1:35Þ k2ð1:35Þ
APR4 34.269 2.830 3.445 3.348 0.179 0.091

H4 34.669 2.909 2.246 2.144 0.146 0.115

MS1 34.858 3.224 3.033 1.325 0.138 0.133
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Here we omit arguments � and �. In the spherical coor-
dinate ðr; �; �Þ, �4 can be expanded in the form

�4ðt; r; �;�Þ ¼ X
lm

�lm
4 ðt; rÞ�2Ylmð�;�Þ; (28)

where �2Ylm are spin-weighted spherical harmonics of

weight �2 and �lm
4 are expansion coefficients defined by

this equation. In this work, we focus only on the ðl; jmjÞ ¼
ð2; 2Þmode. The gravitational-wave phase�NR is defined by

�22
4 ðt; rÞ ¼ A22ðt; rÞei�NRðt;rÞ; (29)

where A22 denotes the amplitude and it is real. We evaluate
�4 at a finite spherical-coordinate radius r=M� ¼ 200, 240,
300, and 400. To compare the wave forms extracted at
different radii, we use the retarded time defined by

tret ¼ t� r�: (30)

Here, r� is the tortoise coordinate defined by

r� ¼ rA þ 2M ln

�
rA
2M

� 1

�
; (31)

where rA ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
A=4�

p
with A being the proper surface area of

the extraction sphere.

IV. DATA ANALYSIS OF NUMERICAL-
RELATIVITY SIMULATIONS

The extrapolation with respect to the extraction radius
and grid resolution plays a key role to obtain the physical
wave forms in NS-NS inspirals from the results of NR
simulations. Here, we focus in particular on deriving the
accurate gravitational-wave phase by extrapolation because
it carries the most important information in the matched
filtering for data analysis. Thus, the goal of this section is to
construct the extrapolated gravitational-wave phase.

A. Extrapolation to infinity

Because gravitational waves are extracted at finite radii,
the extracted wave form does not fully agree with the
wave form at infinity. For obtaining the hypothetical
gravitational-wave phase at infinity, we first need to esti-
mate the error due to the finite-radii extraction and then
to extrapolate the gravitational-wave phase to infinity. For
this purpose, we assume that the gravitational-wave phase
is described by a polynomial [41],

�ðtret; rÞ ¼ �ð0ÞðtretÞ þ
Xs
i¼1

�ðiÞðtretÞ
ri

: (32)

Here, �ð0ÞðtretÞ is considered to be the gravitational-wave
phase extrapolated at r ! 1, and (sþ 1) is the number of
extraction radii used. We determine it by extrapolating the
gravitational-wave phases extracted at r=M� ¼ 200, 240,
300, and 400.
Figure 1 shows the differences among the hypothetically

extrapolated gravitational-wave phases at infinity obtained
by different numbers of extrapolation radius, s. The curves
labeled by 1–3ð¼ s� 1Þ in Fig. 1 denote the differences
between a radius-extrapolated gravitational-wave phase
with the (s� 1)th order polynomial and that with the sth
order one. Here, we set the phase difference to be zero at
the merger. Note that the difference between the (s� 1)th
and sth order extrapolated gravitational-wave phases
accumulates mainly just after the contact of the two stars
and its value is less than about 0.5 radian. In this paper, we
do not pay attention to the gravitational-wave phase after
contact of the two stars. As shown in the next subsection,
furthermore, this accumulated gravitational-wave phase
difference of the radius extrapolation is much smaller
than the magnitude of other error sources. Therefore, in
this paper, we neglect the phase error associated with the
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finite-radius extraction and use the resolution-extrapolated
gravitational-wave phase with the extracted radius
r=M� ¼ 400 as the extrapolated wave phase. We note,
however, that in a high-resolution study, the error associ-
ated with the finite-radius extraction could be comparable
to or smaller than the error due to the finite grid resolution.

B. Extrapolation to infinite resolution

A NR wave form is derived as a solution of discretized
Einstein’s equations and hydrodynamics equations.
Associated with the finite differencing, a truncation error is
yielded. For the purpose of comparing the NR wave form
with the PN and EOB wave forms, we have to obtain a
hypothetically physical wave form by extrapolating the
NR wave form obtained in the finite grid resolution for the
limit of the infinite grid resolution. The order of the conver-
gence of ourNRsimulationwith respect to the grid spacing is
found to be about 1.8. Because the order of the convergence
has an uncertainty, we conservatively assume that the order
of the convergence is 1:8
 0:2 in the following.

For understanding the convergence property of the nu-
merical results, we check the convergence for the evolution
of the gravitational-wave frequency performing simula-
tions with four different grid resolutions (see Fig. 2 for
gravitational-wave angular velocity). Here, we refer to the
data for N ¼ ð42; 48; 54; 60Þ as (A, B, C, D). Although the
gravitational-wave frequencies agree with each other at
tret ¼ 0, their subsequent evolution disagrees with each
other. Obviously, the gravitational-wave frequency in the
lower grid resolution evolves more rapidly than that in the
higher grid resolution. The rapid evolution for the lower
resolution simulations may be ascribed to larger numerical
dissipation of the angular momentum.

However, one can find the similarity among four curves
of the gravitational-wave frequency for the different grid
resolutions and this enables us to obtain an extrapolated
wave form. To show this similarity, we normalize the time
variable by using the time at the onset of the merger, which
is defined by tmð�xÞ ¼ tj!max

ð�xÞ:

t ! ~tðtÞ ¼ t

�ð�xÞ : (33)

Here,�ð�xÞ ¼ tmð0Þ=tmð�xÞ,�x is the grid spacing of the
simulation ( / N�1), and tmð0Þ is the extrapolated merger
time. For obtaining the extrapolated merger time, we
assume that the merger time as a function of grid resolu-
tions is described by a binomial

tmð�xÞ ¼ tmð0Þ þ Kð�xÞn; (34)

where tmð0Þ, n, and K are constants that are determined
by the least-square fitting method. We find that the
best fitted value of n is � 1:8 with a dispersion � 0:2,
and thus, we set the order of the convergence n to
be 1:8
 0:2. The resulting fitted values for n ¼
ð1:6; 1:8; 2:0Þ are tmð0Þ ¼ ð2521M; 2452M; 2397MÞ for
APR4, tmð0Þ¼ð2391M;2274M;2238MÞ for H4, and tm¼
ð2145M;2145M;2091MÞ for MS1.
We define the rescaled gravitational-wave frequency by

~!ðt;�xÞ � !ð~tðtÞ;�xÞ: (35)

The evolution curves of the rescaled gravitational-wave
frequency ~! for the different grid resolutions agree with
each other, as shown in the upper two panels of Fig. 3
(here, we set n ¼ 1:8). The differences among the rescaled
gravitational-wave frequencies of the different grid reso-
lutions are within �10% for APR4 and �5% for H4, as
shown in the lower panels of Fig. 3. Therefore, we con-
clude that the numerical results for the gravitational-wave
frequency (angular velocity) is written in the form

~!ðt;�xÞ ¼ ~!ðt; 0Þ þ!rðt;�xÞ; (36)

where !rðt;�xÞ is a function that depends on the grid
resolution, which should have been eliminated systemati-
cally by extrapolation. However, because the value of
!rðt;�xÞ randomly fluctuates, it cannot be eliminated by
extrapolation at each given moment. Thus, the extrapolated
gravitational-wave frequency can be only approximately
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obtained by simply rescaling the time variable of the
simulations.

We proceed to extrapolate the rescaled gravitational-
wave phase, which will be compared with the
gravitational-wave phases derived in the PN and EOB
approaches in the next section. We define the rescaled
gravitational-wave phase as

~�ðt;�xÞ �
Z t

0
~!ðt0;�xÞdt0: (37)

Substituting Eq. (35) into this equation yields

~�ðt;�xÞ ¼ �ð�xÞ�ð~t;�xÞ; (38)

and combining Eqs. (36) and (37) yields

~�ðt;�xÞ ¼ ~�ðt; 0Þ þ
Z t

0

ðt0;�xÞdt0; (39)

where ~�ðt; 0Þ is the extrapolated gravitational-wave phase.
Assuming the second term in the right-hand side of this
equation can be described as �rðtÞ�xn, we obtain

�ð�xÞ�ð~t;�xÞ ¼ ~�ðt; 0Þ þ�rðtÞ�xn: (40)

Here ~�ðt; 0Þ and �rðtÞ are functions that are determined by
the least-square fitting of the numerical data �NRð~t;�xÞ.

We again set the order of the convergence n to be
1:8
 0:2. Figure 4 shows the evolution curves of the
extrapolated gravitational-wave phase for the different
EOS.
The differences in the rescaled gravitational-wave phase

~�NRðt;�xÞ obtained for runs with the different grid reso-
lutions and the extrapolated gravitational-wave phase
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~�ðt; 0Þ for n ¼ 1:8 are shown in Fig. 5. The accumulated
difference between the extrapolated gravitational-wave
phase and that of the highest grid resolution at the onset
of the merger is�8 radian radian for APR4 and�3 radian
for H4. These values imply that the simulation for the
neutron star that has the larger radius is relatively well
convergent. These phase differences are much larger than
the possible error in the gravitational-wave phase associ-
ated with the finite-radius extraction, & 0:5 radian. Thus,
we conclude that the resolution extrapolation of the
gravitational-wave phase is essential to construct the
extrapolated physical wave form for our current NR
simulations. The lower panels in Fig. 5 show the differ-
ence between the gravitational-wave phase of the resolu-

tion D, ~�NRðt;�xDÞ, and the one that is obtained by
extrapolating the gravitational-wave phase of the resolu-

tions A, B, and C to the resolution D, ~�ðt;�xDÞ. The
difference �� is within 0.15 radian up to the merger.
Here, this error is caused mainly by a modulation
associated with an unphysical orbital eccentricity. The
upper panels of Fig. 6 show the evolution curves of the
extrapolated gravitational-wave phase for the different
choice of n.

For the brief check of the validity of the extrapolation,
we calculate the dispersion �ðtÞ of the extrapolation as

�ðtÞ2 ¼ 1

NR

XNR

i¼1

ð ~�ðt;�xiÞ � ~�NRðt;�xiÞÞ2; (41)

where ~�NRð~t;�xiÞ is the rescaled gravitational-wave phase
of the numerical data, i ¼ 1� NR denote the numerical
run with the different grid resolutions, e.g., N ¼
ð42; 48; 54; 60Þ, and NR is the total number of them, e.g.,
NR ¼ 4. As shown later, the value of the dispersion is in the
range 0.01 radian (in the early part) to 0.4 radian (just
before the merger). We regard this dispersion as an error
due to the resolution extrapolation. Hereafter we use only
the extrapolated quantities and omit the tilde of them.

V. COMPARISON OF THE NRWAVE PHASE WITH
THE PN AND EOB WAVE PHASES

A. Matching procedure

In the analysis, we first match an early part of the
gravitational-wave phase obtained by extrapolating NR
results, �NRðtÞ, with that of the analytic ones, �PNðtÞ
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(the wave phase derived in the PN calculation) and�EOBðtÞ
(the wave phase derived in the EOB calculation), by min-
imizing the following quantity:

Z t2

t1

ð��ðtÞÞ2dt¼
Z t2

t1

ð�NRðtÞ��PN=EOBðt�tsÞ��sÞ2dt;

(42)

where �s and ts are the fitting parameters. The initial
and final time of the integral, t1 and t2, are chosen as
follows. As shown in the previous section, the curve of
the extrapolated gravitational-wave phase obtained from
the results of NR simulations has a small modulation due
to the orbital eccentricity. Thus, ðt1; t2Þ are chosen to cover
a range between two adjacent local maxima or local min-
ima of the curve in an early part of the gravitational-wave
phase. This choice of the matching region allows us to
match the gravitational-wave phase numerically obtained
with the PN/EOB phases smoothly using the least-square

fitting. Here, we choose the two adjacent local minima
as the matching boundaries as follows: ðt1; t2Þ ¼
ð583M; 1030MÞ for APR4 (which corresponds to M! 2
½0:042: 0:048�), ðt1; t2Þ ¼ ð550M; 1000MÞ for H4 (which
corresponds to M! 2 ½0:042: 0:046�), and ðt1; t2Þ ¼
ð550M; 960MÞ for MS1.

B. Comparison

We compare �NR with �PN and �EOB which are calcu-
lated in several levels of the approximation. The middle
panels of Fig. 6 show the difference between �NR and
�EOB in which tidal effects up to the next-to-leading order
are included. The error bars show the dispersion associated
with the least-square fitting in the extrapolation procedure,
which is defined by Eq. (41). The three curves show the
gravitational-wave phase difference for the three assumed
orders of the convergence n ¼ ð1:6; 1:8; 2:0Þ. The phase
differences are modulated with an amplitude about
0.4 radian due to the unphysical orbital eccentricity.
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We regard this modulation as a systematic error, which is
denoted by the horizontal dashed lines. For comparison, we
also plot the gravitational-wave angular velocity evolution
in the bottom of Fig. 6. Figures 7–9 show the difference
between �NR and �PN=EOB which are calculated in several

levels of the approximation.
In the early stage of the inspiral, i.e., before the

time tret=M & 1500ðM! & 0:054Þ for APR4, tret=M &
1300ðM! & 0:05Þ for H4, and tret=M & 1200ðM! &
0:049Þ for MS1, we find that �NR is consistent with �PN

and�EOB for any levels of the approximation. In this stage,
the point-particle approximation works well and the PN
and EOB approaches appear to describe NS-NS inspirals
well even if tidal effects are not taken into account. It is
difficult to verify a clear signature of the tidal effects in
this early stage due to the modulation of the numerical data
and the weakness of the tidal effects.

After the early stage of the inspiral, the binary system
proceeds to a tidally dominated inspiral phase where the
tidal interaction becomes strong. In this late inspiral stage,
one can see that the difference between �NR and �PN=EOB

gradually increases.�NR is larger than�PN=EOB for a given

moment, implying binaries in NR simulations evolve faster
than those in the PN and EOB calculations.
After the time tret=M� 2300ðM!� 0:09Þ for APR4,

tret=M� 2100ðM!� 0:08Þ for H4, and tret=M�
1950ðM!� 0:075Þ for MS1, the difference between �NR

and �EOB rapidly increases with increasing time. This cor-
responds to the transition from the inspiral to the plunge.
The orbital angular velocity when two neutron stars come
into contact, M!contact, is approximately defined by [23]

M!contact ¼ 2

�
MA

M

1

CA

þMB

M

1

CB

��3=2
: (43)

At the moment of this contact, the accumulated
gravitational-wave phase difference between �NR and
�EOB including the tidal effects up to the next-to-leading
order is�3:3 radian (2.5%) for APR4, �1:9 radian (1.7%)
for H4, and�2:1 radian (2.0%) for MS1. If the correction is
up to the next-to-next-to-leading order, the phase difference
is �2:6 radian (2.0%) for APR4, �1:4 radian (1.3%) for
H4, and �1:1 radian (1.1%) for MS1. We find that the
EOB approach including the tidal effects up to the next-to-
next-to-leading order yields currently the best model for
the late stage of NS-NS inspirals. However, the tidal effects
are still underestimated for the final inspiral orbit even for
the best model of the analytic approaches. Thus, for con-
structing better wave forms in NS-NS inspirals, this rapid
evolution of the gravitational-wave phase should be taken
into account.
We compare our results of MS1, of which the compact-

ness is C ¼ 0:138, with the results of Ref. [34], for which a
neutron star with C ¼ 0:14 is employed. Both results show
that the difference between the extrapolated gravitational-
wave phase of NR and that of T4 without tidal effects is
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about 3 radian at contact (M!� 0:1), in the case that the
alignment is performed after the first orbit [34]. Therefore
our results are consistent with the results of Ref. [34].

Figures 10 and 11 show the snapshots of the density
contour of NS-NS inspirals for APR4 and H4. Here we
focus on Fig. 11 as an example. The upper left panel of
Fig. 11 plots the density profile of the binary at an early
inspiral stage. At this time, the neutron stars have a spheri-
cal shape. The ellipticity of the neutron star, which is
defined by the ratio of the semimajor axis a1 to the semi-
minor axis a2 of the star on the equatorial plane, is ap-
proximately unity.

The upper right panel of Fig. 11, at M! ¼ 0:056, plots
the configuration of the binary at which the tidal effects
seem to be small but cannot be neglected. For this plot, the

ellipticity of the star is �1:05. After this time, the binary
system proceeds to the tidally dominated inspiral phase. In
the lower left panel of Fig. 11, two neutron stars are
obviously deformed due to the strong tidal fields; the
ellipticity of the neutron star is �1:17. The snapshot
around the plunge is shown in the lower right panel of
Fig. 11. Soon after the onset of the plunge, the two neutron
stars contact and the ellipticity is �1:23. In addition, one
can see the appearance of the dynamical tidal lag. It
appears even in the absence of viscous dissipation, because
the shape of the star cannot follow the rapid change of the
tidal potential (see, e.g., Ref. [60]). Therefore, the adia-
batic approximation for the tidally induced quadrepole
moment determined by Eq. (1) breaks down after the
appearance of the dynamical tidal lag.

FIG. 10 (color online). Snapshots of the orbital-plane density profile of NS-NS binaries in close orbits for APR4. The color denotes
the density between 1010 g=cm3 and 1015:25 g=cm3 in units of log	ðg=cm3Þ. The solid contour lines (i ¼ 1–4) denote the equidensity
lines for 	 ¼ 1015:25�0:5i g=cm3.
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FIG. 11 (color online). The same as Fig. 10 but for H4. The color denotes the density between 1010 g=cm3 and 1015 g=cm3 in units of
log	ðg=cm3Þ. The solid contour lines (i ¼ 1–4) denote the equidensity lines for 	 ¼ 1015�0:5i g=cm3.
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FIG. 12 (color online). Difference between �NR and �PN=EOB for APR4-1215 (left panel) and for H4-1215 (right panel). Here we
choose n ¼ 1:8.
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We also note that the ellipticity of the neutron star
rapidly increases after the stage at M! ¼ 0:056. This
evolution of the ellipticity is consistent with the semian-
alytic, Newtonian results [25]. Note that the value of the
ellipticity defined here depends on the coordinate system.
We here assumed that the coordinate distortion is small
because of our choice of the spatial gauge condition.

Finally, we show the difference between the extrapo-
lated gravitational-wave phase and the gravitational-wave
phase derived in the PN and EOB approaches for unequal-
mass systems APR4-1215 and H4-1215; see Fig. 12. Here,
we choose the matching region ðt1; t2Þ ¼ ð520M; 1020MÞ
for APR4-1215 and ðt1; t2Þ ¼ ð600M; 1080MÞ for H4-1215.
This figure shows that the feature of the curves for the
unequal-mass system is qualitatively the same as those of
the equal-mass system, and the magnitude of the phase
difference between �NR and �PN=EOB is also as large as

that for the equal-mass case.

VI. CONCLUSION

We have explored the property of gravitational waves
emitted in the late stage of NS-NS inspirals. To derive the
physical wave form from numerical data obtained by NR
simulations, we carefully performed the radius and reso-
lution extrapolation of the wave forms. Then, we found the
resolution extrapolation is crucial in our present study.
Specifically, the accumulated difference between the
gravitational-wave phase in the highest grid resolution
run and the resolution-extrapolated gravitational-wave
phase is �8 radian for APR4 and �3 radian for H4.
These values imply that the simulation for the NS-NS
inspiral with more compact neutron stars has worse con-
vergence. For the simulation with more compact neutron
stars, one needs to perform a higher resolution simulation
to derive an accurate wave form. Therefore, a sophisticated
procedure for the extrapolation is needed to derive an
accurate wave form for compact neutron stars. We found
that the time rescaling is a robust prescription for deriving
the resolution-extrapolated gravitational-wave phase �NR.

We have compared �NR with �PN=EOB, which are de-

rived from the Taylor T4 approximant of the PN formalism
and the EOB formalism. Both of the analytic approaches
are capable of including the tidal effects. We found
that �NR is consistent with �PN=EOB in the early part of

the inspiral. On the other hand, in the very late part of
the inspiral, �NR evolves more rapidly than �PN=EOB. The

EOB approach including the tidal corrections up to the
next-to-next-to-leading order is currently the best approach
for describing the late stage of NS-NS inspirals. However,
the estimated accumulated difference between �NR and
�EOB is �2:6 radian for APR4, �1:9 radian for H4, and
�1:1 radian for MS1 at the moment of contact of the two
neutron stars. We conclude that the tidal effects are still

underestimated in the EOB approach including the tidal
corrections up to the next-to-next-to-leading order. We also
found that this result is independent of the EOS and mass
ratio.
Here we make a comparison of our results with the

earlier results. We find the absence of the large amplifica-
tion of the tidal effects in the early inspiral phase suggested
in Ref. [30], if the resolution extrapolation is taken into
account. In the late inspiral phase, the amplification of
the tidal effects is observed. This agrees with the earlier
results [30,34]. In particular, for the MS1 (C� 0:14), the
value of the phase difference between the extrapolated
gravitational-wave phase and that of Taylor T4 without
tidal effects is consistent with the results of Ref. [34],
which employed the neutron star with C ¼ 0:14.
For extracting the tidal deformability of a neutron star

efficiently and faithfully from a signal of gravitational
waves, one has to prepare a theoretical template of gravi-
tational waves that should be accurate enough up to the
onset of the merger. Our present study suggests that the
EOB approach including up to the next-to-next-to-leading
order tidal correction yields currently the best result.
However, for the final orbit, there is still room for the
improvement. In the current prescription for incorporating
the tidal effects, the adiabatic approximation is assumed
for the tidal deformation. For the very close orbits, how-
ever, this approximation breaks down; for example, the
presence of the dynamical tidal lag (which is seen in
Figs. 10 and 11) cannot be reproduced. If a more sophis-
ticated formalism in which such effects are taken into
account can be developed, the accuracy of the analytic
modeling could be improved.
There is also the issue on the side of numerical relativity.

For constructing an analytic model of the gravitational
wave form in NS-NS inspirals with a high accuracy, one
always calibrates the model wave form by comparing it
with the NR result. This implies that a high-accuracy
numerical wave form is necessary. To achieve a high
accuracy, one needs to perform more accurate simulations
than the present ones. One of the keys for improving the
accuracy is to reduce the orbital eccentricity in the future.
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