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We carry out numerical-relativity simulations of coalescing binary neutron stars in a scalar-tensor theory
that admits spontaneous scalarization. We model neutron stars with realistic equations of state. We choose
the free parameters of the theory taking into account the constraints imposed by the latest observations of
neutron-star–white-dwarf binaries with pulsar timing. We show that even within those severe constraints,
scalarization can still affect the evolution of the binary neutron stars, not only during the late inspiral but
also during the merger stage. We also confirm that even when both neutron stars have quite small scalar
charge at large separations, they can be strongly scalarized dynamically during the final stages of the
inspiral. In particular, we identify the binary parameters for which scalarization occurs either during the late
inspiral or only after the onset of the merger when a remnant, supramassive, or hypermassive neutron star is
formed. We also discuss how those results can impact the extraction of physical information on
gravitational waves once they are detected.
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I. INTRODUCTION

Coalescing binary neutron stars are among the most
promising sources for the next-generation of kilometer-size
gravitational-wave detectors such as advanced LIGO,
advanced Virgo, and KAGRA (or LCGT) [1]. These detec-
tors will be operational within the next five years. Based on
the current estimates of event rates from binary neutron stars,
we expect that advanced detectors will observe ∼0.4–400
events per year at the distance of 200Mpc [2,3], which is the
average distance the advanced detectors will be sensitive to.
Thus, likely, the first detection(s) of gravitational waves will
happen before the end of this decade by observing gravita-
tional waves emitted by coalescing binary neutron stars.
One of the most interesting payoffs of gravitational-wave

observations is the exploration of the validity of general
relativity in the strong-field dynamical regime. Scalar-
tensor gravity is the simplest and most well-motivated
class of alternative theories to general relativity—for
example, it has been postulated as a possible low-energy
limit of string theory. The most popular scalar-tensor
gravity theory was proposed by Jordan, Fierz, Brans,
and Dicke (JFBD) [4–6] (see also Ref. [7] for a review).
The JFBD theory depends on one single, constant param-
eter, ωBD, which determines the coupling strength between
the gravitational and scalar fields. This parameter has been
strongly constrained by a number of observations and
experiments [8]. In particular, the experiments performed
using the Cassini spacecraft [9] imply ωBD ≳ 4 × 104.
There exist generalizations of the JFBD scalar-tensor

theory that still satisfy the weak but not the strong

equivalence principle and have richer phenomenology.
An interesting class of theories is the one proposed by
Damour and Esposito-Farése [10–12] in the early 1990s. In
their models, ωBD is no longer constant but depends on the
scalar field ϕ, i.e., ωðϕÞ. The latter can be chosen to be
sufficiently large in the weakly gravitating field of a star,
such as the Sun, so that it satisfies experimental tests [9],
but it may be significantly small, e.g., ω ¼ Oð1Þ, in the
strongly gravitating field in the vicinity of massive neutron
stars. Because gravitational-wave observations will probe
the strong-field dynamical regime of coalescing neutron
stars, they could detect or constrain those alternative theories
to general relativity. Other modified theories to general
relativity have been proposed in the literature [8]. Among
them, the fðRÞ theories were introduced as an alternative
to the conventional dark-energy model, to provide an
explanation for the acceleration of the Universe. Those
theories can be recast into the form of a scalar-tensor theory
[13]. The Einstein-aether theory [14] violates Lorentz
symmetry due to the existence of a preferred time direction
at each spacetime point. The free parameters in the Einstein-
aether theory have been constrained with a variety of
observations [15].
Coalescing compact-body binaries offer a unique labo-

ratory to test alternative theories to general relativity
through gravitational-wave observations. To reach this
goal, the two-body dynamics and gravitational-wave emis-
sion in modified theories have been computed analytically,
in an approximated way, via the post-Newtonian frame-
work [7,16–18] and more recently, also numerically,
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solving the field equations with all the nonlinearities
[19–22]. Here we focus on the scalar-tensor theory by
Damour and Esposito-Farése (DEF) [10–12] and study its
strong-field dynamical regime by performing numerical-
relativity simulations of coalescing binary neutron stars.
As we shall see below, the possibility of observing deviations
from general relativity in the gravitational waveforms in
those theories may be possible because (i) neutron stars in
binaries can have large component masses (i.e., larger than
the canonical value 1.4M⊙); (ii) the merger remnant is a
neutron star with a large mass; (iii) scalarization enhances the
gravitational interaction between the two neutron stars,
reducing the time to merger [20]; and (iv) neutron stars
can be strongly scalarized during the last stages of the
inspiral and plunge even if one or both neutron stars [20] had
a quite small scalar charge at much larger separations. This
latter phenomenon opens the possibility of observing devia-
tions from general relativity via direct detection of gravita-
tional waves from binary neutron stars even if the indirect
observation of gravitational-waves via pulsar timing [23,24]
did not detect any deviation at much larger separations.
Reference [20] has recently performed numerical-

relativity simulations of binary neutron stars in the DEF
theory. Here, we shall investigate in more detail several
interesting features found in Ref. [20] and improve their
work in different directions. First, we start the numerical
simulations from quasiequilibrium configurations that con-
sistently include also the scalar field. By contrast, Ref. [20]
set initially the scalar field to zero. Second, Ref. [20]
employed a simple polytropic equation of state (EOS) with
Γ ¼ 2 for the neutron star. Whereas this choice of the EOS
may be acceptable for a qualitative study, it does not
describe very realistic neutron stars. As we shall see below,
the degree of scalarization in neutron stars does depend on
the EOS. Thus, if we want to make realistic predictions, we
need to employ realistic EOS, which is what we do here.
Third, as a first study, Ref. [20] focused only on the late
stages of inspiral and plunge. They did not investigate in
any detail the merger phase. As we shall find below, the
frequency of gravitational waves emitted by the newly
born, massive neutron star can be strongly modified due to
scalarization—for example, the frequency characteristics
not only depend on the EOS [25,26] but also on the scalar
field. Finally, an important difference between Ref. [20]
and our work is that we carry out the numerical simulation
in the so-called Jordan frame, while Ref. [20] employed the
so-called Einstein frame.
This paper is organized as follows. In Sec. II, we describe

the basic equations of the scalar-tensor model employed
here and the numerical methods used to carry out the
numerical simulations. We also briefly discuss how we
build the quasiequilibrium initial conditions (for more
details, see Ref. [27]). In Sec. III, we discuss the phe-
nomenon of spontaneous scalarization for a single neutron
star and describe how we choose the free parameters in our

scalar-tensor model taking into account constraints from
pulsar-timing observations of binary pulsars [23,24]. In
addition, we explain how dynamical scalarization can occur
in close binaries of neutron stars. In Sec. IV, we present the
results of the numerical simulations and discuss the effect
of scalarization on thegravitationalwaveforms during the last
stages of inspiral, plunge, andmerger. SectionVis devoted to
a summary and a discussion of future studies. Finally, in
Appendix A, we check the validity of the numerical code
developed for scalar-tensor theories by performing simula-
tions of spherical neutron stars. In Appendix B, we study the
numerical convergence of the simulations, and we estimate
the numerical errors due to resolution.
Throughout this paper, we employ the geometrical units

c ¼ 1 ¼ G where c and G are the speed of light and bare
gravitational constant, respectively. Subscripts a; b; c;…
denote the spacetime components while i, j, k, and l denote
the spatial components, respectively.

II. NUMERICAL SIMULATIONS IN
SCALAR-TENSOR GRAVITY

A. Basic equations

We briefly summarize the basic equations of the JFBD-
type scalar-tensor theory in the 3þ 1 formulation. Scalar-
tensor theories of the simplest form are composed of the
spacetime metric gab and a single real scalar field ϕ that
determines the strength of the coupling between the matter
and the gravitational field. The action in the so-called
Jordan frame is

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi−gp �
ϕR − ωðϕÞ

ϕ
gab∇aϕ∇bϕ

�

−
Z

d4x
ffiffiffiffiffiffi−gp

ρð1þ εÞ; (1)

whereR is the Ricci scalar associated with gab, ρ is the rest-
mass density, and ε is the specific internal energy. We note
that in this paper, we describe the matter component with a
perfect fluid. The equations of motion are

Gab¼8πϕ−1TabþωðϕÞϕ−2
�
ð∇aϕÞ∇bϕ−1

2
gabð∇cϕÞ∇cϕ

�

þϕ−1ð∇a∇bϕ−gab□gϕÞ; (2)

□gϕ ¼ 1

2ωðϕÞ þ 3

�
8πT − dω

dϕ
ð∇cϕÞ∇cϕ

�
; (3)

∇aTa
b ¼ 0; (4)

where Gab and ∇a are the Einstein tensor and covariant
derivative associated with gab, □g is ∇a∇a, ωðϕÞ deter-
mines the strength of the coupling between the gravitational

SHIBATA et al. PHYSICAL REVIEW D 89, 084005 (2014)

084005-2



and scalar fields, and Tab is the stress-energy tensor of the
perfect fluid with T ¼ Ta

a. The matter is coupled only to
the gravitational field in the Jordan frame, as Eq. (4) shows,
and hence, the equations for the perfect fluid are the same
as those in general relativity in this frame. In the following,
we write Eqs. (2) and (3) in the 3þ 1 formulation.
The basic equations in the 3þ 1 formulation for the

gravitational field are derived simply by contracting nanb,
naγbi , and γai γ

b
j with Eq. (2). Here, γab denotes the spatial

metric, and na is the unit normal to spatial hypersurfaces. A
straightforward calculation yields the Hamiltonian con-
straint as

Rk
k þ K2 − KijKij ¼ 16πϕ−1ρh þ ωϕ−2½Π2 þ ðDiϕÞDiϕ�

þ 2ϕ−1ð−KΠþDiDiϕÞ; (5)

where Rk
k is the three-dimensional Ricci scalar, Di is the

covariant derivative with respect to the spatial metric,
ρh ≔ Tabnanb, Π ≔ −na∇aϕ, and Kij is the extrinsic
curvature with K its trace.
The momentum constraint is written as

DiKi
j −DjK ¼ 8πϕ−1Jj þ ωϕ−2ΠDjϕ

þ ϕ−1ðDjΠ − Ki
jDiϕÞ; (6)

where Ji ≔ −Tabnaγbi.
Finally, the evolution equation is

∂tKij ¼ αRij − 8 παϕ−1
�
Sij − 1

2
γijðS − ρhÞ

�

þ αð−2KikKj
k þ KKijÞ −DiDjαþ βkDkKij

þ KikDjβ
k þ KkjDiβ

k − αωϕ−2ðDiϕÞDjϕ − αϕ−1

×

�
DiDjϕ − KijΠþ 1

2ð2ωþ 3Þ γij

×

�
8πT þ dω

dϕ
ðΠ2 − ðDkϕÞDkϕÞ

��
; (7)

where Rij is the spatial Ricci tensor and Sij ≔ Tabγ
a
iγ

b
j

with S its trace. Equation (7) together with the Hamiltonian
constraint yields the following evolution equation for K:

ð∂t−βk∂kÞK¼4παϕ−1ðSþρhÞþαKijKij−DiDiα

þαωϕ−2Π2þαϕ−1
�
DiDiϕ−KΠ− 3

2ð2ωþ3Þ

×

�
8πTþdω

dϕ
ðΠ2−ðDkϕÞDkϕÞ

��
: (8)

The left-hand side of Eq. (3) is recast in the form

□gϕ ¼ DaDaϕþ ðDa ln αÞDaϕþ ð∇anaÞΠþ na∂aΠ;

(9)

and then Eq. (3) is rewritten into a set of equations that are
first order in the time derivatives:

ð∂t − βk∂kÞϕ ¼ −αΠ; (10)

ð∂t − βk∂kÞΠ ¼ −αDiDiϕ − ðDiαÞDiϕþ αKΠ

þ α

2ωþ 3

�
8πT − dω

dϕ
ð∇cϕÞ∇cϕ

�
: (11)

The evolution equations for the gravitational fields are
solved in the Baumgarte–Shapiro–Shibata–Nakamura for-
malism [28,29] with the moving-puncture gauge [30–32] as
we have been doing in general relativity [33]. In particular,
we evolve the conformal factor W ≔ γ−1=6, the conformal
metric ~γij ≔ γ−1=3γij, the trace of the extrinsic curvature K,
the conformally weighted trace-free part of the extrinsic
curvature ~Aij ≔ γ−1=3ðKij − Kγij=3Þ, and the auxiliary
variable ~Γi ≔ −∂j ~γ

ij. Introducing the auxiliary variable
Bi and a parameter ηs, which we typically set to be ∼m−1,
m being the total mass of the system, we employ the
moving-puncture gauge in the form [34]

ð∂t − βj∂jÞα ¼ −2 αK; (12)

ð∂t − βj∂jÞβi ¼ ð3=4ÞBi; (13)

ð∂t − βj∂jÞBi ¼ ð∂t − βj∂jÞ ~Γi − ηsBi: (14)

The spatial derivative is evaluated by a fourth-order central
finite difference except for the advection terms, which are
evaluated by a fourth-order noncentered finite difference.
We employ a fourth-order Runge–Kutta method for the
time evolution. For the scalar field, we use the same scheme
as those for the tensor field because the structure of the
equations is essentially the same.
To solve the hydrodynamics equations, we evolve

ρ� ≔ ραutW−3, ûi ≔ hui, and e� ≔ hαut − P=ðραutÞ with
ua, P, h being the 4-velocity, pressure, and specific
enthalpy. The advection terms are handled with a high-
resolution central scheme by Kurganov and Tadmor [35]
with a third-order piecewise parabolic interpolation for the
cell reconstruction. For the EOS, we decompose the
pressure and specific internal energy into cold and thermal
parts as

P ¼ Pcold þ Pth; ε ¼ εcold þ εth: (15)

Here, Pcold and εcold are functions of ρ, and their forms
are determined by nuclear-theory-based zero-temperature
EOSs. Specifically, the cold parts of both variables are
determined using the piecewise polytropic EOS (see, e.g.,
Ref. [36] for details).
Then the thermal part of the specific internal energy

is defined from ε as εth ≔ ε − εcold. Because εth vanishes
in the absence of shock heating, εth is regarded as the
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finite-temperature part. In this paper, we adopt a Γ-law
ideal gas EOS,

Pth ¼ ðΓth − 1Þρεth; (16)

to determine the thermal part of the pressure, and choose
Γth equal to 1.8 following Ref. [37].

B. Choice of the functional form of ω and equations
for the scalar field

To obtain a scalar-tensor model with spontaneous
scalarization, we use the function for ωðϕÞ,

1

ωðϕÞ þ 3=2
¼ B lnϕ; (17)

where B is a free parameter. For reasons that will become
clear below, we also introduce the field φ defined as
ϕ ¼ expðφ2=2Þ. If we want to compare our model (17)
with the one used in Refs. [10–12], we should consider that
Damour and Esposito-Farése worked in the Einstein frame,
while we use the Jordan frame. In the Einstein frame, one
introduces the field φ̄,1 which is related to ϕ through the
following equations:

ϕ ¼ 1

A2ðφ̄Þ ; (18)

α2ðφ̄Þ ¼
�∂ lnAðφ̄Þ

∂φ̄
�
2

¼ 1

2ωðϕÞ þ 3
: (19)

The simplest function that the authors of Refs. [10–12]
used to generate spontaneous scalarization is

Aðφ̄Þ ¼ e
1
2
βφ̄2

: (20)

We have α0 ¼ ð∂ lnA=∂φ̄Þφ̄¼φ̄0
¼ βφ̄0 and β0 ¼

ð∂2 lnA=∂φ̄2Þφ̄¼φ̄0
¼ β. Moreover, φ ¼ ffiffiffiffiffiffiffiffiffi−2βp

φ̄, so we
find that B ¼ −2β. In summary, the parameters ðφ̄0; β0Þ
in Refs. [10–12] play a role similar to the parameters
ðφ0; BÞ in this paper. As in previous works [10–12,20], we
focus in this paper on the cases with B≲ 10.
We note that when ω ¼ const, the scalar-field equa-

tion (3) is a simple wave equation for ϕ, i.e., it is a
hyperbolic partial differential equation, and it has a well-
posed initial value problem. However, when ω is not a
constant, such as in Eq. (17), ϕ does not obey a wave
equation because of the presence of the second term in the
right-hand side of Eq. (3). To derive a wave equation, at
least in the far zone, it is convenient to introduce φ, which is
related to ϕ by

ϕ ¼ expðφ2=2Þ: (21)

Then, the equation for φ reduces to

□gφ ¼ 2πBTφ expð−φ2=2Þ − φð∇cφÞ∇cφ: (22)

In the far zone, the right-hand side of this equation falls off
sufficiently rapidly, and hence φ obeys a wave equation in
the far zone.
We find it convenient to introduce a new variable Φ ≔

−na∇aφ and replace Eqs. (10) and (11) by

ð∂t − βk∂kÞφ ¼ −αΦ; (23)

ð∂t − βk∂kÞΦ ¼ −αDiDiφ − ðDiαÞDiφ − αφð∇aφÞ∇aφ

þ αKΦþ 2παBTφ expð−φ2=2Þ: (24)

Here, the boundary condition for r → ∞ should be
φ ¼ φ0 ≠ 0, where ϕ0 ¼ expðφ2

0=2Þ. In addition, we have
Π ¼ ϕφΦ and Diϕ ¼ ϕφDiφ, and, in a straightforward
manner, we can replace ðϕ;ΠÞ to ðφ;ΦÞ in all the
gravitational-field equations.
Lastly, since in the far zone ϕ ¼ eφ

2=2 → 1þ φ2=2, the
asymptotic form of ϕ is 1þ φ2

0=2þ φ0ðφ − φ0Þþ
O½ðφ − φ0Þ2�. As we shall find in Sec. III, because of
observational constraints, φ0 has to be sufficiently small,
and thus thewavecomponents inϕ [i.e.,φ0ðφ − φ0Þ] are also
quitesmall.This implies thatscalar-typegravitationalwaves
[7], which are directly related to ϕ, are negligible in this
theory,althoughscalarwavesassociatedwithφareemittedto
carry energy and angular momentum from the system.

C. Equations of state employed

In this paper, we employ APR4 [38] and H4 [39] EOSs
as in Refs. [26,36]. We remind the reader that the APR4
EOS was derived by a variational method with modern
nuclear potentials for the hypothetical components com-
posed of neutrons, protons, electrons, and muons. The H4
EOS was derived by a relativistic mean-field theory
including the effects of hyperons. Here, for both EOSs,
the maximum allowed mass of spherical neutron stars is
larger than 2M⊙ (≈2.20M⊙ for APR4 and ≈2.03M⊙ for
H4), and hence the observational constraints by the latest
discovery of two-solar mass neutron stars [24,40] are
satisfied for these EOSs. The main difference between
the two EOSs is that APR4 is a stiff but relatively soft EOS
(i.e., the maximum mass is sufficiently large, but the stellar
radius of a spherical neutron star with canonical mass
1.35M⊙ is small ≈11 km), while H4 is a relatively stiff
EOS in which the stellar radius of a spherical neutron star
with canonical mass 1.35M⊙ is ≈13.5 km. This stiffness is
quite important for determining the properties of the
scalarized neutron stars, as we shall describe in Sec. III.

1We note that in Refs. [10–12], the authors denote the scalar
field φ̄ with φ.
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D. Initial conditions for quasiequilibrium
configurations

We now explain how we prepare the initial conditions of
the numerical simulations using quasiequilibrium configu-
rations for a binary in a circular orbit with angular velocity
Ω. To derive quasiequilibrium configurations, we adopt the
conformal flatness formulation, that is,

γij ¼ ψ4fij; (25)

and we assume the presence of a helical Killing vector,
ð∂t þΩ∂φ̂Þa, and the maximal slicingK ¼ 0 [41]. Here, fij
is the flat spatial metric and φ̂ is the azimuthal coordinate.
For the fluid part, the equations are the same as those in
Einstein’s gravity in the Jordan frame. Thus, assuming that
the velocity field is irrotational, the first integral of the
hydrodynamics equations is readily determined in the same
manner as those in Einstein’s gravity [42].
Thebasicequationsfor the tensor fieldareobtainedfromthe

Hamiltonianandmomentumconstraints, togetherwithEq. (8)
under the condition K ¼ 0. Except for the modifications
introduced by the presence of the scalar fieldϕ, the equations
are the same as that inEinstein’s gravity. TheHamiltonian and
momentum constraints are, respectively, written as

Δ
ð0Þ
ψ ¼ −2πϕ−1ρhψ5 − 1

8
~Aij

~Aijψ5

− ψ5

8
½ωϕ−2fΠ2 þ ðDiϕÞDiϕg þ 2ϕ−1DiDiϕ�

(26)

and

D
ð0Þ

iðψ6 ~Ai
jÞ ¼ ψ6½8πϕ−1Jj þ ωϕ−2ΠD

ð0Þ
jϕ

þ ϕ−1ðD
ð0Þ

jΠ − ~Ai
jD
ð0Þ

iϕÞ�; (27)

where Δ
ð0Þ

and D
ð0Þ

i are the Laplacian and covariant derivative
with respect to fij. ~Aij is the trace-free conformal extrinsic
curvature satisfying Kj

i ¼ ~Aj
i for K ¼ 0, and its equation is

derived from the evolution equation for γij with Eq. (25) as

~Aij ¼
1

2α

�
fikD

ð0Þ
jβ

k þ fjkD
ð0Þ

iβ
k − 2

3
fijD

ð0Þ
kβ

k

�
; (28)

where indices of ~Aij, ~A
ij, andD

ð0Þ
i are raised and lowered byfij

and fij. The condition K ¼ 0 yields

Δ
ð0Þ
χ ¼ χψ4

�
2πϕ−1ð2Sþ ρhÞ þ

7

8
~Aij

~Aij

þ 1

8
ωϕ−2f7Π2 − ðDiϕÞDiϕg

þ 3

4ϕ

�
DiDiϕ − 2

ð2ωþ 3Þ

×

�
8πT þ dω

dϕ
ðΠ2 − ðDkϕÞDkϕÞ

���
; (29)

whereχ ≔ αψ .Note thatwewill replace theLaplacian termof
DiDiϕ using the equation for ϕ (see below).
In addition to these equations, we have to solve the

equation for φ. If we simply impose that φ satisfies the
helical symmetry, we have

Φ ¼ −α−1ðΩ∂φ̂ þ βi∂iÞϕ: (30)

In this case, Diϕ and Π in Eq. (11) behave as ∝ r−1 in the
far zone. If so, the spacetime cannot be asymptotically flat
because in the Hamiltonian constraint, there exist terms
in the right-hand side that are proportional to Π2 and
ðDiϕÞDiϕ. Thus, Π and Diϕ have to be of order r−2 in the
far zone. To guarantee this condition, we simply set Π ¼ 0.
Then, Eq. (11) becomes an elliptic-type equation so that
Diϕ ¼ Oðr−2Þ is guaranteed in the far zone. The boundary
condition to be imposed for φ is φ → φ0 for r → ∞. Note
that the resulting elliptic equation for φ can be substituted
in the right-hand side of Eq. (26).
We compute the quasiequilibrium configurations using a

new code that is developed from a general-relativistic code
originally implemented in the spectral-method library
LORENE [43]. We shall present details of the numerical
study of quasiequilibrium configurations in Ref. [27].

E. Definition of masses

In scalar-tensor theories of gravity, there are several
definitions of masses. Here, we review them briefly.
The ADM mass is defined as

MADM ≔
1

16π

I
∞
γjkγilð∂kγij − ∂iγjkÞdS

ð0Þ
l; (31)

where dS
ð0Þ

l is the surface integral operator in flat space andH
∞ denotes

H
r→∞. In the conformally flat spatial hyper-

surface, the ADM mass may be defined as

MADM ≔ − 1

2π

I
∞
Qγjk∂kψdS

ð0Þ
j; (32)

where Q is a function that reduces to unity when r → ∞.
From the asymptotic behavior of ϕ at r → ∞, we can

define the scalar mass MS [7,44] as

ϕ ¼ ϕ0 þ
2MS

r
þO

�
1

r2

�
; (33)

where ϕ0ð¼ expðφ2
0=2ÞÞ is a constant close to unity

because φ0 ≪ 1 (see Sec. III). Equation (33) implies that
the asymptotic behavior of φ is

φ ¼ φ0 þ
Mφ

r
þO

�
1

r2

�
; (34)

where Mφ is constant and related to MS by 2MS=φ0. In
presence of a timelike Killing vector or helical Killing
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vector, we can define the Komar mass [45], which is related
to the ADM mass and the scalar mass by [46]

MK ¼ MADM þ 2MS: (35)

The Komar mass is often referred to as gravitational mass in
scalar-tensor theories of gravity [7].
In addition, it is useful to define the tensor mass [44]

MT ¼ MADM þMS; (36)

which, as Lee showed in Ref. [44], obeys a conservation
law similar to the one that the ADM mass obeys in general
relativity. Thus, in scalar-tensor theories of gravity, we find
it more appropriate to identify the neutron-star mass with
the tensor mass rather than the ADM mass. Henceforth,
we shall use this identification and set the neutron-star
mass MNS ≔ MT.

F. Simulation setup and validation

We perform numerical simulations using an adaptive-
mesh refinement code SACRA-ST that was implemented
by modifying the original code for general relativity [33].
As done for the simulations in Refs. [26,36], the semimajor
diameter of neutron stars is initially covered by ≈100 grid
points (we refer to this grid resolution as high resolution).
For APR4 and H4, the finest grid resolution is ≈0.17 and
0.22 km, respectively. We also perform lower-resolution
simulations covering the semimajor diameter by ≈67 and
80 grid points (we refer to these grid resolutions as low and
medium resolutions) and check that we achieve sufficient
convergence to trust the conclusions of this paper (see
Appendix B for details).
We also confirm the validity of our code by performing

(i) simulations of spherical stars, (ii) long-term evolutions
of scalarized spherical neutron stars, and (iii) collapses of a
scalarized neutron star to a black hole. The success of these
tests gives us confidence in our new scalar-tensor code (see
Appendix A for details).

III. PARAMETERS CHOICE FOR
SPONTANEOUS SCALARIZATION
IN BINARY NEUTRON STARS

In this section, we first review the key mechanism
responsible for spontaneous scalarization in a single star
and then present a physical argument to explain why
scalarization can occur in binary systems even if the scalar
charges at large separations were very small. Furthermore,
for the EOSs employed in this paper, we determine the
values of B and φ0 such that they satisfy the constraints
imposed by pulsar-timing observations [23,24]. We shall
perform numerical simulations for those choices of the
parameters.

A. Spontaneous scalarization in an isolated star

Here, we follow Ref. [10] and review the key idea
underlying spontaneous scalarization. For simplicity we
restrict the discussion to the static case, and we neglect the
gravitational field and nonlinear terms in φ. Within these
approximations, Eq. (22) can be written as

Δφ ¼ 2πBTφ; (37)

where Δ denotes the flat Laplacian. Assuming that rela-
tivistic corrections are small, we have T ≈ −ρ < 0. We also
assume T ¼ const, B > 0, and set k2 ¼ −BT. Considering
that the star is spherically symmetric in isolation, we find
that the solution of Eq. (37) is [10]

φ ¼
8<
:

A
sinðkrÞ

r
r ≤ R;

Mφ

r
þ φ0 r ≥ R;

(38)

where A is a constant and R denotes the stellar radius. The
continuity conditions of φ and dφ=dr at r ¼ R then yield

A ¼ φ0

k cosðkRÞ ; (39)

Mφ ¼ φ0½k−1 tanðkRÞ − R�: (40)

This suggests that for kR → π=2, φ, as well as Mφ,
significantly increases; i.e., the scalarization occurs, irre-
spective of the value of φ0. Thus, the onset of scalarization
depends on three parameters, B, T, and R. Then, if we
assume T ∼ −ρ and use ρR3 ∼MNS, whereMNS is the mass
of the neutron star, we have that kR is proportional to
B1=2ðMNS=RÞ1=2. Thus, we conclude that the scalarization
is determined by two parameters: B and the stellar compact-
ness (or the mass of the neutron star).
For B < 0 or T > 0 (i.e., for BT > 0), the solution of

Eq. (37) in spherical symmetry is [10]

φ ¼
8<
:

A
sinhðkrÞ

r
r ≤ R;

Mφ

r
þ φ0 r ≥ R;

(41)

and the continuity conditions yield

A ¼ φ0

k coshðkRÞ ; (42)

Mφ ¼ φ0½k−1 tanhðkRÞ − R�: (43)

Here we set k2 ¼ BT. Thus, in this case, the scalarization is
not likely to occur for any value of B, T, and R. This
suggests that for the ultrarelativistic case with T ¼ −ρhþ
4P > 0 (and B > 0), the scalarization does not occur.
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The above analysis suggests that when the scalarization
does not occur, Mφ is proportional to φ0, and we can
write

Mφ ¼ FðMNS; BÞφ0; (44)

where F is a function that depends on MNS and B. From a
numerical analysis of spherical neutron stars in equilib-
rium, we indeed find that this relation is satisfied as long as
the spontaneous scalarization does not set in.
In Fig. 1 we plot Mφ as a function of the neutron-star

mass MNS for the APR4 and H4 EOSs, using φ0 ¼ 10−5
and ¼ 5 × 10−5, respectively. We observe the following
interesting properties. IfMNS is smaller than a critical value
MNSc1, Mφ is much smaller than MNS. The critical value
depends strongly on the value of B. For larger values of B,
MNSc1 is smaller, and hence spontaneous scalarization sets
in for smaller neutron-star masses. By contrast, if MNS is
larger than a critical valueMNSc2,Mφ is again much smaller
than MNS. Thus, when neutron stars have sufficiently large
masses, spontaneous scalarization never sets in. This is due
to the fact that for those large masses, the relativistic effects
are so significant thatT ¼ −ρhþ 4P could be positive. This
would imply that observations of neutron stars with large
masses, e.g., ≈2M⊙, may not be very useful in constraining
the value of B. Finally, forMNSc1 < MNS < MNSc2, neutron
stars are spontaneously scalarized, for certain values of B,
e.g., B≳ 8.5 for the APR4 EOS. Indeed, in these cases,Mφ

is on the order ofMNS. Using the qualitative analysis worked
out at the beginning of this section, in particular Eq. (39), we
find that the value of Mφ could diverge when spontaneous
scalarization occurs. However, when using the realistic
nonlinear equation for φ, instead of Eq. (37), we find that
nonlinear effects always constrainMφ to be at most equal to
the neutron-star mass MNS.

B. Condition for scalarization in inspiraling
binary neutron stars

As described in the previous section, for an isolated,
spherical neutron star in which the scalarization has not
occurred, the profile of φ is approximately described by
Eq. (34), whereMφ ≪ MNS. Given this field configuration,
we now suppose that the neutron star is in a binary system
and it is not yet spontaneously scalarized. In this case, it is
natural to assume that Eq. (44) gets approximately modi-
fied by the companion star as

Mφ ≈ FðMNS; BÞ
�
φ0 þ

Mφ

a

�
; (45)

where a is the orbital separation. Namely, the value of φ
just outside the neutron star is enhanced by the presence of
the companion. [Note that for simplicity we are considering
an equal-mass (or nearly equal-mass) binary.] Solving
Eq. (45) for Mφ yields

Mφ ≈ FðMNS; BÞφ0

�
1 − FðMNS; BÞ

a

�−1
; (46)

and hence Mφ can increase steeply and can become on the
order of MNS when a ∼ FðMNS; BÞ. Thus, even if the
values of φ0 and B are such that spontaneous scalarization
of the isolated neutron star is absent or it occurs only
weakly, the neutron star can be strongly scalarized if it is
part of a binary system and if the condition a≲ FðMNS; BÞ
is satisfied. Because this scalarization sets in when the
neutron star is part of a binary system, we denote it
dynamical scalarization to distinguish it from spontaneous
scalarization.2 This property is indeed confirmed in our
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FIG. 1 (color online). Weplot thevalueofMφ asafunctionof theneutron-starmass forspherical, isolatedneutronstarsusing theAPR4and
H4 EOSs and several values of B. The values of φ0 are chosen to be 10−5 and 5 × 10−5 for APR4 and H4 EOSs, respectively.

2We note that Ref. [20] simulated a binary configuration in
which neutron stars are not initially spontaneously scalarized and
found that induced scalarization can set in in the late inspiral.
They also gave a qualitative explanation of this phenomenon
resorting to energetically favored arguments discussed in
Ref. [47].
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accompanying paper [27]. Let us now investigate when the
condition a≲ FðMNS; BÞ holds.
We list in Table I the values of F for different neutron-

star masses and different values of B, for the two EOSs that
we use in this paper, notably APR4 and H4. [When “� � �”
appears, it means that for such a model, the spontaneous
scalarization does occur, and thus Eq. (44) no longer holds.]
For binary neutron stars, the merger occurs typically at
a ¼ 30–45 km ≈ 20–30M⊙ depending on the EOS. This
implies that if F is smaller than 20–30M⊙, dynamical
scalarization does not occur during the inspiral stage. We
find that for dynamical scalarization to occur, F has to be
larger than at least 20M⊙ for APR4 and ∼25M⊙ for H4. As
we see in Table I, for MNS ¼ 1.35M⊙, dynamical scala-
rization can always set in before merger for APR4 EOS
when B≳ 8.0. By contrast, for H4 EOS, dynamical
scalarization can take place only when B≳ 9.0 for
MNS ¼ 1.35M⊙. These properties are confirmed in our
accompanying paper [27].
Before ending this section, we present the analysis for

unequal-mass binary systems. Let Mφ;1 and Mφ;2 be the
values of Mφ for stars 1 and 2. Then, Eq. (45) can be
rewritten in two equations,

Mφ;1 ≈ F1

�
φ0 þ

Mφ;2

a

�
; (47)

Mφ;2 ≈ F2

�
φ0 þ

Mφ;1

a

�
; (48)

where F1 ≔ FðMNS;1; BÞ and F2 ≔ FðMNS;2; BÞ, with
MNS;i being the mass of neutron star i. Equations (47)
and (48) yield

Mφ;1 ≈ φ0F1

�
1þ F2

a

��
1 − F1F2

a2

�−1
; (49)

Mφ;2 ≈ φ0F2

�
1þ F1

a

��
1 − F1F2

a2

�−1
: (50)

Thus, we expect the scalarization to occur when a ≈
ffiffiffiffiffiffiffiffiffiffiffi
F1F2

p
for both neutron stars approximately simultaneously.

C. Constraints from pulsar binary systems

Pulsar-timing observations of binary systems composed
of a neutron star and a white dwarf [23,24] impose the
strongest constraints on B and φ0 for a high value of B≳ 5.
The constraints come primarily from the fact that the scalar-
wave luminosity has to be substantially smaller than the
gravitational-wave luminosity.
The neutron-star masses measured in Refs. [23,24] are

MNS ¼ 1.46þ0.06−0.05M⊙ and MNS ¼ 2.01� 0.04M⊙ at 1σ
error, respectively. As we shall find below, those observa-
tions imply that neutron stars with masses ≲1.46M⊙ and
≳2.01M⊙ cannot be scalarized and that the possible values
of B, which depend on the EOS, are strongly limited.
Although Refs. [23,24] have already constrained the DEF
scalar-tensor model, they did it employing one specific
EOS for the nuclear matter [12]. As we have emphasized
when discussing Fig. 1, the constraint on B depends on the
EOS. Therefore, our analysis, although similar to and
simpler than the one of Refs. [23,24], pays special attention
to the dependence of the constraints on the EOS.
In the following, we work at leading order, that is, we

neglect all higher-order, nonlinear corrections in the lumi-
nosity (see Refs. [12,17,18] for more precise results). The
gravitational-wave luminosity from the tensor quadrupole
moment in a binary system in circular orbits is

dE
dt

����
tensor quad

¼ 32

5

�
μ

m

�
2
�
m
a

�
5

; (51)

where m, μ, and a are the total mass; the reduced mass
MWDMNS=m; and the orbital separation; respectively.
Hereafter, we consider binaries composed of a neutron
star of mass MNS and a white dwarf of mass MWD. We
derive the scalar-wave luminosity from the scalar dipole
moment integrating Eq. (22). The relevant term in the wave
zone is φ → d

:

ini=r where ni is the unit spatial vector
pointing along the radial direction, and di is the scalar
dipole moment with magnitude

a
m
jMWDMφ −MNSMφ;WDj ¼ aμ

���� Mφ

MNS
−Mφ;WD

MWD

����: (52)

Here, Mφ and Mφ;WD are the scalar charges of the neutron
star and white dwarfs, and d

:

i ¼ ðd=dtÞdi. Substituting this
dipole-moment contribution into the stress-energy tensor of
the scalar field, we find that the scalar-wave luminosity

TABLE I. The value of F for the APR4 EOS with φ0 ¼ 10−5
and the H4 EOSs with φ0 ¼ 5 × 10−5. The unit of F is M⊙.
When “� � �” appears, it means that for such a model, the relation
(44) breaks down, thus scalarization occurs.

APR4 B
MNSðM⊙Þ 8.0 8.5 9.0 9.5 10.0

1.30 21 32 62 3.8×102 � � �
1.35 24 39 91 � � � � � �
1.40 27 48 1.6×102 � � � � � �
1.45 30 59 4.0×102 � � � � � �
1.50 34 75 � � � � � � � � �

H4 B
MNSðM⊙Þ 8.0 8.5 9.0 9.5 10.0

1.30 14 18 24 34 54
1.35 16 21 28 42 77
1.40 17 23 34 55 1.3 × 102

1.45 19 27 41 77 3.7 × 102

1.50 22 31 51 1.2 × 102 � � �
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from the scalar dipole moment in a neutron star-white
dwarf binary in a circular orbit is

dE
dt

����
scalar dip

¼ 1

6

�
2

B
− 1

2
φ2
0

��
μ

m

�
2
�
m
a

�
4

×

�
Mφ

MNS
−Mφ;WD

MWD

�
2

: (53)

Assuming that Bφ2
0 ≪ 1, we write 2=B − φ2

0=2≈
2=B ≈ ω0φ

2
0, where ω0 denotes the asymptotic value of

ω, which has to be≳4 × 104 [9]. Thus, in the following, we
neglect the term φ2

0=2 in Eq. (53). The ratio of the
luminosities (51) and (53) is

αr ≔
ðdE=dtÞscalar dip
ðdE=dtÞtensor quad

¼ 5

96B

�
Mφ

MNS
−Mφ;WD

MWD

�
2
�
a
m

�
:

(54)

If observations constrain αr to a certain value, then the
constraint on Mφ,

Mφ <

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
96Bαr

5

r �
m
a

�
1=2

þMφ;WD

MWD

�
MNS; (55)

holds for Mφ=MNS > Mφ;WD=MWD, and

Mφ >

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
96Bαr

5

r �
m
a

�
1=2

þMφ;WD

MWD

�
MNS; (56)

holds for Mφ=MNS < Mφ;WD=MWD. We notice that for
large values of B≳ 4, Mφ=MNS > Mφ;WD=MWD.
Currently, the strongest constraint on the DEF scalar-

tensor theory [10–12] is due to the observation of the white
dwarf-neutron star PSR J1738+0333 system [23]. For this
system, MNS ¼ 1.46þ0.06−0.05M⊙, m ¼ 1.65þ0.07−0.06M⊙, and the
orbital period is 0.35479 days with ≈0 eccentricity. These
data imply

ffiffiffiffiffiffiffiffiffi
m=a

p ¼ ð1.19� 0.02Þ × 10−3. For this binary
system, the decrease rate of the orbital period is measured
with ≈12% error and agrees with the prediction of general
relativity within ∼7% at the 1σ level. This would imply that
in this binary system, the scalar-wave luminosity cannot
exceed ∼5% of the gravitational-wave luminosity, i.e.,
αr ≲ 0.05. The same qualitative conclusion would apply
for the PSR J0348+0432 binary [24], which contains a
neutron star with mass ∼2M⊙.
The numerical calculation shows that Mφ;WD=MWD ≈

Bφ0=2 for low-mass white dwarfs with MWD ≲ 0.2M⊙.
This relation is also expected from Eq. (37) with T ≈ −ρ,
which holds in the Newtonian limit. Thus, we employ this
relation in the following.

Then, for PSR J1738+0333, we can write Eq. (55) as

Mφ <

�
5.1 × 10−3M⊙

�
αr
0.05

�
1=2

�
B
9

�
1=2

� ffiffiffiffiffiffiffiffiffi
m=a

p
1.19 × 10−3

�

þ 6.57M⊙
�
B
9

�
φ0

��
MNS

1.46M⊙

�
: (57)

Equation (56) is also written in the similar form. Using
these constraint relations for PSR J1738+0333 , we can
determine the allowed regions in the parameter space B-φ0

of the scalar-tensor model. We do it constructing spherical-
star configurations with MNS ¼ 1.46M⊙ and different
values of B and φ0. In Fig. 2 we show those allowed
regions for a spherical neutron star of mass 1.46M⊙. We
find that B has to be smaller than ≈9.0 and 10.0 for APR4
and H4 EOSs irrespective of the value of φ0. Therefore,
Mφ ≪ MNS, and the PSR J1738+0333 binary pulsar is not
scalarized at the separation at which it has been observed.
The allowed regions vary if we take into account the 1σ
error for the mass of the pulsar. For example, if the mass of
the pulsar were ≈1.40M⊙, the constraint is less severe (the
allowed region is slightly wider), whereas if it were
≈1.50M⊙, the constraint is more severe.
It is straightforward to derive a constraint similar to

Eq. (57) for the PSR J0348+432 binary pulsar. Also in this
case, we find that Mφ has to be much smaller than
MNS ∼ 2.0M⊙. As a consequence, also the PSR J0348
+432 binary pulsar is not scalarized at the binary separation
at which it is observed. However, as it can be seen in Fig. 1,
for APR4 EOS, the constraint (57) is not as strong as the
one we obtain for PSR J1738+0333, because this pulsar has
a large mass, so the relativistic effects are in any case too

 3  4  5  6  7  8  9  10  11

ϕ 0

B

Allowed region

Prohibited region

10-6

10-5

10-4

10-3

10-2

10-1
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H4

FIG. 2 (color online). The allowed region in the B-φ0 plane
derived from the constraint equation (57) setting the pulsar mass
to 1.46M⊙ for PSR J1738+0333. The thick and thin solid curves
show the result for αr ¼ 0.05 and 0.2, respectively. At B ≈ 3.5 for
the APR4 EOS and B ≈ 3.2 for the H4 EOS, the dipole radiation
is suppressed because the relation Mφ=MNS ≈Mφ;WD=MWD is
satisfied [11,23]. Note that the constraint by the Cassini space-
craft [9] is written as Bφ2

0 ≲ 5 × 10−5 and is stronger than that
imposed by the binary pulsar for B≲ 5.
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significant to induce the scalarization (we note that this is
also the case for relatively soft EOSs in which the radius of
1.35M⊙ neutron stars is 11–12 km). For H4 EOS, we find
that the value of B has to be smaller than ∼9.0, and in this
case, neutron stars are scalarized up to MNS ∼ 2M⊙.
Thus, to summarize, because of the constraints coming

from the observations of PSR J1738+0333 and PSR J0348
+0432, B has to be smaller than ∼9.0, both for APR4 and
H4 EOSs. We note that for stiff EOSs in which the radius of
neutron stars is large ∼15 km and the maximum mass for
spherical neutron stars is larger than 2.5M⊙, the constraint
imposed by the observation of PSR J0348+0432 is quite
severe. For example, for MS1 EOS [48] in which the radius
of 1.35M⊙ neutron stars is ≈14.5 km, B has to be smaller
than ∼8.8.
Finally, because the PSR J1738+0333 binary pulsar is

not scalarized, we can use Eq. (44) to rewrite Eq. (55) as

φ0 < 5.1 × 10−5
�

αr
0.05

�
1=2

�
B
9

�
1=2

�
MNS

1.46M⊙

�

×

�
F − BMNS=2

100M⊙

�−1� ffiffiffiffiffiffiffiffiffi
m=a

p
1.19 × 10−3

�
: (58)

The above equation implies that φ0 is smaller than ∼10−5
and ∼10−4 for APR4 and H4 EOSs with MNS ¼ 1.46M⊙,
αr ¼ 0.05, and B ¼ 9.0, because for this mass, F ∼ 500M⊙
and ∼50M⊙, respectively. Thus, ω0 ≈ 2=ðBφ2

0Þ has to be
larger than ∼2 × 109 and ∼2 × 107 for APR4 and H4,
respectively, if B is as large as ∼9–10. These constraints are
much stronger than those given in Ref. [9], as also found
in Ref. [23].
In the previous section, we have found that for

MNS ¼ 1.35M⊙, the condition for the onset of dynamical
scalarization during the inspiral with the APR4 EOS is
relatively weak, B≳ 8.0. By contrast, with the H4 EOS, the
condition for dynamical scalarization is rather limited as
B≳ 9.0. Combining the constraints derived in this section,
we obtain the following conditions for the onset of
dynamical scalarization during the inspiral stage: for the
APR4 EOS, 8≲ B≲ 9, while for the H4 EOS, we find only
a very narrow window in the vicinity of B ∼ 9.0. These
analyses clearly illustrate that the EOS of neutron stars is a
key ingredient to determine the onset of dynamical scala-
rization in the inspiral stage.

D. Choice of scalar-tensor parameters

Taking into account the constraints of the previous
section, we employ the following values of B in the
numerical simulations: B ¼ 9.0, 8.7, 8.4, 8.0, and 7.5
for the APR4 EOS and 9.5, 9.0, 8.5, and 8.0 for the H4
EOS. The value of B ¼ 9.5 for the H4 EOS is not allowed
by the pulsar-timing observations as mentioned above.
However, we shall investigate this case because we want to
show that scalarization in binary neutron stars occurs

qualitatively in a universal manner irrespective of the
EOS employed. For small values of B≲ 8.0 for APR4
and ≲9.0 for H4, we do not expect dynamical scalarization
to occur during the inspiral stage. However, the scalariza-
tion can still occur in the merger stage. This is why we
employ such a small value for B.
For a given value of B, the value of φ0 is also constrained

(see Sec. III C). Taking into account the constraint given by
Eq. (58), we choose φ0 ¼ 10−5 for the APR4 EOS and
5 × 10−5 for the H4 EOS. Note that the results presented in
this paper depend very weakly on the choice of φ0.
For the chosen values of B with neutron-star mass

≈1.35M⊙, dynamical scalarization of neutron stars in a
binary system occurs for a≲ 100M⊙ ≈ 150 km. For the
totalmass of2.7M⊙, this implies that dynamical scalarization
can occur only for f ≳ 100 Hz where f is the gravitational-
wave frequency. Therefore, due to the presence of the strong
constraints from the observations of PSR J1738+0333 [23]
and PSR J0348+0432 [24], if neutron stars have canonical
masses 1.3–1.4M⊙, the scalarization can take place only if
the neutron star is in a compact binary system.
In this paper, we choose the initial value of the angular

velocity as mΩ ¼ 0.026 for the APR4 EOS and 0.023 for
the H4 EOS with m ¼ 2.7M⊙; the initial orbital period is
3.21 and 3.63 ms, respectively; the initial separation is
a=m ≈ ðmΩÞ−2=3 ¼ 11.4 for the APR4 EOS and 12.4 for
the H4 EOS; and a ≈ 31M⊙ for the APR4 EOS and 33M⊙
for the H4 EOS. Thus, for B ¼ 9.0, 8.7, and 8.4 with the
APR4 EOS and for B ¼ 9.5 with the H4 EOS, for which
a < F, dynamical scalarization has already occurred at
the initial separation (see Table II). On the other hand, for
B ≤ 8.0 with the APR4 EOS and for B ≤ 9.0 with the H4
EOS, dynamical scalarization has not yet occurred at the
initial separation because a > F.

TABLE II. We list key quantities of our numerical simulations:
EOS, the value of B, initial angular velocity in units of m−1, and
total number of orbits. The total mass of the binary neutron stars
is 2.7M⊙. In the last column, we indicate when the scalarization
occurs. We consider that dynamical scalarization has occurred
when the value of Mφ computed for a neutron-star in a binary
cannot be described by Eq. (44) (see Ref. [27] for details).

EOS B mΩ Orbits Scalarization

APR4 GR 0.026 ≈5.0 � � �
APR4 7.5 0.026 ≈5.0 No scalarization
APR4 8.0 0.026 ≈5.0 At merger
APR4 8.4 0.026 ≈3.5 mΩ ≈ 0.024
APR4 8.7 0.026 ≈3.5 mΩ ≈ 0.014
APR4 9.0 0.026 ≈3.5 mΩ ≈ 0.005
H4 GR 0.023 ≈5.0 � � �
H4 8.0 0.023 ≈5.0 After merger
H4 8.5 0.023 ≈5.0 After merger
H4 9.0 0.023 ≈5.0 At merger
H4 9.5 0.023 ≈3.0 mΩ ≈ 0.017
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IV. NUMERICAL RESULTS

A. Characteristics of the merger process

In Fig. 3, we plot the maximum values of the neutron-
star density ρ and scalar field φ as functions of the time for
several values of B and for the APR4 EOS (left panel) and
the H4 EOS (right panel) (see also Appendix B for a
convergence study). For comparison, we also plot the
maximum density for the general-relativistic case. Note
that the merger sets in at the time when the maximum
density steeply increases. We observe the following fea-
tures of the merger process:
(i) For B ≤ 8.0 with the APR4 EOS and for B ≤ 9.0 with

the H4 EOS, the maximum value of φ, φmax, is always
much smaller than unity before the onset of the
merger. This shows that for these models, the scala-
rization does not occur during the inspiral stage as we
expected in the analysis of Sec. III.

(ii) Even for the initially weakly scalarized case (e.g.,
B ¼ 8.4 with the APR4 EOS), the scalar fields are
amplified as the orbital separation decreases, signaling
the occurrence of dynamical scalarization.

(iii) For the binary neutron stars that have scalarized, the
duration of the inspiral stage is much shorter than that
for the nonscalarized case [20]. For both EOSs, we
find that starting from the same initial frequency mΩ,
the inspiral stage of the scalarized binaries is shorter
than the one of binaries in general relativity by 1–2
orbits. In the general-relativistic case, the inspiral
stage lasts for ≈5 orbits for both APR4 and H4 EOSs
(cf. Table II). Thus, the scalarization shortens the
inspiral stage by a significant fraction. The reason for
the modification of the inspiral orbits for the scalar-
ized case is that the increase rate of the absolute value
of the binding energy is decreased by the scalariza-
tion effect. We have also investigated this effect using

quasiequilibrium sequences of binary neutron stars in
Ref. [27]. We notice that in the scalarized stage, the
orbital motion does not depend much on the values
of B.

(iv) For the binary neutron stars that undergo dynamical
scalarization (i.e., they have scalarized because of the
presence of the companion), the maximum density
increases with the decrease of the orbital separation.
This is in contrast with the general-relativistic case in
which the maximum density decreases with the
decrease of the orbital separation because of the tidal
force exerted by the companion star. The continuous
increase of the maximum density in the scalarized case
is due to the fact that the amount of scalarization is
enhanced with the decrease of the orbital separation.

(v) For B ¼ 8.0 with the APR4 EOS and for B ¼ 8.0–9.0
with the H4 EOS, the scalarization occurs after the
onset of the merger. (We note that for B ¼ 7.5 with the
APR4 EOS, the scalarization does not occur, and
hence the entire evolution is approximately the same
as that in the general-relativistic case.) The maximum
density of the scalarized massive neutron star formed
after the merger is significantly different from that of
nonscalarized or general-relativistic cases. This im-
plies that the structure of the scalarized remnant
massive neutron star is also quite different from the
nonscalarized neutron star.

(vi) For relatively small values of B, the amplitude of the
scalar field of scalarized remnant massive neutron
stars decreases with time because their density in-
creases, and eventually the scalar field approaches
zero (see the curves for B ¼ 8.4 with the APR4 EOS
and B ¼ 8.0 with the H4 EOS). This is due to the fact
that relativistic effects become so strong during the
evolution of the remnant massive neutron star that the
scalarization is turned off (see Sec. III A).
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FIG. 3 (color online). Evolution of the maximum values of the rest-mass density and scalar field φ for several models of m ¼ 2.7M⊙
with the APR4 EOS (left panel) and the H4 EOS (right panel). The merger sets in at the time when the maximum density steeply
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(cf. Table II).
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The reason why the scalarization occurs after the onset of
the merger, even for relatively small values of B, may be
explained using the analysis of Sec. III A. Indeed, we have
found there that the scalarization is likely to occur for
ð−BTÞ1=2R → π=2. Here, R denotes the stellar radius. This
implies that even for a small value of BT, the scalarization
can occur for a large value of R or a large value of the
compactness,

ffiffiffiffiffiffiffi−Tp
R ∼

ffiffiffiffiffiffiffiffiffiffi
M=R

p
, where M is the mass of

the remnant massive neutron star. The compactness of the
massive neutron star of mass ∼2.6M⊙ is larger, by several
tens of percent, than the compactness of a spherical neutron
star of mass 1.35M⊙. Thus, even for a small value of B for
which the scalarization cannot occur for an isolated neutron
star, the scalarization may occur when the massive neutron
star is formed as a remnant (see Ref. [49] for a possible
relevance to this result).
In addition, we find that the lifetime of remnant massive

neutron stars can be significantly changed by the scalariza-
tion. For theH4EOSwithm ¼ 2.7M⊙, the lifetime is several
tens of milliseconds and hence relatively short in general
relativity [26]. This is also the case whenB ¼ 8.0 for the H4
EOS. In these cases, the angular momentum of the massive
neutron stars is primarily reduced by the angular-momentum
transport to the outermaterial, which is induced by the torque
exerted by the massive neutron star of an ellipsoidal figure.
After substantial spin-down, the massive neutron star col-
lapses to a black hole. By contrast, in the presence of
scalarization (e.g.,B≳ 8.5), the massive neutron star relaxes
to a quasistationary state of a smaller degree of nonaxisym-
metry. This seems to indicate that the scalar field contributes
to the efficient redistributionof angularmomentum inside the
massive neutron star before it loses the angular momentum
by the outward angular-momentum transfer and gravita-
tional-wave emission. The scalarized massive neutron stars
seem to possess high angular momentum, but the profile is

not significantly nonaxisymmetric. Because these massive
neutron stars are hypermassive, they will collapse eventually
to a black hole by some dissipation or transport processes of
angular momentum. However, the lifetime seems to bemuch
longer than that in general relativity.
Before ending this section, we briefly comment on the

mass ejection that could be a source of transient electro-
magnetic signals (e.g., see Ref. [50]). Since the merger
dynamics is modified by the scalar field, we expect that the
amount of ejected material is also modified. For the APR4
EOS, the scalarized massive neutron stars formed after the
merger are less compact than those in general relativity (see
Fig. 3). In addition, the amplitude of the quasiradial
oscillations, which enhance angular-momentum transport,
are lower. Because of these effects, the total amount of
ejected mass is slightly decreased. Indeed, Ref. [36] found
that compact massive neutron stars with high oscillation
amplitude produce larger mass ejection. In general rela-
tivity, an equal-mass binary with m ¼ 2.7M⊙ ejects a mass
of ∼7 × 10−3M⊙ [36], while we find that for B ¼ 9.0, the
mass ejected is ∼5 × 10−3M⊙. Thus, the effect is mild. By
contrast, the effect is significant for the H4 EOS. In this
case, the total amount of ejected mass is quite small in
general relativity ∼5 × 10−4M⊙. However, in the scalar-
tensor theory, it becomes ∼5 × 10−3M⊙ for B ¼ 9.5 and
∼2 × 10−3M⊙ for B ¼ 9.0. A possible reason of this
finding is that due to scalarization, the massive neutron
star becomes more compact, and hence the effect of shock
heating is enhanced and more material is ejected.

B. Gravitational-wave characteristics

We extract tensor gravitational waves by calculating the
complex Weyl scalar (the so-called Ψ4) in the wave zone as
usually done in numerical relativity (see Ref. [33] for our
prescription). In addition, we extract scalar waves φ in the
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wave zone. The energy carried out by the scalar waves is
computed from the stress-energy tensor using the second
and third lines in the right-hand side of Eq. (2).
As a result of the modification of the dynamical motion

induced by the scalarization, gravitational waveforms are
also modified. We show in Fig. 4 the gravitational wave-
forms and the corresponding frequencies for several values
of B and for the APR4 EOS (left panel) and the H4 EOS
(right panel). We also show the Fourier spectrum of these
gravitational waves in Fig. 5 at a distance of 50 Mpc. As
described above and also found in Ref. [20], the inspiral
stage shortens when the neutron stars are scalarized; e.g.,
typically the number of gravitational-wave cycles in the
scalarized case is smaller than in the general-relativistic
case by 2–4 cycles. We obtain this reduction simulating a
binary evolution that is not very long. The difference in
number of cycles between the scalarized and general-
relativistic cases would increase for much longer wave-
forms. Long, accurate evolutions are beyond the scope of
this paper. They will be investigated in the future using also
comparisons with post-Newtonian models. Thus, in the
following, we focus on the merger waveforms.
The modification of the waveform emitted by a massive

neutron star formed after the merger is quite evident even
for relatively small values of B≳ 8.0 both for the APR4
and H4 EOSs. However, the way in which the merger
waveform is modified depends on the EOS. For the APR4
EOS, we find that a scalarized remnant massive neutron star
is less compact than a massive neutron star in general
relativity. As a result, the frequency of quasiperiodic
gravitational waves is significantly (down to ∼0.5 kHz)
decreased due to the scalarization (see Fig. 4). In general
relativity, the peak frequency is 3.2–3.3 kHz while for
B ¼ 9.0, it is much lower 2.6–2.8 kHz. We also note that
the spectrum around the peak is rather wide for the large

values of B ∼ 9.0. This reflects the fact that the frequency
of quasiperiodic gravitational waves varies with time.
For the H4 EOS, the scalarized massive neutron star

formed after merger is more compact than the one in
general relativity. However, the frequency of quasiperiodic
gravitational waves does not become higher; rather, it
becomes slightly lower due to the scalarization. This
indicates that not only the compactness but also the
presence of the high-amplitude scalar field plays an
important role for determining the oscillation-mode fre-
quency. For the H4 EOS, it is also remarkable that the
damping time scale of the wave amplitude for the scalarized
case is shorter than in general relativity. The reason for this
is that the ellipticity of the massive neutron star decreases in
a shorter time scale for the scalarized case, possibly due to
the fact that the scalar field contributes to the efficient
redistribution of angular momentum inside the massive
neutron star as already mentioned in Sec. IVA.
It is worth it to emphasize that these modifications are

seen even in the case for which the scalarization does not
occur during the inspiral stage. For such cases, the inspiral
signal is not modified and cannot be used to constrain the
scalar-tensor theory. For such a small value of B, the effects
of the scalar field cannot be observed in standard neutron
stars, as well, and in the next section, we shall discuss some
implications of these findings.
In addition to gravitational waves, scalar waves3 pro-

duced by the scalar field φ can carry away non-negligible
energy from the system. However, we find that the energy
emitted is a small fraction of the total energy dissipated. For
example, for the APR4 EOS with B ¼ 9.0, we find that
scalar waves are emitted in both the late inspiral and merger
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p
with SnðfÞ being the noise power spectrum] of the advanced LIGO with an optimistic configuration for the

detection of high-frequency gravitational waves (the so-called zero-detuned high-power case; see https://dcc.ligo.org/cgi‑bin/DocDB/
ShowDocument?docid=2974).

3Those scalar waves should not be confused with the scalar
mode of gravitational waves in a scalar-tensor theory.
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stages. Even for this case, the total energy emitted in scalar
waves is only ∼3% of that emitted in gravitational waves.
For the case of smaller values of B, this fraction is smaller.
The primary reason for this small contribution is that for the
equal-mass case, the dipole radiation is absent, and the
main contribution comes only from the monopole and
quadrupole radiation. Therefore, the gravitational-wave
emission primarily determines the evolution of the binary
system during the inspiral stage, even if the scalarization
occurs during the late inspiral stage.

V. SUMMARY AND DISCUSSION

In this paper, we used numerical-relativity simulations to
investigate the late inspiral and merger dynamics and the
gravitational-wave emission of binary neutron stars in a
scalar-tensor theory that admits spontaneous scalarization
[10–12].
We confirmed, through several numerical-relativity sim-

ulations, what was suggested in Ref. [20], notably that if
one or both neutron stars are not initially spontaneously
scalarized, they can be scalarized dynamically during the
late inspiral stage due to nonlinear interactions of the scalar
field configuration (see also Ref. [27] for more details).
After the scalarization sets in, the inspiral is accelerated,
and the total number of gravitational-wave cycles is
significantly decreased with respect to the general-
relativistic case. Given the mass of the neutron star, its
EOS, and the constraints from binary pulsar observations,
we determined for which values of B dynamical scalariza-
tion occurs. For example, for MNS ¼ 1.35M⊙, we found
for the APR4 EOS that 8≲ B≲ 9, while for the H4 EOS,
we found only a very narrow window in the vicinity of
B ∼ 9.0 where the neutron stars in a binary system are
dynamically scalarized before coalescing. These results
imply that even if the DEF scalar-tensor theory may give
deviations to general relativity that are not detected by
observations of binary systems at large separations, i.e., in
the weak-field regime (pulsar-timing observations), never-
theless, the binary system may undergo dynamical
scalarization during the last stages of inspiral, i.e., in the
strong-field regime, and produce larger deviations to
general relativity that could be detected by ground-based
gravitational-wave detectors. Further studies, which make
use of longer numerical-relativity waveforms, analytical
templates to model them, and data-analysis techniques of
the kind employed in Ref. [51], will address and assess the
interesting possibility of observing such deviations to
general relativity with ground-based detectors.
Furthermore, we found that the scalarization can occur

even after theonset of themerger. The reason is that the newly
formed massive neutron star can have larger compactness,
and hence the scalarization can occur even for small values of
B for which standard-mass neutron stars cannot be scalarized
in a binary system (see Sec. III A). We also found that the
subsequent evolution of the remnant massive neutron star is

quantitatively different from that in general relativity. When
the remnant massive neutron star is scalarized, the compact-
ness is different from that in general relativity, and the
frequency of quasiperiodic gravitational waves is modified.
The modification depends on the EOS. For the APR4 EOS,
the remnant massive neutron stars are less compact, and the
frequency of the quasiperiodic oscillations is in general
lower. By contrast for the H4 EOS, the remnant is only
slightly more compact, and the frequency of the quasiperi-
odic oscillations is not significantly modified. Furthermore,
the scalarization seems to enhance the redistribution of
angular momentum. In fact, we found that for scalarized
massive neutron stars, which are in general nonaxisymmet-
ric, the time scale of the decrease of the ellipticity of the
massive neutron star is shorter than in general relativity. As a
consequence of this effect, the gravitational-wave amplitude
decreases with a shorter time scale, and, in addition, the
lifetime of the massive neutron star is increased.
For the case in which the scalarization occurs only after

the merger, the inspiral signal is the same as that in general
relativity and cannot be used to constrain the scalar-tensor
theory. Nevertheless, we found that quasiperiodic gravita-
tional waveforms from the scalarized, massive neutron stars
are different from those in the general-relativistic case.
References [25,26] discussed the possibility that the EOS
of neutron stars can be constrained by observing the
frequency of those quasiperiodic gravitational waves emit-
ted by remnant massive neutron stars. Assuming that
general relativity is correct, this method could be useful.
However, our results showed that if general relativity is
slightly violated, the method proposed in Refs. [25,26]
alone is not sufficient to extract the EOS because the
frequency of quasiperiodic gravitational waves emitted by
remnant massive neutron stars depends not only on EOS
but also on the degree of scalarization.
Nevertheless, the results found in this paper suggest a

new way of testing general relativity. When B is such that
spontaneous and dynamical scalarization does not set in
before merger or it is very weak, then the inspiral signal is
not modified significantly, and the EOS can be determined
from the inspiral stage by observing finite-size effects in
binary neutron stars [52–60]. If for those values of B the
merger signal is modified because the newly formed
neutron star is sufficiently massive to be scalarized and
one finds that the characteristic frequency of quasiperiodic
gravitational waves agrees with the prediction of general
relativity, then one would conclude that general relativity is
correct also in the strong-field regime. However, if the
characteristic frequency does not agree with the general-
relativity prediction, then one would find that general
relativity is violated. The success of this test depends
crucially on the sensitivity of the gravitational-wave detec-
tors at frequencies between 400 and ∼4 kHz, on the
statistical significance of the quasiperiodic oscillations in
the merger waveform and on the possibility of producing
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numerical-relativity waveforms in scalar-tensor theory with
systematic errors smaller than statistical ones.
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APPENDIX A: NUMERICAL SIMULATIONS OF
ISOLATED, SPHERICAL NEUTRON STARS

To check the validity of our newly developed numerical-
relativity code for binary neutron stars in scalar-tensor
theories, we perform simulations of isolated, spherical
neutron stars in scalar-tensor theories. We prepare spherical
neutron stars using a piecewise polytropic EOS (see, e.g.,
Ref. [36] for details). We perform many simulations
varying the EOS and find that our conclusions are essen-
tially the same irrespective of the chosen EOS. For this
reason, here we focus on the results with the H4 EOS,
which is a rather stiff EOS, with the maximum mass of a
spherical neutron star in general relativity being ≈2.03M⊙
(see Fig. 6).

To show that our code works properly also in the case in
which the coupling between the scalar and tensor fields is
strong, we choose B ¼ 10 and φ0 ¼ 3 × 10−3, even if those
values are not realistic because they were already excluded
by the observation of neutron-star– white-dwarf binaries
(see Sec. III). For this choice of the parameters, we plot in
Fig. 6 the neutron-star (tensor) mass as a function of the
central density in general relativity and in the scalar-tensor
theory under investigation. As we see from Fig. 6, the mass
in scalar-tensor theory starts differing from the one in the
general-relativistic case for ρc ≳ 5 × 1014 g=cm3 (or for
M ≳ 1.35M⊙). We find that this difference is a conse-
quence of the fact the scalar field is significantly excited,
resulting in the modification of the density profile of the
neutron star. When the central density is extremely high,
ρc ≳ 1.8 × 1015 g=cm3, the neutron star in general rela-
tivity and the scalar-tensor theory agrees with each other
approximately. The reason is that Tð¼ Ta

aÞ becomes
positive in this density range, and thus the scalar mass
becomes much smaller than the neutron-star mass (see
Sec. III A). We also find that in the scalar-tensor theory, the
maximum mass is ≈2.2M⊙, which is larger than in the
general-relativistic case. The fraction of increase depends
strongly on the value of B as well as φ0. All those properties
are universal and qualitatively independent on the EOS.
We perform numerical simulations using five neutron

stars, for which the central density and neutron-star mass
are plotted in Fig. 6 [with labels (A)–(E)]. The neutron stars
(A)–(C) are expected to be stable, while (D) and (E) could
be unstable; in particular for (E), it is reasonable to expect
that it is unstable because the central density is larger than
that of the neutron star with the maximum mass.
Weplot in Fig. 7 the evolution of the central density for the

five neutron stars. Note that the dynamical time scale of
these neutron stars defined by ρ−1=2c is shorter than 0.2 ms,
and hence the simulations run for a time much longer than
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the dynamical time scale. As expected, the neutron stars
(A)–(C) (having lower central density) are stable; the central
density (as well as the stellar structure) is unchanged in the
simulation time. By contrast, for (E), the star collapses to a
black hole in a short time scale. Therefore, we conclude that
it is unstable against the radial oscillation.
The stability of (D) is not very clear. In our simulation,

this star always collapses to a black hole in the time scale of
10 ms. However, the lifetime depends strongly on the grid
resolution. In Fig. 8, we plot the evolution of the central
density for (D) with three different grid resolutions. We find
that the lifetime significantly increases as we improve the

grid resolution. Thus, we cannot draw a strong conclusion
for the stability to this neutron star. This finding is not
surprising because the star (D) is located in the vicinity of
the maximum mass along the equilibrium sequence, and
thus it is likely that this star is approximately equal to a
marginally stable star.
By contrast, the convergence of the numerical results is

achieved in a much better manner for the evolution of stable
neutron stars. In Fig. 9, we plot the evolution of the central
density for (A) with three different grid resolutions. Note
that for this star, the mass is approximately 1.35M⊙, i.e.,
approximately equal to the neutron-star mass considered in
this paper. We find that, due to the numerical error, the
central density gradually decreases with time, but with
improving grid resolution, such numerical effects become
smaller. To find the order of convergence, we also plot
ðρc=ρc;0 − 1ÞðΔxhigh=ΔxÞ2, where Δx is the grid spacing
and Δxhigh is Δx for the high-resolution run. We show in
Fig. 9 that this quantity agrees approximately with
ρc=ρ c;0 − 1 for the high-resolution run. This implies that
the error converges approximately at second order.
Finally, we show that we can accurately follow in our

code the black hole formation and evolution. In Fig. 10, we
plot the evolution of the irreducible mass defined byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AAH=16π

p
, where AAH is the area of the apparent horizon

for neutron star (E) in units of the initial ADM mass. Note
that the ADMmass is not equal to the tensor mass (neutron-
star mass), and for this neutron star, the initial Komar and
tensor masses are 0.6% and 0.3% larger than the initial
ADMmass. After the formation of the black hole, the scalar
mass is lost, and hence the mass of the black hole
approaches the initial ADM mass. We show in Fig. 10
that the final black hole mass agrees with the initial ADM
mass within 0.1% for the high-resolution run. Thus, the
final mass does not agree with the initial Komar mass nor
the initial tensor mass. This indicates that our code can
follow the black hole accurately.
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It is also worth it to note that the irreducible mass
decreases with time in the early stage of the black hole
evolution. In general relativity, this is not allowed.
However, this is reasonable in the present case because
in the Jordan frame, the null energy condition can be
violated due to the presence of the scalar field, as pointed
out in Ref. [61].

APPENDIX B: CONVERGENCE
OF NUMERICAL RESULTS

Here we want to discuss the convergence of the
numerical-relativity simulations.
To check the convergence, we consider simulations for

the APR4 EOS with B ¼ 9.0 and φ0 ¼ 10−5 and for the H4

EOS with B ¼ 9.5 and φ0 ¼ 5 × 10−5. We perform runs
using three grid resolutions. For low, medium, and high
resolutions, the stellar diameter at the initial stage is
covered approximately by 67, 80, and 100 grid points,
respectively.
In Fig. 11, we plot the evolution of the maximum density

and the maximum value of φ for three grid resolutions. As
often found in the simulations of inspiraling neutron stars, a
lower grid resolution always results in shorter merger time
because of the larger numerical dissipation. To align the
merger time, we shift the curves of low and medium
resolutions approximately by þ0.7 and þ0.3 ms, respec-
tively. Although the inspiral duration is modified by the
numerical effect, Fig. 11 shows that the merger dynamics
depends only weakly on the grid resolution. Thus, for
drawing the conclusions in our paper, we can assume that
we achieved convergence.
We plot in Fig. 12 the gravitational waveform and the

corresponding frequency for the APR4 EOS with B ¼ 9.0
and for the H4 EOS with B ¼ 9.5. Again, the time is shifted
to align the waveforms at merger. The waveforms com-
puted with the three grid resolutions agree qualitatively
well, with the agreement being the best with the H4 EOS.
For the early merger stage (i.e., in the first ∼5 ms after the
onset of the merger), the agreement is quantitatively better
independently on the EOSs. For the later merger stage, the
agreement becomes poorer because the dynamics in the
merger stage depends strongly on the efficiency of shock
heating for which the convergence is achieved only at first
order: e.g., the modulation of gravitational waves is more
clearly seen in the high-resolution run. Nevertheless, the
characteristic frequency of gravitational waves depends
only weakly on the grid resolution. We find that the
disagreement is within ∼0.1 kHz for the APR4 EOS
and within ∼0.05 kHz or less for the H4 EOS. Those
differences are much smaller than the differences from the
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general-relativity results. We find that the convergence for
the H4 EOS is much better than that for the APR4 EOS.
The possible reason for this is that neutron stars with the H4
EOS are less compact and shock heating effects are weaker
with this EOS.

Finally, we extracted these gravitational waves at the
finite radii ≈200–400 km, and we did not extrapolate the
waveforms at infinity because we expect that the numerical
error due to the extraction at finite radius is smaller than
that due to resolution (see Ref. [62]).
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