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Black hole-neutron star binary mergers display a much richer phenomenology than black hole-black

hole mergers, even in the relatively simple case—considered in this paper—in which both the black hole

and the neutron star are nonspinning. When the neutron star is tidally disrupted, the gravitational wave

emission is radically different from the black hole-black hole case and it can be broadly classified in two

groups, depending on the spatial extent of the disrupted material. We present a phenomenological model

for the gravitational waveform amplitude in the frequency domain that encompasses the three possible

outcomes of the merger: no tidal disruption, ‘‘mild,’’ and ‘‘strong’’ tidal disruption. The model is

calibrated to general relativistic numerical simulations using piecewise polytropic neutron star equations

of state. It should prove useful to extract information on the nuclear equation of state from future

gravitational-wave observations, and also to obtain more accurate estimates of black hole-neutron star

merger event rates in second- and third-generation interferometric gravitational-wave detectors. We plan

to extend and improve the model as longer and more accurate gravitational waveforms become available,

and we will make it publicly available online as a MATHEMATICA package. We also present in the

Appendix analytical fits of the projected KAGRA noise spectral density, which should be useful in data

analysis applications.
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I. INTRODUCTION

Numerical relativity has made impressive strides in the
past couple of decades. Several research groups can now
simulate the late inspiral and merger of compact binaries,
which are the main target for second- and third-generation
gravitational-wave (GW) detectors, such as Advanced
LIGO/Virgo [1], KAGRA [2,3], LIGO-India [4] and the
Einstein Telescope [5]. These systems are composed of
either black holes (BHs) or neutron stars (NSs), and they
belong to three families: BH-BH, NS-NS, and BH-NS
binaries. In general, the calculations are resource intensive
and time consuming, so fully numerical simulations cover-
ing many cycles and spanning the whole parameter space
of these binaries—including masses, spins, nuclear equa-
tion of state (EOS), etc.—are still beyond the reach of
present-day computers.

For this reason, semianalytical waveform models are
necessary to bridge the gap between the early inspiral
(where the binary dynamics can be treated via perturbative
methods) and themerger phase. Analyticalmodels covering
the full inspiral and merger have several applications. First
and foremost, they can be used to reduce the computational
cost of building GW detection templates. The community

has engaged in large-scale efforts, such as the NINJA/
NINJA-2 and NRAR collaborations [6–8], to optimize
the task of injecting waveforms in detector data and of
constructing matched-filtering templates. Semianalytical
merger models are also valuable to improve event rate
estimates, which are currently based on rather rough
approximations to the actual binary waveforms [9,10]:
see e.g. [11,12] for preliminary efforts in this direction.
Last but not least (and more ambitiously), semianalytical
models incorporating the characteristic signatures pre-
dicted by numerical merger simulations may prove useful
to constrain the properties of compact binaries. For
example, Read et al. [13,14] analyzed general relativistic
simulations of NS-NS mergers to show that EOS informa-
tion can be extracted (at least in principle) from departures
from the point-particle limit of the gravitational waveform
produced during the late inspiral. Bauswein et al. [15]
used a three-dimensional relativistic smoothed-particle
hydrodynamics code to demonstrate a correlation between
the NS radii and the peak frequency of the postmerger
GW signal from NS-NS mergers. Finally, Lackey et al.
[16,17] recently studied GW constraints on the NS EOS
for BH-NS binaries using a Fisher matrix analysis of
‘‘hybrid waveforms’’ obtained by combining either post-
Newtonian (PN) or effective-one-body (EOB) models with
numerical waveforms.
With few exceptions (see e.g. [12]), event rate estimates

for advanced GW detectors using population synthesis

*francesco.pannarale@aei.mpg.de
†berti@phy.olemiss.edu
‡kyutoku@uwm.edu
§mshibata@yukawa.kyoto-u.ac.jp

PHYSICAL REVIEW D 88, 084011 (2013)

1550-7998=2013=88(8)=084011(21) 084011-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.88.084011


calculations and models of GW backgrounds from com-
pact binaries rely on very simple approximations for the
gravitational waveforms [10,18–21]. An implementation
of more complex models, such as the one developed here,
could potentially allow us to use GWobservations to better
understand the astrophysical formation scenarios leading
to compact binary formation, and perhaps to constrain the
nuclear EOS. For BH-NS binaries, this may be achieved
through comparisons between the observed GW cutoff
frequencies and those predicted by the models.

It is fair to state that semianalytical models and numeri-
cal simulations are most advanced for BH-BH systems.
Phenomenological waveform models spanning inspiral,
merger, and ringdown (IMR) were initially proposed by
Ajith et al. for nonspinning binaries [22–24], and later
extended to spinning, nonprecessing binaries [25]. The
original (nonspinning) and improved (spinning) versions
of this model are sometimes referred to as ‘‘PhenomA’’
[23] and ‘‘PhenomB’’ [25], or alternatively as ‘‘PhenV1’’
and ‘‘PhenV2’’: see e.g. [26]. An upgraded version of these
models was subsequently proposed by Santamarı́a et al.
[27]: this last model is sometimes called ‘‘PhenomC’’ or
‘‘PhenV3,’’ and it has the important feature of reducing by
construction to the correct PN limit in the early inspiral.
Progress in tuning the EOB model to numerical BH-BH
simulations has also been remarkable: see e.g. [28,29] for
the latest incarnations of these models, and [26,30] for
comparisons between waveforms of the EOB and
PhenomX (X ¼ A, B, C) families.

Phenomenological BH-BH waveforms have been exten-
sively used in parameter estimation studies. PhenomX
waveforms were used in data analysis applications for
both Earth-based [31] and space-based detectors [32–35].
Systematic errors in parameter estimation are likely to be
important, but there are relatively few studies in this di-
rection. For example, PN waveforms were used to quantify
errors in estimating full IMR PhenomAwaveform parame-
ters in [36], while systematic errors of EOB models in the
LISA context were investigated in [37]. Parameter estima-
tion accuracy and systematic errors depend mostly on GW
phasing, which relies on long and accurate simulations.
Such long and accurate simulations are particularly hard to
achieve for compact binaries containing NSs. For NS-NS
or BH-NS binaries (unlike BH-BH binaries) the outcome
of the merger depends on several physical assumptions
(e.g. on the nuclear EOS, magnetic fields, neutrino emis-
sion, and so on) that are currently poorly constrained by
laboratory experiments and astrophysical observations.
General relativistic simulations of NS-NS mergers, how-
ever, have been studied for a long time, and they are now
long and accurate enough to be compared with analytical
models (see [38] for a review on the current status of
studies of coalescing binary NSs). These studies hold the
promise to constrain the EOS of matter at supranuclear
densities, e.g. via the measurement of tidal deformation

parameters: see e.g. [13,14,39–42] for recent work in this
area, with particular attention to gravitational waveform
accuracy.
For BH-NS systems, present simulations are compara-

tively short. Difficulties arise because BH-NS binaries
are expected to have relatively large mass ratio, which
causes complications for both analytical and numerical
approaches (see [43] for a review on the current status of
studies of coalescing BH-NS systems). For typical values
of the BH-NS mass ratio, the convergence of the PN
approximation is expected to be slower than in the
NS-NS case (see e.g. [44] for a systematic study in the
context of initial data). On the other hand, numerical codes
must track very different dynamical time scales, making
simulations heavily resource intensive (see e.g. [45–47] for
investigations on the impact of the BH spin, the NS EOS,
and realistic mass ratios on the gravitational wave emis-
sion). Recent investigations [48,49] studied the impact of
precession and of different PN approximants on the detec-
tion of BH-NS binary inspirals. The state of the art for
gravitational waveform modeling includes an attempt to
incorporate higher harmonics in the inspiral signal [50],
and recent work (involving some of us) on the construction
of hybrid waveforms to measure EOS parameters from
BH-NS mergers [17].
An important caveat in building phenomenological mod-

els is that, with few recent exceptions [47], BH-NS simu-
lations are generally too short to guarantee accurate phasing
estimates in the whole parameter space.1 Therefore, in this
paper we adopt a conservative approach and focus on the
analytical modeling of the GW amplitude in the frequency
domain. For consistency and continuity with previous stud-
ies, we find it convenient to build our GWamplitude model
on the foundations of the BH-BH PhenomC model [27].
Additional parameters needed to reproduce the complex
phenomenology of BH-NS systems are introduced and
tuned using the simulations reported in [16,52]. Our main
interest here is to reproduce the high-frequency behavior of
the GW spectrum reported in these simulations, wheremost
of the interesting EOS-related phenomenology takes place.
Wewill show that our model is useful to improve signal-to-
noise-ratio (SNR) estimates for BH-NS systems (which
depend only on the GWamplitude in the frequency domain)
and to obtain estimates of the cutoff frequency of themerger
signal—a potentially measurable quantity—in different
physical scenarios. The model can (and will) be improved
as longer, more accurate simulations become available. We
note that the knowledge of the amplitude alone allows one

1For example, Hannam et al. [51] studied the minimum
number of numerical waveform cycles that are necessary to
ensure an accurate phase and amplitude modeling in the case
of BH-BH binaries: this number grows with the binary mass
ratio, i.e. towards a more BH-NS like scenario. Issues in building
hybrid (PN/EOB-numerical) GWs for BH-NS and NS-NS bi-
naries are discussed in [14,17], respectively.
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to estimate the best possible SNR, and that this best possible
SNR may be realized in searches only if the phase of the
waveform is known too.

The plan of the paper is as follows. In Sec. II we
anticipate our main results and provide a concise recipe
to implement our model. Section III reviews the numerical
simulations used to calibrate and verify the model, and
Sec. IV illustrates the logic we followed to build the BH-
NS model upon the BH-BH PhenomC model. In Sec. V we
compare our model of GW spectra with all binaries for
which we have numerical data, in order to validate it and
test its accuracy. In Sec. VI we compare SNRs obtained for
BH-NS binaries when using our model, the PhenomC
model, and the commonly employed restricted PN ap-
proximation. We use different noise curves and conclude
that, while the use of numerical waveforms can induce
SNR corrections as large as �10% with respect to the
‘‘standard’’ restricted PN approximation, BH-BH phe-
nomenological models are accurate enough to compute
the SNR even when used to model (nonspinning) BH-NS
mergers. In Sec. VII we use our model to compute the
cutoff frequency of the merger signal in the three different
physical scenarios (no tidal disruption, mild tidal disrup-
tion, and strong tidal disruption). These results could find
application in theoretical calculations of tidal disruption,
which in turn can be used to assess the detectability of
EOS effects in BH-NS mergers. Appendix A clarifies the
relation between different conventions on the waveform
amplitude used in the literature. Finally, Appendix B
provides (to our knowledge, for the first time) analytical
fits to different proposed KAGRA noise curves [3].
Throughout the paper, unless specified otherwise, we use
geometrical units (G ¼ c ¼ 1).

II. EXECUTIVE SUMMARY OF THE
INSPIRAL-MERGER-RINGDOWN MODEL

We begin this paper by summarizing our model for the
frequency-domain GW amplitude. This section is essen-
tially a step-by-step recipe to facilitate the implementation
(and possibly improvement) of the model in SNR calcu-
lations and data analysis codes. We begin by reviewing the
BH-BH PhenomC construction, and then list the modifica-
tions of PhenomC that are necessary in order to reproduce
the more complex phenomenology of nonspinning BH-NS
mergers. For the purpose of computing SNRs, one may
use fewer parameters than those used in our model
(Section VI). However our goal here is to reproduce the
rich phenomenology of BH-NS mergers and to predict the
cutoff frequency. In this paper we introduce the minimum
number of parameters that we found to be necessary for
this purpose. Note that we could have followed the
PhenomC construction step by step, thus reabsorbing all
of our additional parameters in the fit of the PhenomC
model. We chose, however, not to follow this approach,
and to show our ‘‘BH-NS corrections’’ explicitly.

A. The black hole-black hole merger model

The BH-BH PhenomCwaveforms of [27] are built in the
frequency domain, which is particularly convenient for
SNR calculations. In this section, unless otherwise noted
and in accordance with the conventions of [27], all frequen-
cies are to be intended asmultiplied by the summ0 ¼ M1 þ
M2 of the two initial BH masses (in other words, we are

using units inwhichm0 ¼ 1). The amplitude ~APhenðfÞ of the
frequency-domain signal ~hPhenðfÞ ¼ ~APhenðfÞei�Phen is split
in a sum of two terms:

~APhenðfÞ ¼ ~APMðfÞw�
f0;d

ðfÞ þ ~ARDðfÞwþ
f0;d

ðfÞ: (1)

Here ~APMðfÞmodels the inspiral and premerger amplitude,
and in turn it is decomposed in a sum of the form

~APMðfÞ ¼ ~APNðfÞ þ �1f
5=6; (2)

where the first term is a PN inspiral contribution
(the coefficients of which are collected in the Appendix of
[27]), and the second term is intended to model premerger
(strong-field) modifications to the PN inspiral. The ampli-
tude �1 of this second contribution is fitted to BH-BH
hybrid waveform data.
The second term of Eq. (1),

~ARDðfÞ ¼ �1Lðf; fRDð�f ; m0Þ; �2Qð�fÞÞf�7=6; (3)

is the ringdown amplitude, modeled with a Lorentzian
Lðf; f0; �Þ � �2=½ðf� f0Þ2 þ �2=4�. The ringdown am-
plitude, �1, is fitted to BH-BH hybrid waveform data,
and so is �2, which accounts for inaccuracies in the fit
(taken from [53]) used to calculate the remnant BH spin
parameter �f . The remnant spin, �f , is used to determine
the l ¼ m ¼ 2, n ¼ 0 (later 220, for brevity) quasinormal
mode (QNM) ringdown frequency, fRD, and quality factor,
Q, of the BH remnant, using the fitting formula provided
in [54]. This ringdown frequency fRD also depends on the
mass of the BH remnant, which is approximated to m0.
Finally, w�

f0;d
ðfÞ are the windowing functions

w�
f0;d

ðfÞ � 1

2

�
1� tanh

�
4ðf� f0Þ

d

��
; (4)

where the PhenomC model for BH-BH binaries sets
f0 ¼ 0:98fRD and d ¼ 0:015.
Summarizing, we have an IMR amplitude model for

BH-BH gravitational waveforms in the frequency domain
which contains: (1) a PN contribution from the inspiral,
(2) a premerger term with amplitude �1 fitted to BH-BH
hybrid waveforms, and (3) a ringdown term given by a
Lorentzian with overall amplitude set by the coefficient �1

and a second fitting coefficient �2 (which accounts for
errors in the fit to �f). All of these coefficients are
determined empirically by comparison with BH-BH
hybrid waveforms.
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B. The black hole-neutron star model:
The algorithm, step by step

In order to generalize the PhenomC model [27], we start
by writing the frequency-domain GWamplitude of BH-NS
mergers in a similar way, i.e. as a sum of three terms:

~APhenðfÞ ¼ ~APNðfÞw�
�ins ~f0;dþ�tide

þ 1:25�1f
5=6w�

~f0;dþ�tide

þ ~ARDðfÞwþ
~f0;dþ�tide

: (5)

Here the PN inspiral contribution ~APNðfÞ, the premerger
amplitude �1 and the parameter d ¼ 0:015 are identical to
those used in [27]. The ringdown amplitude is

~ARDðfÞ¼�tide�1Lðf;fRDð�f ;MfÞ;��2Qð�fÞÞf�7=6; (6)

where the coefficients �1 and �2 are again calculated
according to the fits reported in [27]. However, we also
introduce the correction parameters �ins, �tide, �tide, and �,

and replace f0 with ~f0. The first three parameters and ~f0
tend to 1, 0, 1, and f0 (respectively) in the BH-BH limit, so
that one recovers the binary BH model of [27]. The pa-
rameter � and the factor of 1.25 appearing in Eq. (5) are in
apparent discrepancy with the BH-BH limit, and we dis-
cuss them at length below. In short, we believe that longer
and more accurate comparisons of BH-NS and BH-BH
waveforms generated by different codes are required to
clarify the role of these parameters.

Given a BH-NS system formed by a nonspinning BH
with gravitational mass MBH and a nonspinning NS with
gravitational mass MNS, baryonic mass Mb;NS, radius RNS,

and compactness C ¼ MNS=RNS (where all of these

quantities refer to BHs or NSs in isolation), the recipe to
use Eq. (5) is the following:
(1) Determine the coefficients �1, �1, and �2 using the

BH-BH fits provided in [27].
(2) Determine the correction � to �2 according to the

fit in Eq. (28) below, where � ¼ MBHMNS=ðMBH þ
MNSÞ2 denotes the symmetric mass ratio.

(3) Solve the equation

MNS�
3
tide

MBH

¼ 3½�tide � 2ðMBH=RNSÞ�
�tide � 3ðMBH=RNSÞ (7)

for �tide, a coefficient providing relativistic correc-
tions to the standard Newtonian estimate of the
orbital radius at mass shedding: cf. Eq. (7) of [55],
which in turn builds upon classic results by [56].
Then use this quantity to calculate the mass of the
torus remaining around the NS at late times,Mb;torus,

according to the fitting formula [55]

Mb;torus

Mb;NS

¼ 0:296�tideð1� 2CÞ � 0:171
rISCO
RNS

; (8)

where rISCO is the radius of the innermost stable
circular orbit (ISCO) of the initial BH: see [57]
and Eqs. (13) below. Notice the dependence of
Eqs. (7) and (8) on the NS EOS (via the NS radius,
its compactness, and its baryonic mass).

(4) Calculate the spin parameter �f and gravitational
massMf of the BH remnant, following the model of
[58]. This requires solving numerically for �f the
closed expression

�f ¼ lzð�rISCO;f ; �fÞMBHffð�ÞMb;NS þ ½1� fð�Þ�MNS �Mb;torusg
½m0f1� ½1� eð �rISCO;i; 0Þ��g � eð�rISCO;f ; �fÞMb;torus�2

; (9)

where M ¼ MBH þMNS,

fð�Þ ¼

8>>>><
>>>>:
0 � � 0:16

1
2

�
1� cos

�
	ð��0:16Þ
2=9�0:16

��
0:16< �< 2=9

1 � � 2=9

(10)

and lzð �r; �Þ and eð�r; �Þ denote the angular momentum and
energy per unit mass of a point particle on a circular orbit
of radius �r around a Kerr BH of unit mass and dimension-
less spin parameter �. They are given by the expressions

eð �r; �Þ ¼ �r2 � 2�r� �
ffiffiffi
�r

p
�rð �r2 � 3�r� 2�

ffiffiffi
�r

p Þ1=2 ; (11)

lzð �r; �Þ ¼ � �r2 � 2�
ffiffiffi
�r

p þ �2ffiffiffi
�r

p ð �r2 � 3�r� 2�
ffiffiffi
�r

p Þ1=2 ; (12)

whereas the ISCO radii are calculated according to

�rISCO ¼ ½3þ Z2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� Z1Þð3þ Z1 þ 2Z2Þ

q
�;

Z1 ¼ 1þ ð1� �2Þ1=3½ð1þ �Þ1=3 þ ð1� �Þ1=3�;
Z2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�2 þ Z2

1

q
:

(13)

The upper/lower sign holds for prograde/retrograde orbits
[57]. Once �f is determined, Mf follows from

Mf ¼ m0f1� ½1� eð�rISCO;i; 0Þ��g �Mb;toruseð�rISCO;f ; �fÞ:
(14)

(5) Compute the GW reference frequency for the onset
of the NS tidal disruption:

ftide ¼ � 1

	ð�fMf þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~r3tide=Mf

q
Þ
; (15)

where the orbital radius at the onset of tidal
disruption is
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~rtide ¼ �tideRNSð1� 2CÞ: (16)

(6) Use �f and Mf to determine the 220 ringdown
frequency fRD and quality factor Q of the
BH remnant, that is, following the fits of [54],
calculate

fRD ¼ ½1:5251� 1:1568ð1� �fÞ0:1292�=ð2	MfÞ;
(17)

Q ¼ 0:700þ 1:4187ð1� �fÞ0:4990: (18)

(7) Set

~f0 ¼ min ½ftide; ~fRD�; (19)

where ~fRD � 0:99	 0:98fRD.

(8a) If ~f0 ¼ ~fRD, then the merger is ‘‘nondisruptive,’’
and the NS matter accretion is coherent until the
plunge, so the merger and the pure inspiral con-
tributions to Eq. (25) end at the same frequency,
i.e. �ins ¼ 1. �tide and �tide are instead determined
according to the fits of Sec. IVB 1.

(8b) If ~f0 ¼ ftide and Mb;torus > 0, then the merger is

‘‘disruptive,’’ the NS material is scattered around,
and the ringdown contribution to Eq. (25) vanishes,
i.e. �tide ¼ 0. �ins � 1 and �tide � 0 are determined
according to the fits of Sec. IVB2.

(8c) If ~f0 ¼ ftide and Mb;torus ¼ 0, then the merger

is ‘‘mildly disruptive.’’ The parameter �ins is
found as for the disruptive cases, while �tide is
determined as for the nondisruptive cases, i.e. the
shutoff of the signal has an intermediate behavior
between a tidal disruption shutoff and a QNM
ringdown. �tide takes the value 0.041.

In Sec. III below we will review the numerical simula-
tions used to calibrate this model. Then, in Sec. IV we will
clarify how physical intuition on tidal disruption was used
to build the model itself.

III. THE NUMERICAL SIMULATIONS

The numerical simulations used to calibrate our model
adopt piecewise polytropic EOSs, which are meant to
reproduce nuclear-theory based EOSs with a small number
of polytropic constants 
i and exponents �i [59]:

Pð�Þ ¼ 
i�
�i for �i�1 � �<�i ði¼ 1 . . . ; nÞ: (20)

Since the pressure is required to be continuous, i.e.


i�
�i

i ¼ 
iþ1�
�iþ1

i ; (21)

the EOS is completely specified once we assign 
1, �i

and �i (i ¼ 1; . . . ; n). More specifically, we consider a

two-region piecewise polytrope.2 We set the ‘‘crustal’’
polytropic parameters to be �1 ¼ 1:35692395 and

1=c

2 ¼ 3:99873692	 10�8 ðg=cm3Þ1��1 , and we vary
�2. Instead of specifying �1 we assign the pressure Pfidu

at the fiducial density �fidu ¼ 1014:7 g=cm3, because this
parameter is correlated with the NS radius. The relations

Pfidu ¼ 
2�
�2

fidu; 
1�
�1

1 ¼ 
2�
�2

1 ; (22)

then determine the values of 
2 and �1.
The numerical runs used to build and test our model are

collected in Tables I and II. The beginning of each run
name identifies the NS EOS, following the naming scheme
for piecewise polytropes introduced in [13,52,59]. In par-
ticular, 2H, 1.5H, 1.25H, H, HB, and B denote EOSs with
the same value of the core polytropic exponent �2 ¼ 3:0,
but decreasing values of the pressure at the fiducial density
logPfidu ¼ f34:9; 34:7; 34:6; 34:5; 34:4; 34:3g, so that 2H is
the stiffest and B is the softest EOS in the group; an
appended ‘‘l,’’ ‘‘s,’’ or ‘‘ss’’ means that the EOS has the
same logPfidu but a different value of �2 (‘‘l’’ stands for
larger and ‘‘s’’ for ‘‘smaller’’ core polytropic exponent, so
�2 ¼ 3:3, 2.7, 2.4 for an EOS with appended ‘‘l,’’ ‘‘s,’’ or
‘‘ss,’’ respectively). The rest of the name encodes the NS
mass (e.g., M135 means that MNS ¼ 1:35M
) and the
binary mass ratio Q � MBH=MNS.
Our simulations are such that the cases with �2 ¼ 3:0

span mass ratios Q ¼ f2; 3; 4; 5g, whereas the cases with
�2 ¼ f2:4; 2:7; 3:3g all have Q ¼ 2. If we were to use all
the data we would run the risk of being biased by core
stiffness effects for low BH masses. In this first paper, we
therefore decided to build the IMR GW amplitude model
on the runs with �2 ¼ 3:0 EOSs, which span all the avail-
able values of Q, and to leave the Q ¼ 2, MNS ¼ 1:35M
,
�2 � 3 ones (last part of Table II) as test cases to verify the
validity of the model against variations of the NS
core polytropic exponent. Further, we select a subset of
�2 ¼ 3:0 simulations as additional test cases. These are
nine simulations: four with MNS ¼ 1:2M
 (first block in
Table II), and five with EOS 1.5H or 1.25H (second block
in Table II). The reasoning behind this procedure is that
once the model is built, we may test its validity against
binaries with MNS � 1:35M
 and a subset of EOSs with
�2 ¼ 3:0 that were not used to calibrate it. The �2 ¼ 3:0,
1.5H runs have the additional benefit of allowing us to test
the model over different values of Q.

2Strictly speaking, some of our piecewise polytropic EOSs
(Bss, Bs, HBss, HBs, and Hss) do not support the recent
observations of NSs with mass MNS � 2M
 [60,61], but this
does not necessarily mean that these EOS models are not
realistic. The reason is that regions of very high density are
not relevant for the BH-NS binaries studied here, where the NS
typically has mass M< 1:4M
; therefore we can conceivably
modify the high-density EOS in order to satisfy observational
constraints on the maximum mass without altering our conclu-
sions on gravitational waveforms from BH-NS binaries.
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Once again, when more runs for �2 � 3:0 and Q � 2
will be available, we plan to generalize the model so
that the dependence on �2 somehow appears explicitly.
This may require using the NS Love numbers (as opposed
to the NS compactness) in our expressions and fits used to
determine the GW spectrum (cf. [17]).

IV. MODELING NONSPINNING BLACK
HOLE-NEUTRON STAR WAVEFORMS

As discussed in Sec. II, the phenomenological coeffi-
cients �1, �1, and �2 appearing in the PhenomC model of
[27] are fitted to BH-BH hybrid waveforms. It is natural to
expect that these coefficients should be somehow corrected
in a BH-NS binary model. A second aspect one may
a priori envisage to modify, in the spirit of the PhenomC
model, is the connection between the inspiral and pre-
merger phases, which in the BH-BH case are ‘‘turned
off’’ together using a unique windowing function w�

f0;d
.

In the PhenomC model the �1f
5=6 term of Eq. (1) is

supposed to represent the merger contribution to the am-

plitude, so we should somehow separate it from ~APNðfÞ in
the case of mixed binaries: the NS can be elongated and
disrupted prior to merger, so the behavior of a BH-NS
premerger can differ significantly from the BH-BH case.
These considerations lead us to the following generaliza-
tion of the amplitude model in Eq. (1):

~APhenðfÞ ¼ ~APNðfÞw�
f1;d1

þ 
�1f
5=6w�

f2;d3

þ ~ARDðfÞwþ
f3;d3

; (23)

where we explicitly wrote down three different frequencies
and widths for the windowing functions, and we introduced
a correction 
 to the BH-BH coefficient �1. For ease of
comparison, we choose to model the PN contribution
~APNðfÞ using the same PN approximation for the inspiral
as in [27], i.e. we neglect tidal effects on the GWamplitude
of the inspiral (see e.g. [40,52,62] for recent studies of the
influence of tidal effects in the late inspiral). The ringdown

amplitude, ~ARD, is now modified as explained in Eq. (6).

Once more, the functional form is similar to the ~ARD used
in the model of [27], but the BH-BH fitted quantities �1 and
�2 are corrected by two new ‘‘fudge factors’’ �tide and �,
respectively. The parameter �tide plays a physical role: it
tends to unity when tidal effects are irrelevant and the
merger has a BH-BH-like behavior; vice versa, it tends to
zero when tidal effects take over (so that the ringdown of
the BH remnant is not strongly excited). The reason for
introducing � is, instead, that BH-BH PhenomC wave-
forms were constructed against binaries the large majority
of which has Q< 4 (i.e., � > 4=25 ¼ 0:16), whereas the
BH-NS binaries considered here may also have larger mass
ratios: therefore � effectively corrects the fit for �2 of the
PhenomC waveforms, which is biased towards low mass
ratios. Additionally, � takes care of the fact that in our

TABLE I. Physical parameters of the numerical-relativity
simulations used to develop the waveform model [16,52]. The
pressure at the fiducial density 1014:7 g=cm3 is in dyne=cm3,
whereas the NS mass is in solar masses.

Run label �2 logPfidu MNS C Q �i

B-M135-Q5 3.0 34.3 1.35 0.1819 5 0

H-M135-Q5 3.0 34.5 1.35 0.1624 5 0

2H-M135-Q5 3.0 34.9 1.35 0.1309 5 0

B-M135-Q4 3.0 34.3 1.35 0.1819 4 0

H-M135-Q4 3.0 34.5 1.35 0.1624 4 0

2H-M135-Q4 3.0 34.9 1.35 0.1309 4 0

B-M135-Q3 3.0 34.3 1.35 0.1819 3 0

HB-M135-Q3 3.0 34.4 1.35 0.1718 3 0

H-M135-Q3 3.0 34.5 1.35 0.1624 3 0

2H-M135-Q3 3.0 34.9 1.35 0.1309 3 0

B-M135-Q2 3.0 34.3 1.35 0.1819 2 0

HB-M135-Q2 3.0 34.4 1.35 0.1718 2 0

H-M135-Q2 3.0 34.5 1.35 0.1624 2 0

2H-M135-Q2 3.0 34.9 1.35 0.1309 2 0

TABLE II. Physical parameters of the numerical-relativity
simulations used to test the waveform model and assess
its validity beyond the runs used to build it (see Table I for
additional information). The three groups of runs allow us to test
the model for different values of MNS, logPfidu (for �2 ¼ 3:0),
and �2, respectively.

Run label �2 logPfidu MNS C Q �i

B-M12-Q2 3.0 34.3 1.20 0.1614 2 0

HB-M12-Q2 3.0 34.4 1.20 0.1527 2 0

H-M12-Q2 3.0 34.5 1.20 0.1447 2 0

2H-M12-Q2 3.0 34.9 1.20 0.1172 2 0

1.5H-M135-Q5 3.0 34.7 1.35 0.1456 5 0

1.5H-M135-Q4 3.0 34.7 1.35 0.1456 4 0

1.5H-M135-Q3 3.0 34.7 1.35 0.1456 3 0

1.5H-M135-Q2 3.0 34.7 1.35 0.1456 2 0

1.25H-M135-Q2 3.0 34.6 1.35 0.1537 2 0

Bl-M135-Q2 3.3 34.3 1.35 0.1798 2 0

HBl-M135-Q2 3.3 34.4 1.35 0.1719 2 0

Hl-M135-Q2 3.3 34.5 1.35 0.1638 2 0

1.25Hl-M135-Q2 3.3 34.6 1.35 0.1565 2 0

1.5Hl-M135-Q2 3.3 34.7 1.35 0.1497 2 0

Bs-M135-Q2 2.7 34.3 1.35 0.1856 2 0

HBs-M135-Q2 2.7 34.4 1.35 0.1723 2 0

Hs-M135-Q2 2.7 34.5 1.35 0.1605 2 0

1.25Hs-M135-Q2 2.7 34.6 1.35 0.1497 2 0

1.5Hs-M135-Q2 2.7 34.7 1.35 0.1399 2 0

Bss-M135-Q2 2.4 34.3 1.35 0.1941 2 0

HBss-M135-Q2 2.4 34.4 1.35 0.1741 2 0

Hss-M135-Q2 2.4 34.5 1.35 0.1577 2 0

1.25Hss-M135-Q2 2.4 34.6 1.35 0.1435 2 0

1.5Hss-M135-Q2 2.4 34.7 1.35 0.1312 2 0
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model we allow the mass of the BH remnant in a BH-NS
merger to be different from MBH þMNS (at variance
with [27]); it also compensates for using the BH-NS model
of [58], rather than the BH-BH model of [53], in our
prediction of the final spin �f .

When the BH-NS coalescence is nondisruptive, this
generalization should reduce to Eq. (1). Furthermore, the
three IMR contributions should be connected smoothly.
In order to satisfy these constraints we set

di ¼ dþ �tide; (24)

where d ¼ 0:015 is the BH-BH windowing width and �tide

is a tidal (or finite-size) correction to d, which must tend to
zero as NS tidal distortions become weaker. Next, and
again for smoothness and continuity reasons, we set
f2 ¼ f3. For physical reasons, we also impose f1 � f2:
this means that the ending frequency of the ‘‘pure’’ inspiral
contribution should never be larger than the ending fre-
quency of the merger contribution. We expect that f1 ! f2
as the coalescence becomes more and more BH-BH-like
and tidal effects become more and more negligible, so we
write f1 ¼ �insf2, with 0< �ins � 1.

All in all, we have

~APhenðfÞ ¼ ~APNðfÞw�
�ins ~f0;dþ�tide

þ 
�1f
5=6w�

~f0;dþ�tide

þ ~ARDðfÞwþ
~f0;dþ�tide

; (25)

where we made the notational change f2 ! ~f0, hinting to
the fact that this frequency should be close to the 220 QNM
ringdown frequency of the BH remnant as tidal effects
become smaller.

Equation (25) is our general framework, and from now
on we specify the details of our model. Let us begin by
examining the BH remnant. In the case of the BH-BH
phenomenological GW model in Eq. (1), the fit of [53] is
used to predict the spin parameter �f of the BH remnant,
and its massMf is assumed to be equal to m0. This enables
one to calculate fRD and Q, which enter the ringdown

amplitude model through ~ARD. This approach cannot
reproduce all data for the BH remnant of BH-NS binary
mergers accurately enough, as it is based on results of
BH-BH merger simulations. We may use the model of
[58] to predict �f and Mf more accurately. The approach
of [58] relies on the prediction of [55] for the mass Mb;torus

of the torus remnant (possibly) produced by a BH-NS
coalescence. Reference [55] also provides a prediction
for the orbital radius at the onset of tidal disruption, i.e.
at mass shedding. This is given in Eq. (16), where �tide is
the solution of Eq. (7). The prediction for ~rtide relies on
several approximations (e.g. it is coordinate dependent),
but it may be usefully exploited in combination with the
predictions for �f and Mf to define a GW reference
frequency as in Eq. (15). This is consistent with the calcu-
lation of Mb;torus, and tends to infinity as C ! 1=2 (that is,

in the BH limit). In addition to writing out Eq. (25), we

have thus chosen how to determine �f and Mf (and hence

how to calculate the fRD and Q entering ~ARD), and
introduced the useful frequency ftide.
We then proceed by finding the values of 
, �, �tide,

�tide, �ins, and ~f0 which best reproduce the high-frequency
behavior of our numerical GW amplitude. As a final step,
we must look for correlations between the values we found

for 
, �, �tide, �tide, �ins, and ~f0, on one hand, and binary
and remnant parameters, on the other.
In this study we focus on high frequencies for two

reasons: (1) we are interested in the regime where the
BH-NS phenomenology departs from the BH-BH case,
and EOS-dependent effects emerge at high frequencies;
(2) current simulations do not allow us to accurately handle
the inspiral regime (for example, we do not make attempts
to reduce the residual orbital eccentricity). In this regard, it
is useful to remark that the influence of resolution on
frequency-domain GW spectra was investigated in
Fig. 15 of [52]. That study suggests that systematic errors
due to resolution should be subdominant compared with
effects due to (i) the finite length of the simulations, and
(ii) the residual eccentricity of the initial data. These
important aspects should be addressed with future, longer,
and more accurate numerical simulations, that will pre-
sumably reduce the differences between the numerical data
and the analytical PN-based description of the inspiral
regime.

A. Black hole-black hole like mergers

Let us first consider a ‘‘BH-BH-like’’ mixed binary
merger with the softest EOS, namely the Q ¼ 5 case with

PhenomC
PhenoMixed
Lackey et al.
NR data

0.010 0.1000.0500.020 0.0300.015 0.070
0.010

0.100

0.050

0.020

0.200

0.030

0.015

0.150

0.070

m0f

f
h

f
D

m
0

Q 5, MNS 1.35M , EOS B

FIG. 1 (color online). GW amplitude of a BH-NS binary
merger with a 1:35M
 NS with EOS B, a nonspinning BH,
and a mass ratio Q ¼ 5 (Table I, B-M135-Q5). The GW strain of
the NR simulation (continuous grey) is compared to the BH-BH
phenomenological model of [27] (dot-dashed blue), to the BH-
NS model of [17] (dotted green), and to our phenomenological
model (dashed red). The location of m0

~fRD is shown by a short,
blue, vertical line in the top of the graph; the mass-shedding
frequency m0ftide is higher than 0.1.

NONSPINNING BLACK HOLE-NEUTRON STAR MERGERS: . . . PHYSICAL REVIEW D 88, 084011 (2013)

084011-7



EOS B and MNS ¼ 1:35M
 (B-M135-Q5 in Table I). No
torus is produced in this merger, and ftide > fRD. In Fig. 1
we show the numerical data for the GW spectrum (grey
curve), the prediction of the PhenomC model of [27]
(blue, dot-dashed curve), the prediction of the BH-NS
model of Lackey and collaborators [17] (green, dotted
curve), and the prediction of Eq. (25) with 
, �, �tide,

�tide, �ins, and ~f0 tuned to mimic the high-frequency
behavior of the numerical data (red, dashed curve).
Throughout this paper, in the GW strain plots, we find it
convenient to use the dimensionless frequency m0f, in
place of f. As a reference for quick conversions between
the two, the following formula may be used:

f ¼ 2030 Hz	 m0f

0:01

1

M̂NSð1þQÞ ; (26)

where M̂NS is the NSmass in solar mass units. For example,
for a system with mass ratio Q ¼ 5 and a NS of 1:35M
,
m0f ¼ 0:1 corresponds to�2500 Hz.

Note that the initial match between the numerical data
and the analytic spectra is not obtained ‘‘artificially’’ by
rescaling the data to achieve the matching. It is, instead,
obtained mathematically by a careful comparison of nu-
merical and analytical conventions on the waveform am-
plitude (see Appendix A). As mentioned previously, the
deviation from the matching is then due to residual eccen-
tricity in the numerical simulation (see e.g. Fig. 5 in [63])
and to the sudden onset of the GW emission: both features
can be cured, the former numerically and the latter analyti-
cally, but addressing these aspects is beyond the scope of

this paper. Setting ~f0 ¼ ~fRD � 0:99	 0:98fRD provides a
better high-frequency matching than the BH-BH PhenomC
prescription of using 0:98fRD. As anticipated, this small
difference is not surprising, as the ringdown frequency is
following from a different model for the properties of the

BH remnant. This prescription for ~f0 works for all non-
disruptive coalescences. We set 
 ¼ 1:25 to achieve a
better matching of the knee in the waveform spectrum.
This same rescaling of �1 works for all other waveforms
used to build our model. With the data currently available,
the nature of this correction is unclear: it could be a
‘‘universal’’ correction, a consequence of residual eccen-
tricity in the data, an artifact of trying to match GWs that
are not the BH-BH hybrid ones with �1 values obtained
from the BH-BH hybrid waveforms themselves, or it could
have some other origin. It is reassuring, though, that the
rescaling is unique. Perhaps longer, more accurate wave-
forms will lead to the conclusion that �1 should not be
rescaled when passing from BH-BH to BH-NS mergers.
We set �tide ¼ 0, �ins ¼ 1, and �tide ¼ 1, so that d (the
shutoff frequency of the PN inspiral contribution) and �1

were not corrected: these values match our expectations,
given the nondisruptive nature of this specific coalescence.
Finally, the fudge factor correcting �2 was set to � ¼ 1:35.

B. Stiffening the EOS: Tidal effects

In Fig. 2 we repeat the procedure for the Q ¼ 5,
MNS ¼ 1:35M
, EOS H binary (H-M135-Q5 in Table I).
We set once again 
 ¼ 1:25 (note that this value of 

seems to always give a good match, independently of the
EOS stiffness), �ins ¼ 1, �tide ¼ 1, �tide ¼ 0, � ¼ 1:35,

and ~f0 ¼ ~fRD. The frequency at the onset of tidal disrup-
tion ftide, marked by the short, vertical, dotted red line, is

now closer to ~fRD, marked by the short, vertical blue line.
This means that the EOS stiffening gradually increases the
relevance of tidal effects. The behavior of this merger,
however, is still very BH-BH-like.
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FIG. 2 (color online). BH-NS merger case H-M135-Q5 (see
Table I). The GW strain of the NR simulation (continuous grey)
is compared to the BH-BH phenomenological model of [27]
(dot-dashed blue), to the BH-NS model of [17] (dotted green),
and to our BH-NS phenomenological model (dashed red). The
location of the QNM frequency of the BH remnant is shown by
the short, vertical, blue line in the top of the graph; the frequency
at the onset of disruption frequency m0ftide is indicated by the
short, vertical, dashed, red line.
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FIG. 3 (color online). BH-NS merger 2H-M135-Q5
(see Table I). In this plot (and in the remainder of this paper)
we use the same color and linestyle conventions as in Fig. 2.
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By further stiffening the EOS, we eventually hit a
disruptive merger, for which ftide < fRD. This case is
reported in Fig. 3, where we consider data from the run
2H-M135-Q5 in Table I. In this case, setting �ins ¼ 1 and

� ¼ 1:35, but �tide ¼ 0:49, �tide ¼ 0:041, and ~f0 ¼ ftide is
required. As anticipated, �tide and �tide need to be greater
than 0 and smaller than 1, respectively, since this is a
disruptive merger. This run shows that we must require
the following prescription on the ‘‘windowing’’ frequency:

~f0 ¼ min ½ftide; ~fRD�: (27)

In the C ! 1=2 limit, i.e. in the nonspinning BH-BH limit,
~f0 � ~fRD ¼ 0:99	 0:98fRD. This differs slightly from the
f0 ¼ 0:98fRD used in [27]. The origin of this discrepancy
is (again) in the different methods used to calculate the BH
remnant parameters determining fRD.

Incidentally, the plots (and in particular Fig. 3) show that
while the amplitude model developed by Lackey et al. [17]
is accurate enough for BH-BH-like mergers, it becomes
increasingly inaccurate when the NS EOS is particularly
stiff (the same conclusion seems to hold in all other cases
we have investigated). A possible origin of the discrepancy
may be the fact that the model of Lackey and collaborators
was calibrated also to the EOSs with �2 ¼ 2:4, 2.7, and 3.3
(15 altogether), in addition to the six �2 ¼ 3:0 EOSs, for a
total of 21 EOSs. The 2H EOS is just one EOS out of 21 in
this catalog. The price to pay for fitting more EOSs may
thus be that results for the 2H EOS are less accurate.

Finally, wemust understand the behavior of�, �ins,�tide,
and �tide. By trying to reproduce the GW spectra of all runs
in Table I, we found that� depends on the binary mass ratio
Q ¼ MBH=MNS, or, equivalently, on the symmetric mass
ratio � ¼ Q=ð1þQÞ2: cf. Fig. 4. Unfortunately, this de-
pendence is poorly constrained, as our runs span values
of Q from 2 to 5. We know, however, that our model for

�f (based on [58]) differs negligibly from the model for �f

used in [27] for Q � 5 (i.e. � � 5=36). We therefore de-
cided to make the conservative choice of fitting our data in
Fig. 4 with the function

� ¼ w�
�0;d0

ð�Þ þ 1 (28)

for � � 5=36, while assuming� to be constant and equal to
its value atQ ¼ 5 (corresponding to � ¼ 5=36) forQ � 5.
This yields �0 ¼ 0:146872 and d0 ¼ 0:0749456.
In order to understand the behavior of �ins, �tide, and

�tide, we found it useful to divide the numerical runs in
three groups (following the classification suggested in [45]
for the outcome of a BH-NS coalescence):

(i) mergers with ftide > ~fRD (‘‘nondisruptive’’);

(ii) mergers with ftide < ~fRD and Mb;torus ¼ 0 (‘‘mildly

disruptive’’);

(iii) mergers with ftide < ~fRD and Mb;torus > 0
(‘‘strongly disruptive’’).

The first group shows a clear QNM excitation, the third
group shows a sharp high-frequency cutoff of tidal origin,
and the behavior of the second group is somewhere in
between the other two. Out of the cases used to build our
model (as listed in Table I) we have 6, 2, and 6 data sets for
the first, second, and third group, respectively, so that the
second group is not very populated. We expect to have
more data (and to clarify the behavior of this second group)
in the near future, when we will consider waveforms from
merging binaries with nonzero initial spins.

1. Nondisruptive mergers

For nondisruptive mergers tidal effects are weak, the NS
matter moves coherently and, thus, the merger and the
inspiral contributions to the GW spectrum ‘‘fade out’’ at
the same frequency: this implies that �ins ¼ 1.
Let us now turn to �tide, the factor correcting �1 in

Eq. (6). As shown in the top-left panel of Fig. 5, values
of this parameter which allow our model to reproduce
the spectra of the six nondisruptive mergers in Table I
have a regular behavior if plotted as a function of the
dimensionless quantity,

xND �
�
ftide � ~fRD

~fRD

�
2 � 0:6C: (29)

This functional form captures the fact that a ‘‘large’’ NS
suppresses ringdown excitation via destructive interference
(cf. [64] for a toy model illustrating this phenomenon). The
frequency at the onset of tidal disruption for a large NS is
closer to the QNM frequency of the BH remnant. A fit of
the form

�tide ¼ 2wþ
x0;d0

ðxNDÞ (30)

yields x0 ¼ �0:0881657 and d0 ¼ 0:0661666. The win-
dowing function choice is motivated by observing that the

0.14 0.16 0.18 0.2 0.22
0.9

1

1.1

1.2

1.3

FIG. 4 (color online). Values of � (the factor correcting �2)
versus �. The fitting function is of the form w�

�0 ;d0
ð�Þ þ 1, with

�0 ¼ 0:146872 and d0 ¼ 0:0749456, for � � 5=36, i.e. for Q �
5. For � < 5=36 we assume � to be constant and equal to
w�

�0 ;d0
ð5=36Þ þ 1 ’ 1:35.
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ringdown amplitude is smoothly suppressed as tidal effects
take over, i.e. as the NS disruption frequency approaches
the QNM frequency of the BH remnant from above.

A similar approach is used for �tide, which must vanish
as the coalescence becomes more and more BH-BH-like.
On the other hand, as tidal effects increase, �tide must grow
and ‘‘smear’’ the signal shutoff. In this case, we fitted the
six data points as follows:

�tide ¼ 2w�
x0;d0

ðxNDÞ; (31)

obtaining x0 ¼ �0:170321 and d0 ¼ 0:162074. This fit is
shown along with the data in the top-right panel of Fig. 5.

To summarize, for nondisruptive mergers we can set

�ins ¼ 1; (32)

�tide ¼ 2wþ
x0;d0

ðxNDÞ with

�
x0 ¼ �0:0881657

d0 ¼ 0:0661666;
(33)

�tide ¼ 2w�
x0;d0

ðxNDÞ with

�
x0 ¼ �0:170321

d0 ¼ 0:162074:
(34)

2. Disruptive mergers

Tidal effects must be taken into account in the phenome-
nology of disruptive BH-NS mergers. The NS matter is
scattered around and accretes onto the BH incoherently,
no ringdown of the BH remnant is manifest in the GW
spectrum, and therefore we have �tide ¼ 0.
As tidal effects grow stronger, the PN inspiral

description must be suppressed at smaller frequencies
than the merger contribution. An effective description of
the end of the merger contribution may be obtained by

turning it off at ftide [cf. Eq. (27)], so that �ins ~f0 ends the
inspiral contribution.
The values of �ins that allow us to reproduce the spectra

of the six disruptive mergers of Table I are well correlated
with the following dimensionless quantity:

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
0.00

0.20

0.40

0.60

0.80

1.00

xND

tid
e

0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02
0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

xD

in
s

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

0.00

0.01

0.02

0.03

0.04

xND

tid
e

0.09 0.08 0.07 0.06 0.05 0.04 0.03
0.01

0.02

0.03

0.04

0.05

0.06

xD

tid
e

FIG. 5 (color online). Correction parameters appearing in our phenomenological models for nondisruptive mergers (left panels) and
disruptive mergers (right panels). Top left: correction factor �tide to �1 versus xND, as defined in Eq. (29), for the six nondisruptive cases
with MNS ¼ 1:35M
 and �2 ¼ 3:0. The data points are fitted by the function 2wþ

x0 ;d0
ðxNDÞ, with x0 ¼ �0:088166 and d0 ¼ 0:066167.

Top right: correction factor �ins to ~f0 versus xD, as defined in Eq. (35), for the six disruptive cases with MNS ¼ 1:35M
 and �2 ¼ 3:0.
The data points are fitted by the linear function axD þ b, with a ¼ �6:04599 and b ¼ 0:490086. Bottom left: the additive correction
�tide to d versus xND, as defined in Eq. (29), for the six nondisruptive cases with MNS ¼ 1:35M
 and �2 ¼ 3:0. The data points are
fitted by the function 2w�

x0;d0
ðxNDÞ, with x0 ¼ �0:170321 and d0 ¼ 0:162074. Bottom right: the additive correction �tide to d versus

the xD, as defined in Eq. (35), for the six nondisruptive cases with MNS ¼ 1:35M
 and �2 ¼ 3:0. The data points are fitted by the
function Aw�

x0 ;d0
ðxDÞ, with x0 ¼ �0:0419235, d0 ¼ 0:0930419, and A ¼ 0:129459.
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xD � Mb;torus

Mb;NS

þ 2:23C� 1:02
ffiffiffi
�

p
: (35)

A good linear fit to the data, as shown in the bottom-left
panel of Fig. 5, is

�ins ¼ 0:490086� 6:04599xD: (36)
The data for �tide also show a correlation with xD.

A good fit is

�tide ¼ Aw�
x0;d0

ðxDÞ (37)

with x0 ¼ �0:0419235, d0 ¼ 0:0930419, and A ¼
0:129459. As shown in the bottom-right panel of Fig. 5,
this fit is less robust than the previous ones, and our present
model for �tide is quite likely to change as more data
become available. However, in the rest of the paper we
will show that this has a minor effect on the agreement
between the BH-NS phenomenological waveforms and the
numerical data.

To summarize, disruptive mergers are well reproduced
by setting

�tide ¼ 0; (38)

�ins ¼ axD þ b with

(
a ¼ �6:04599

b ¼ 0:490086;
(39)

�tide ¼ Aw�
x0;d0

ðxDÞ with

8><
>:
A ¼ 0:129459

x0 ¼ �0:0419235

d0 ¼ 0:0930419:

(40)

3. Mildly disruptive mergers

Only two of the binaries in Table I haveMb;torus ¼ 0 and

ftide < ~fRD, so that this regime is relatively poorly
constrained by simulations. We expect the phenomenology
in this case to be intermediate between the one of disrup-
tive and nondisruptive mergers. In this sense it is reassuring
to observe that:

(1) �ins may be determined as prescribed for disruptive
mergers in Eq. (39), and

(2) �tide may be determined as prescribed for nondis-
ruptive cases in Eq. (33).

These observations confirm that the nature of mildly
disruptive coalescences is indeed somewhere in between
the disruptive and nondisruptive cases. The value �tide ¼
0:041 works for both mildly disruptive cases. We expect a
better understanding of this class of mergers to emerge
from future studies of BH-NS binaries with a spinning BH.

V. MODEL-DATA COMPARISONS

We may now see the model at work. In this section we
collect and discuss the results for the GW spectra of all

runs in Tables I and II. We follow the convention adopted
in Figs. 1–3 and show the numerical data with a grey,
continuous line, the prediction of our model with a red,
dashed line, the prediction of the PhenomC model with a
blue, dot-dashed line, and the prediction of the BH-NS
model of [17] with a green, dotted line. In addition, the

locations of the frequencies ~fRD and ftide are marked
by short, vertical lines (straight blue and dashed red,
respectively). We first show the remaining3 GW spectra
of the binaries in Table I, upon which our model is built.
We then test our model against the binaries in Table II. We
begin by looking at cases with M � 1:35M
, i.e. the four
runs in the first block of Table II; we then consider the five
cases in the second block of Table II, i.e. those with a
�2 ¼ 3:0 core description, but that were not used when
building the model; finally, we look at the fifteen binaries
in which the NS core EOS has �2 � 3:0.

A. The 14 cases used to build the model

In Figs. 1–3, we showed how the model of Sec. II B, with
hand-tuned parameters, performs for a subset of the bi-
naries it was built upon, namely the three cases with mass
ratio Q ¼ 5. The variations in the GW spectra yielded by
our model if we use the fits of the previous section for the
parameters, instead of hand-tuned values, are negligible.
In Fig. 6 we illustrate the performance of our model for

the three binaries withQ ¼ 4, the four withQ ¼ 3, and the
four with Q ¼ 2, respectively (see Table I). We apply
the full procedure outlined in Sec. II B and explained in
the previous section. Our model reproduces the high-
frequency phenomenology very well, both for nondisrup-
tive and disruptive mergers. In the case of disruptive
mergers, in particular, when there is little or no QNM
ringdown excitation of the BH remnant, we achieve a
considerable improvement over the BH-BH phenomeno-
logical waveforms of [27] and also over the model by
Lackey et al. [17]. Therefore our model should yield
more accurate results for practical applications, including
e.g. calculations of cutoff frequencies and SNRs. During
the inspiral phase our model and the PhenomC model
match, by construction, and we expect longer and more
accurate numerical waveforms to better match the PN
description of the inspiral GW amplitude, especially for
mass ratios closer to unity, where the convergence of the
PN expansion works best.
In conclusion, our model reproduces the high-frequency

GW amplitude phenomenology for the fourteen runs upon
which it was built. Furthermore, it performs much better
than the BH-BH phenomenological waveform model and
better than the model of [17], especially when mergers are
disruptive.

3Cases B-M135-Q5, H-M135-Q5, and 2H-M135-Q5 were
already discussed in Sec. IV.
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B. The four test cases with MNS � 1:35M

So far, we considered only binaries withMNS ¼ 1:35M
.

A first useful series of tests we can provide for our model
thus involves binaries with a different NS mass. This may be

done with the aid of our numerical data for four coales-

cences in which the NS has a mass of 1:2M
 (first group of

cases in Table II).We stress, once more, the fact that the data

from these runs were not used to build the model.
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FIG. 6 (color online). The numerical simulations used to build the model (solid lines), discussed in Sec. VA, are compared to our
phenomenological amplitude model (dashed lines), to the phenomenological amplitude model of Lackey et al. [17] (dotted lines), and
to the BH-BH model of Santamarı́a et al. [27] (dash-dotted line). Top left: Cases 2H-M135-Q4, H-M135-Q4, and B-M135-Q4 (from
left to right, so that the rightmost model is the closest to the BH-BH case). Top right: Cases 2H-M135-Q3, H-M135-Q3, HB-M135-Q3,
and B-M135-Q3. Bottom: Cases 2H-M135-Q2, H-M135-Q2, HB-M135-Q2, and B-M135-Q2.

PhenomC
PhenoMixed
Lackey et al.
NR data

0.010 0.1000.0500.020 0.0300.015 0.070
0.010

0.100

0.050

0.020

0.200

0.030

0.015

0.150

0.070

m0f

f
h

f
D

m
0

Q 2, MNS 1.2M

PhenomC
PhenoMixed
Lackey et al.
NR data

0.010 0.1000.0500.020 0.0300.015 0.070
0.010

0.100

0.050

0.020

0.200

0.030

0.015

0.150

0.070

m0f

f
h

f
D

m
0

MNS 1.35M , EOS 1.5H

FIG. 7 (color online). Left: First set of numerical simulations used to test our model (cases 2H-M12-Q2, H-M12-Q2, HB-M12-Q2,
and B-M12-Q2), as discussed in Sec. VB. Right: Second set of numerical simulations used to test our model (cases 1.5H-M135-Q2,
1.5H-M135-Q3, and 1.5H-M135-Q5), as discussed in Sec. VC; we obtain similar results for the two remaining cases (not shown in this
plot to avoid cluttering), i.e. 1.5H-M135-Q4 and 1.25H-M135-Q2.

PANNARALE et al. PHYSICAL REVIEW D 88, 084011 (2013)

084011-12



The left panel of Fig. 7 shows how our phenomeno-
logical model performs for these binaries. The tests
are successful, in that (1) they correctly capture the
phenomenology of all four mergers, and (2) they provide
a more accurate description when compared to the
PhenomC or Lackey et al. [17] amplitude models. It
must be noted that all cases share the same, low mass ratio
Q ¼ 2, and that they are all disruptive mergers. In this
sense, these tests may be viewed as being still limited, but
the runs we have represent the current state of the art for
nonspinning BH-NS mergers.

C. The five test cases with �2 ¼ 3:0

We now move to the second group of test cases in
Table II. These five sets of data share a �2 ¼ 3:0 EOS
description for the NS core and were not used when build-
ing the model. They are obtained by setting logPfidu to its
value corresponding to the 1.5H or 1.25H EOS choices.
Four data sets spanning different values of the binary mass
ratio are available for the first choice, while a single data
set for Q ¼ 2 is available for the 1.25H EOS. Three of our
results for the 1.5H EOS data are reported in the right panel
of Fig. 7, where we demonstrate that these BH-NS merger
typologies are correctly reproduced by our model. The
remaining 1.5H EOS and the single 1.25H EOS data sets

are reproduced with similar accuracy and are not shown to
avoid cluttering in the plot. This ensures that our formula-
tion is universal for data obtained with two-component
piecewise polytropes having �2 ¼ 3:0 in the core.

D. The 15 test cases with �2 � 3

The third and last set of BH-NS binary merger simula-
tions in Table II is relative to NS models in which the core
EOS description employs a polytropic exponent �2 differ-
ent from 3.0. All of these test cases are limited to mass ratio
Q ¼ 2. However, EOS-related effects on the binary
dynamics, and hence on the GW phenomenology, are
enhanced by low values of the binary mass ratio: with
the exception of the astrophysically unlikely case of
binaries with Q< 2, these data sets are therefore the
most challenging possible test beds.
We present some results for the �2 � 3:0 tests in the

three panels of Fig. 8, which refer to �2 ¼ 3:3, �2 ¼ 2:7,
and �2 ¼ 2:4, respectively (these are denoted as l, s, and
ss in Table II). In each plot, we consider the results for the
1.5Hx, 1.25Hx, Hx, HBx, and Bx EOS, where x ¼
fl; s; ssg. Overall, for cases with �2 ¼ f3:3; 2:7g our model
shows good agreement with the numerical data. An ex-
cellent match is evident for the 1.25Hl-M135-Q2 and for
1.5Hl-M135-Q2 data sets. With �2 ¼ 2:4, we run into our
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FIG. 8 (color online). Top left: Cases 1.5Hl-M135-Q2, 1.25Hl-M135-Q2, Hl-M135-Q2, HBl-M135-Q2, and Bl-M135-Q2. Top right:
Cases 1.5Hs-M135-Q2, 1.25Hs-M135-Q2, Hs-M135-Q2, HBs-M135-Q2, and Bs-M135-Q2. Bottom: Cases 1.5Hss-M135-Q2,
1.25Hss-M135-Q2, Hss-M135-Q2, HBss-M135-Q2, and Bss-M135-Q2.
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three worst test outcomes. These occur in the case of runs
Bss-M135-Q2, HBss-M135-Q2, and Hss-M135-Q2, in
order of decreasing agreement between the numerical
waveforms and our new phenomenological waveforms.
Case Bss-M135-Q2, in particular, is a somewhat critical
test. This happens because fRD ’ ftide, which we know to
be the hardest regime to model. For test cases 1.25Hss-
M135-Q2 and 1.5Hss-M135-Q2, on the other hand, we
achieve a very good match between the model and
the data.

The �2 ¼ f3:3; 2:7; 2:4g, Q ¼ 2 test cases thus tell us
that the model starts breaking down for systems in which
the BH mass is low, and the NS is very compact and has an
exceptionally soft core. This unfavorable region of the
space of parameters is small, and probably astrophysically
marginal, since current observations are gradually ruling
out EOSs that predict a significant softening in the
core [60,61,65]. Therefore our test pool provides a solid
confirmation of the validity of our model.

VI. SIGNAL-TO-NOISE-RATIO COMPARISONS

In this section we compare SNRs computed using our
BH-NS amplitude model, the BH-BH PhenomC model of
[27], and the restricted PN model used in several classic
papers on GW data analysis [66,67]. The SNR � for a

frequency-domain signal ~hðfÞ and a detector with noise
power spectral density ShðfÞ is defined as

� � 4<
Z fend

fstart

df
~hðfÞ~h�ðfÞ
ShðfÞ ; (41)

where ShðfÞ is the noise power spectral density of

the detector, and ~hðfÞ is defined in Eq. (A12) of
Appendix A—i.e., it is a weighted average of the plus
(þ) and cross (	) polarization states. For any given
binary system, we define the starting frequency fstart to
be 10 Hz for second-generation detectors, and 1 Hz for
third-generation detectors. Our convention on the ending
frequency fend will be discussed below.

In order to make our comparisons as universal as pos-
sible, we will consider ratios of SNRs, so that possible
overall factors coming from distance, orientation, and in-
clination of the source cancel out. We define the following
quantities, which are useful to understand the impact of
modeling on detectability:

�RPN � 1� �RPN

�BHNS

; (42)

�BHBH � 1� �BHBH

�BHNS

: (43)

The first quantity (�RPN) measures the SNR deviation
between a BH-NS waveform and a restricted PN
(RPN) amplitude model—i.e., a zero-order amplitude
expansion—obtained for the same masses of the binary

constituents. Naturally, RPN waveforms (which are sup-
posed to be accurate for inspirals only) deviate signifi-
cantly from merger waveforms after the binary members
cross the ISCO. Therefore, in order to provide a fair
comparison, in this case we will follow much of the
existing GW literature (e.g. [66,67]) and truncate the
SNR calculation at an upper frequency fend that corre-
sponds to the conventional Schwarzschild ISCO r ¼ 6m0

for a binary of total mass m0.
The second quantity (�BHBH) measures the deviation

between a BH-NS waveform amplitude model and the
corresponding BH-BHwaveform amplitudemodel for a non-
spinning binary with the same masses. In this comparison4 it
makes sense to consider the whole waveform, and therefore
we set fend ¼ 5000 Hz for all binaries.
We compute �RPN and �BHBH for all binaries in

Tables I and II; in principle we could consider arbitrary
binary configurations, but (to be conservative) here we
limit our calculations to the cases for which we have
evidence that our model works well.
We consider the following eight detectors: Advanced

(Adv) LIGO, see e.g. Eq. (3.3) of [31]; Advanced
LIGO in the zero-detuning, high-power configuration
(AdvZDHP), as fitted in Eq. (4.7) of [68]; Advanced
Virgo, Eq. (3.4) of [31]; the Einstein Telescope (ET) in
broadband (B) and xylophone (C) configuration, as found
in theMATLAB files available at [69]; and finally, KAGRA in
the variable broadband (varBRSE), broadband optimized
for NS-NS detection (maxBRSE), and variable detuned
mode (varDRSE). We provide fits to the three KAGRA
configurations in Appendix B (to our knowledge, no such
fits have been published in the existing literature).
The results, collected in Table III, may be summarized

as follows:
(1) The deviations between the PhenomC model and

our model increase as one considers binaries with
stronger tidal effects. This is expected: the stronger
the tidal effects, the larger the deviations between a
BH-NS waveform and a BH-BH waveform with the
same constituent masses. However, for the purpose
of SNR calculations the PhenomC model and our
model are basically equivalent: j�BHBHj< 0:01 for
(nonspinning) BH-NS mergers. This is due to the
fact that SNR calculations for these binaries are
largely dominated by the low-frequency inspiral
contribution. This result implies that using NR
based BH-BH binary models in (say) rate calcula-
tions is good enough also for BH-NS binaries, at
least in the nonspinning case.

4We also performed a similar comparison between our ampli-
tude model and that of Lackey et al. [17], finding that �Lackey �
1� �Lackey

�BHNS
< 0:01 in all cases. Therefore the waveform model of

[17] is more than appropriate for SNR calculations in the case of
nonspinning binaries.
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(2) The numbers listed for j�RPNj show that NR-based
modeling has an impact of at most �10% in
SNR calculations from BH-NS systems, as long
as we truncate both signals at the Schwarzschild
ISCO.

(3) The deviations between different models are com-
parable for a given binary and different detectors
(ET, KAGRA, and Advanced LIGO/Virgo). Among
the three configurations of KAGRA, the variable
configuration in broadband mode systematically
yields the smallest deviations (in absolute value).
Among second-generation detectors, SNR calcula-
tions for Advanced LIGO are the most sensitive to

the high-frequency behavior of BH-NS merger
waveforms.

VII. CUTOFF FREQUENCIES

The amplitude of the GWs emitted by a coalescing
compact binary dies off at high frequency, once the newly
formed object (be it a BH or a NS) settles down to a
stationary equilibrium configuration. In the case of BH
binaries, the GW amplitude drops at the frequency of the
dominant (l ¼ m ¼ 2, n ¼ 0) QNM mode of the remnant
BH. In the case of BH-NS binaries, the cutoff, or shut down,
frequency has received much attention because, depending

TABLE III. 1� �RPN=�BHNS [in round brackets: 1� �BHBH=�BHNS] for several detectors. �RPN is the SNR calculated with the
restricted PN model, while �BHNS and �BHBH are the SNRs obtained using our phenomenological BH-NS model and the PhenomC
model. The numbers reported are percentages.

LIGO Virgo KAGRA ET

Run label Adv AdvZDHP Adv varBRSE maxBRSE varDRSE B C

EOSBQ5M135 �9:6 (0.0) �6:5 (0.0) �6:7 (0.0) �7:0 (0.0) �7:2 (0.0) �8:1 (0.0) �6:5 (0.0) �4:8 (0.0)

EOSHQ5M135 �9:6 (0.0) �6:5 (0.0) �6:7 (0.0) �7:0 (0.0) �7:2 (0.0) �8:1 (0.0) �6:5 (0.0) �4:8 (0.0)

EOS2HQ5M135 �9:6 (0.0) �6:5 (0.0) �6:7 (0.0) �7:0 (0.0) �7:2 (0.0) �8:1 (0.0) �6:5 (0.0) �4:8 (0.0)

EOSBQ4M135 �7:8 (0.0) �5:4 (0.0) �5:8 (0.0) �5:8 (0.0) �5:9 (0.0) �6:6 (0.0) �5:3 (0.0) �4:0 (0.0)

EOSHQ4M135 �7:8 (0.0) �5:4 (0.0) �5:8 (0.0) �5:8 (0.0) �5:9 (0.0) �6:6 (0.0) �5:3 (0.0) �4:0 (0.0)

EOS2HQ4M135 �8:4 (�0:5) �5:9 (� 0:5) �6:3 (� 0:6) �6:3 (� 0:5) �6:4 (� 0:5) �7:2 (� 0:5) �5:9 (� 0:5) �4:5 (� 0:5)

EOSBQ3M135 �6:1 (0.0) �4:3 (0.0) �4:8 (0.0) �4:6 (0.0) �4:6 (0.0) �5:2 (0.0) �4:2 (0.0) �3:2 (0.0)

EOSHBQ3M135 �6:1 (0.0) �4:3 (0.0) �4:8 (0.0) �4:6 (0.0) �4:6 (0.0) �5:2 (0.0) �4:2 (0.0) �3:2 (0.0)

EOSHQ3M135 �6:1 (0.0) �4:3 (0.0) �4:8 (0.0) �4:6 (0.0) �4:6 (0.0) �5:2 (0.0) �4:2 (0.0) �3:2 (0.0)

EOS2HQ3M135 �7:1 (� 1:0) �5:2 (� 0:9) �5:9 (� 1:0) �5:5 (� 0:9) �5:5 (� 0:9) �6:1 (� 0:9) �5:1 (� 0:9) �4:0 (� 0:8)

EOSBQ2M135 �4:5 (� 0:1) �3:3 (� 0:1) �3:7 (� 0:1) �3:4 (� 0:1) �3:5 (� 0:1) �3:8 (� 0:1) �3:2 (� 0:1) �2:5 (� 0:1)

EOSHBQ2M135 �4:6 (� 0:2) �3:4 (� 0:2) �3:9 (� 0:2) �3:5 (� 0:2) �3:6 (� 0:2) �4:0 (� 0:2) �3:3 (� 0:2) �2:6 (� 0:2)

EOSHQ2M135 �4:8 (� 0:4) �3:5 (� 0:4) �4:0 (� 0:4) �3:7 (� 0:3) �3:7 (� 0:3) �4:1 (� 0:4) �3:4 (� 0:3) �2:7 (� 0:3)

EOS2HQ2M135 �5:0 (� 0:6) �3:7 (� 0:6) �4:3 (� 0:7) �3:8 (� 0:5) �3:8 (� 0:5) �4:3 (� 0:5) �3:6 (� 0:5) �2:8 (� 0:5)

EOSBQ2M12 �4:4 (� 0:4) �3:3 (� 0:4) �3:7 (� 0:4) �3:4 (� 0:4) �3:4 (� 0:3) �3:8 (� 0:4) �3:2 (� 0:3) �2:5 (� 0:3)

EOSHBQ2M12 �4:5 (� 0:5) �3:4 (� 0:5) �3:8 (� 0:5) �3:5 (� 0:4) �3:5 (� 0:4) �3:9 (� 0:5) �3:2 (� 0:4) �2:6 (� 0:4)

EOSHQ2M12 �4:5 (� 0:5) �3:4 (� 0:5) �3:9 (� 0:5) �3:5 (� 0:5) �3:5 (� 0:5) �3:9 (� 0:5) �3:3 (� 0:5) �2:6 (� 0:4)

EOS2HQ2M12 �4:7 (� 0:6) �3:6 (� 0:7) �4:3 (� 0:9) �3:6 (� 0:6) �3:6 (� 0:5) �4:0 (� 0:6) �3:4 (� 0:5) �2:7 (� 0:5)

EOS15HQ5M135 �9:6 (0.0) �6:5 (0.0) �6:7 (0.0) �7:0 (0.0) �7:2 (0.0) �8:1 (0.0) �6:5 (0.0) �4:8 (0.0)

EOS15HQ4M135 �7:8 (0.0) �5:4 (0.0) �5:8 (0.0) �5:8 (0.0) �5:9 (0.0) �6:6 (0.0) �5:4 (0.0) �4:1 (0.0)

EOS15HQ3M135 �6:6 (� 0:5) �4:8 (� 0:5) �5:3 (� 0:5) �5:0 (� 0:5) �5:1 (� 0:5) �5:7 (� 0:5) �4:7 (� 0:4) �3:7 (� 0:4)

EOS125HQ2M135 �4:9 (� 0:5) �3:6 (� 0:5) �4:1 (� 0:5) �3:8 (� 0:4) �3:8 (� 0:4) �4:2 (� 0:5) �3:5 (� 0:4) �2:8 (� 0:4)

EOS15HQ2M135 �4:9 (� 0:5) �3:7 (� 0:5) �4:2 (� 0:6) �3:8 (� 0:5) �3:8 (� 0:5) �4:3 (� 0:5) �3:6 (� 0:5) �2:8 (� 0:5)

EOSBlQ2M135 �4:5 (� 0:1) �3:3 (� 0:1) �3:8 (� 0:1) �3:4 (� 0:1) �3:5 (� 0:1) �3:9 (� 0:1) �3:2 (� 0:1) �2:5 (� 0:1)

EOSHBlQ2M135 �4:6 (� 0:2) �3:4 (� 0:2) �3:9 (� 0:2) �3:5 (� 0:2) �3:6 (� 0:2) �4:0 (� 0:2) �3:3 (� 0:2) �2:6 (� 0:2)

EOSHlQ2M135 �4:7 (� 0:4) �3:5 (� 0:3) �4:0 (� 0:4) �3:7 (� 0:3) �3:7 (� 0:3) �4:1 (� 0:3) �3:4 (� 0:3) �2:7 (� 0:3)

EOS125HlQ2M135 �4:9 (� 0:5) �3:6 (� 0:4) �4:1 (� 0:5) �3:8 (� 0:4) �3:8 (� 0:4) �4:2 (� 0:4) �3:5 (� 0:4) �2:8 (� 0:4)

EOS15HlQ2M135 �4:9 (� 0:5) �3:7 (� 0:5) �4:2 (� 0:5) �3:8 (� 0:5) �3:8 (� 0:5) �4:2 (� 0:5) �3:5 (� 0:5) �2:8 (� 0:4)

EOSBsQ2M135 �4:4 (0.0) �3:2 (0.0) �3:6 (0.0) �3:3 (0.0) �3:3 (0.0) �3:7 (0.0) �3:1 (0.0) �2:4 (0.0)

EOSHBsQ2M135 �4:6 (� 0:2) �3:4 (� 0:2) �3:9 (� 0:2) �3:5 (� 0:2) �3:6 (� 0:2) �4:0 (� 0:2) �3:3 (� 0:2) �2:6 (� 0:2)

EOSHsQ2M135 �4:8 (� 0:4) �3:6 (� 0:4) �4:0 (� 0:4) �3:7 (� 0:4) �3:7 (� 0:4) �4:1 (� 0:4) �3:4 (� 0:4) �2:7 (� 0:4)

EOS125HsQ2M135 �4:9 (� 0:5) �3:7 (� 0:5) �4:2 (� 0:5) �3:8 (� 0:5) �3:8 (� 0:5) �4:2 (� 0:5) �3:5 (� 0:5) �2:8 (� 0:4)

EOS15HsQ2M135 �5:0 (� 0:6) �3:7 (� 0:6) �4:3 (� 0:6) �3:8 (� 0:5) �3:9 (� 0:5) �4:3 (� 0:5) �3:6 (� 0:5) �2:8 (� 0:5)

EOSBssQ2M135 �4:4 (0.0) �3:2 (0.0) �3:7 (0.0) �3:3 (0.0) �3:4 (0.0) �3:8 (0.0) �3:1 (0.0) �2:4 (0.0)

EOSHBssQ2M135 �4:6 (� 0:2) �3:4 (� 0:2) �3:8 (� 0:2) �3:5 (� 0:2) �3:5 (� 0:2) �3:9 (� 0:2) �3:3 (� 0:2) �2:6 (� 0:2)

EOSHssQ2M135 �4:8 (� 0:6) �3:6 (� 0:6) �4:1 (� 0:7) �3:7 (� 0:5) �3:8 (� 0:5) �4:2 (� 0:5) �3:5 (� 0:5) �2:8 (� 0:5)

EOS125HssQ2M135 �5:0 (� 0:4) �3:7 (� 0:4) �4:2 (� 0:4) �3:8 (� 0:4) �3:9 (� 0:4) �4:3 (� 0:4) �3:6 (� 0:4) �2:8 (� 0:4)

EOS15HssQ2M135 �5:0 (� 0:6) �3:7 (� 0:5) �4:3 (� 0:6) �3:8 (� 0:5) �3:8 (� 0:5) �4:3 (� 0:5) �3:6 (� 0:5) �2:8 (� 0:5)
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on the dynamical history of the system, this frequency may
originate from the tidal disruption of the NS. A cutoff
frequency in the GW amplitude of BH-NS binaries that is
due to the tidal disruption of the NS by the BH is dependent
on the NS EOS. This has suggested the idea of examining
the cutoff frequency of GWs emitted by mixed binaries in
order to pin down the NS EOS (see e.g. [70–72]).

The first studies of cutoff frequencies, fCut, for BH-NS
binaries involved either semianalytical [70–72] or
fully numerical [73] (quasi)equilibrium approaches.

More recent estimates of fCut were determined via
fully relativistic numerical simulations of BH-NS
mergers [45,52,74]. In these cases, fCut was defined to
be a parameter obtained from analytical fits of the nu-
merical GW data. This definition has the drawback of
being viable only if numerical data are available for the
binary of interest. Furthermore, the form of the fit to the
GW data (and therefore the definition of the cutoff
frequency) had to be revised when nonzero BH spins
were considered.

FIG. 9 (color online). The cutoff frequency fCut, as defined in Eq. (44), computed with our BH-NS GW amplitude model.
We consider the EOSs B, HB, H, 2H, and report contour lines in Hz, with a spacing of 250 Hz. The two white lines in each panel
divide the plane in three regions: a top-right one in which the BH-NS coalescences are nondisruptive, a bottom-left one in which
they are disruptive, and a middle region in which mildly disruptive coalescences occur. This classification is discussed in
Sec. IV B.
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In order to overcome these drawbacks, here we intro-
duce a general definition of fCut that is of immediate
application to any BH-NS GW spectrum, be it analytical
or numerical. Our definition allows for a straightforward
comparison among GW spectra originating from different
models and/or calculations for the same binary, and for
consistent comparisons among binaries with different
physical parameters. The expression of the GW amplitude
~APhenðfÞ in Eq. (25) shows that at low frequencies, during

the inspiral stage, ~APhenðm0fÞ � ðm0fÞ�7=6. At high fre-

quencies, instead, we have ~APhenðm0fÞ � ðm0fÞ�19=6.
Furthermore (and as already noted in [27] for the BH-BH
case), the numerical data for BH-NS binaries show a high-

frequency falloff that is faster than ðm0fÞ�19=6: for ex-
ample, in [45] this falloff was fitted by a function of the

form e�ðf=f0Þ�=f, where f0 and � are two positive,
real parameters. These considerations on the low- and

high-frequency behavior imply that ðm0fÞ2 ~hðm0fÞ must
have a global maximum. Therefore we first look for the

frequency fMax such that ðm0fÞ2 ~hðm0fÞ has a maximum,
and then we define fCut to be the frequency (greater than
fMax) at which

em0fCut ~hðm0fCutÞ ¼ m0fMax
~hðm0fMaxÞ: (44)

This definition of the cutoff frequency is independent

of the details of the waveform, and it works for any ~hðfÞ
(given in either analytical or numerical form). We would
once more like to draw the reader’s attention to the conver-
sion formula between dimensionless frequencies of the form
m0f and frequencies in Hz, which is given in Eq. (26).

Using our phenomenological model and the definition
above, we computed contour plots of the cutoff frequency
in the (MNS, MBH=MNS) plane. The results are shown in
Fig. 9, where each panel refers to a different piecewise
polytropic EOS (B, HB, H, 2H). The two white lines in
each panel divide the plane in three regions, following the
classification discussed in Sec. IVB.

In the top-right region the BH-NS coalescence is non-
disruptive. This region is by far the largest for the soft EOS
B (i.e., when the NS structure does not matter much) and it
shrinks as we consider stiffer and stiffer EOSs. The cutoff
frequency in this region is essentially the fundamental
QNM of the remnant BH. In the bottom-left region the
merger is disruptive, and mildly disruptive coalescences
occur in the region comprised between the two white lines.
This plot confirms the conclusion of previous studies
(e.g. [75]), i.e. that the information from tidal disruptions
is confined to high frequencies, where second-generation
detectors will not be very sensitive for hypothetically
typical events at a distance of 100 Mpc or more: even for
the stiffest EOS 2H, the observation of EOS effects will
require third-generation detectors such as ET, that are
sensitive at frequencies * 1 kHz.

What is most interesting (in our view) is that the calcu-
lations presented in Fig. 9 could provide a basis to address

the inverse problem: given future observations of a tidal
disruption frequency, what can we say about the EOS
prevailing in the interior?Wewill address this question after
working out a generalization of the present calculations to
the case of spinning BH-NS mergers.

VIII. CONCLUSIONS

In this paper we developed a phenomenological model
for the frequency-domain gravitational waveform ampli-
tude of nonspinning BH-NS mergers. The model was
calibrated to general relativistic numerical simulations
using a piecewise polytropic neutron star EOS with a
�2 ¼ 3:0 core, and it encompasses the three possible out-
comes of the merger: no tidal disruption, mild, and strong
tidal disruption. We showed that the model is very accurate
even in the most challenging cases, namely when the core
EOS has a very small polytropic exponent and the binary
mass ratio is small (�2 ¼ 2:4 and Q ¼ 2), so that the
frequency at the onset of tidal disruption and the ringdown
frequency of the final BH are very close to each other
(fRD ’ ftide). A MATHEMATICA notebook implementing
the algorithm is publicly available online [76].
We demonstrated that such an accurate modeling of the

waveform amplitude is probably unnecessary for SNR
calculations and rate estimates from nonspinning BH-NS
binaries (cf. [9,10]), in the sense that BH-BH phenomeno-
logical waveforms provide SNRs accurate within about a
percent for second- and third-generation GW interferome-
ters. This may not be true for mergers of spinning BH-NS
binaries: by comparing SNRs for GWs obtained with the
PhenomC model of [27] and with the model of [17], we
found differences up to �10%. The most immediate (and
probably the most useful) application of the model will be
to extract information on the nuclear EOS from future
high-frequency GW observations, using e.g. the high-
frequency signal cutoff frequencies that we provided in
Fig. 9 (see [70–72] for previous studies in this direction).
In the near future we plan to extend and improve the

model as longer and more accurate numerical waveforms
become available. In particular, we will improve the model
in the underconstrained mild tidal disruption regime, ex-
tend it to aligned, spinning binaries [17,45], and possibly
also to precessing/inclined binaries [46,77]. Future work
should also address the development of a similar phenome-
nological model for the waveform phasing, the extension to
higher multipoles of the radiation (beyond l ¼ m ¼ 2),
and possibly comparisons with the EOB formalism. All
of these extensions will rely critically on the accuracy of
available numerical simulations (see [40,78] for a discus-
sion in the context of NS-NS binaries).
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APPENDIX A: MATCHING NUMERICAL
AND ANALYTICAL AMPLITUDES

When building our amplitude model [Eq. (25)], the first
thing to do is to ensure that the same convention is used for
the overall amplitude of the numerical gravitational
waveform data and in Eq. (1) for the BH-BH PhenomC
GWs of [27], which are our starting point.

We begin by writing out the plus and cross polarization
of the quadrupole moment of the emitted gravitational
radiation. These are

hþ ¼ 1

2
½h22ð�2Y

22 þ �2Y
2�2�Þ þ h�22ð�2Y

22� þ �2Y
2�2Þ�;
(A1)

h	 ¼ i

2
½h22ð�2Y

22 � �2Y
2�2�Þ þ h�22ð�2Y

2�2 � �2Y
2�2Þ�;
(A2)

where the �sY
lm’s denote spin-weighted spherical harmon-

ics. If we pick an optimal observer, that is if we place the
observer ‘‘face-on’’ by setting the angles � ¼ 0 and
 ¼ 0
with respect to the source, the harmonics become

�2Y
22 ¼

ffiffiffiffiffiffiffi
5

4	

s
; (A3)

�2Y
2�2 ¼ 0; (A4)

and reduce the expressions for the two GW polarizations to

hþ ¼ 1

2

ffiffiffiffiffiffiffi
5

4	

s
ðh22 þ h�22Þ; (A5)

h	 ¼ i

2

ffiffiffiffiffiffiffi
5

4	

s
ðh22 � h�22Þ: (A6)

These are the quantities we obtain from our numerical
simulations. We may also express hþ;	 using the ampli-

tude A22 and the phase � of h22 ¼ A22e
2i�. This yields

hþðtÞ ¼
ffiffiffiffiffiffiffi
5

4	

s
jA22ðtÞj cos�ðtÞ; (A7)

h	ðtÞ ¼
ffiffiffiffiffiffiffi
5

4	

s
jA22ðtÞj sin�ðtÞ; (A8)

where we explicitly wrote out the time dependence.
When transforming to the Fourier domain in the

stationary phase approximation,5 special attention must
be paid:

~hþðfÞ ¼
ffiffiffiffiffiffiffi
5

4	

s
jA22ðtfÞj

2

ffiffiffiffi
	

_!

r
ei�ðfÞ; (A9)

~h	ðfÞ ¼
ffiffiffiffiffiffiffi
5

4	

s
jA22ðtfÞj

2

ffiffiffiffi
	

_!

r
ei�ðfÞ; (A10)

where c is the Fourier phase, and where tf is the moment
of time when the instantaneous frequency coincides with
the Fourier variable, i.e.,M!ðtfÞ ¼ 2	f, ! being the time
derivative of �ðtÞ. Notice the 1=2 factor that appears in
these expressions. If one instead transforms directly

h22ðtÞ ¼ A22ðtÞe2i�ðtÞ, as is done in [27], one gets

~h 22ðfÞ ¼ jA22ðtfÞj
ffiffiffiffi
	

_!

r
ei�ðfÞ: (A11)

We then consider the GW strainffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~hþj2 þ j~h	j2

2

s
; (A12)

which is the quantity calculated from our numerical data
and plotted throughout the paper. By using the previous
equalities we see that

TABLE IV. Coefficients of the fit in Eq. (B1) for the total noise data of the three KAGRA configurations considered in this paper:
varBRSE (KAGRAvariable configuration in broadband mode); maxBRSE (KAGRA in broadband mode, optimized for binary neutron
star inspiral detection); varDRSE (KAGRA variable configuration in detuned mode). The noise data for KAGRA is available at the
KAGRA webpage [3].

KAGRA s0 [10�47 Hz�1] f0 [Hz] a2 a1 b05 b1 b2 b3 b4 b5 b16 [10�15]

varBRSE 1.20522 84.3335 0.0653054 0.00563030 0.535848 0.109784 �0:885726 0.160197 0.300831 0.0350983 5.97876

maxBRSE 1.25262 84.3335 0.108905 �0:000260438 �1:27327 2.74441 �2:71327 0.759074 0.354601 0.0389407 5.41997

varDRSE 1.13778 83.3681 0.135200 �0:0194294 �9:81375 17.3277 �10:8376 2.17689 0.889623 0.0510381 7.17394

5This is done to obtain the ~APN terms of Eq. (1) used in [27]
and here.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j~hþj2 þ j~h	j2

2

s
¼ 1

2

ffiffiffiffiffiffiffi
5

4	

s
jA22ðtfÞj

ffiffiffiffi
	

_!

r
¼ 1

2

ffiffiffiffiffiffiffi
5

4	

s
j~h22j:
(A13)

This shows that the factor

1

2

ffiffiffiffiffiffiffi
5

4	

s
(A14)

must be used to translate between the PN frequency-
domain expression of [27] and the amplitude seen by an
observer in the direction of the rotational axis of the binary.

APPENDIX B: KAGRA SENSITIVITY CURVE FITS

In thisAppendixweprovide analytical fits to the estimated
sensitivity limits of KAGRA, available at the KAGRAweb-
page [3]. We consider three different configurations. In the
first case, we fit the total noise data for the KAGRAvariable
configuration in broadband mode (varBRSE); in the second
case, we look at the total noise curve of KAGRA in the
broadband mode, optimized for binary neutron star inspiral
detection without detuning (maxBRSE); in the third and last
case, we examine the variable KAGRA configuration in
detuned mode (varDRSE).

The total noise data for the three KAGRA configurations
may be fitted with the following curve:

ShðfÞ ¼ s0

�
a2 �f

2 þ a1 �fþ 1þ b05ffiffiffi
�f

q þ b1
�f
þ b2

�f2

þ b3
�f3
þ b4

�f4
þ b5

�f5
þ b16

�f16

�
; (B1)

where �f ¼ f=f0, f0 being the frequency location of
the minimum of the quantum noise in the configuration
one is considering. This is 84.3335 Hz in broadband
mode, i.e. for varBRSE and maxBRSE, and 83.3681 Hz
in detuned mode, that is, for varDRSE. The form of this
fit follows automatically when considering the individual
contributions to the total noise and adding them up. There
are two power laws for the mirror noise, one for the
seismic noise, one for the suspension noise, and seven
for the total quantum noise. The mirror noise and the total
quantum noise share a �1=f term so that there is a total
of ten power laws and, hence, of ten parameters to be
fitted. The results of the fits are collected in Table IV for
the three KAGRA configurations varBRSE, maxBRSE,
and varDRSE, and are shown in the three panels of
Fig. 10, along with the original data.
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FIG. 10 (color online). Total noise data for KAGRA (dashed
blue) and its best fit (continuous orange). The top panel refers to the
variableKAGRAconfiguration in broadbandmode (varBRSE); the
middle panel refers to KAGRA in broadband mode and optimized
for binary neutron star inspiral detection (maxBRSE); the bottom
panel refers to the variable KAGRA configuration in detunedmode
(varDRSE).
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