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Conservative form of Boltzmann’s equation in general relativity
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We derive a conservative form of Boltzmann’s equation in general relativity, which is concisely written.
Several explicit forms of this equation are written for black-hole spacetime with several coordinate
conditions in real spacetime and momentum-space coordinates.
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I. INTRODUCTION

Radiation fields and their interaction with matter fields
often play a crucial role in general-relativistic astrophysical
phenomena; e.g., the neutrino cooling and heating play a
special role in core-collapse supernova. The reason is that
general-relativistic phenomena are usually accompanied by
the high-density and high-temperature matter with which
neutrinos strongly interact. For a physical simulation in
numerical relativity, we are often required to take into
account the neutrino radiation transfer effects. For this, it is
necessary to solve radiation transfer equations.

For strictly handling radiation transfer effects, it is
necessary to numerically solve Boltzmann’s equation,
taking into account the absorption, emission, and scattering
source terms. This equation has a 3 4+ 3 + 1-dimensional
form (three dimensions in real and momentum space,
respectively, and one dimension in time); hence, the
computational domain has to cover six-dimensional space
for a simulation (unless we impose any spatial symmetry).
It is an extremely challenging task to perform a well-
resolved numerical simulation with a sufficient grid reso-
lution for this equation, unless a high spatial symmetry
such as spherical symmetry is imposed (e.g., see [1-4] for
formulations based on the Sy schemes, [5,6] for results in
spherically symmetric and general-relativistic simulations,
and also [7] for an alternative approach based on long
characteristics and its application to protoneutron star
evolution in full general relativity by means of a tangent-
ray scheme). To date, no challenge has been made on this
issue (but see [8] in Newtonian gravity).

Indeed, even for formulations suitable for a numerical
simulation, only a few attempts [9,10] have been reported,
and there is no established formulation to date (see Ref. [10]
for a review in this field). Cardall and Mezzacappa [9] gave a
conservative formulation of Boltzmann’s equation but not in
a 3 4 1 form applicable to numerical-relativity simulations.
A 3+ 1 formulation of Boltzmann’s equation was first
derived by Cardall, Endeve and Mezzacappa [10] with
laboratory frame in spacetime coordinates and fluid rest
frame in momentum-space coordinates. As a consequence of
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adopting a fluid-rest-frame momentum-space coordinate
basis, the resulting equations are rather complicated. An
attempt to solve Boltzmann’s equation using spectral meth-
ods with the conformally flat approximation was done by
[11], but their formulation was not in a conservative form. In
this paper, we derive a more concise and general formulation
for the conservative form of Boltzmann’s equation in general
relativity.

The paper is organized as follows. In Sec. II, after we
briefly review the basics of Boltzmann’s equation, we
describe its conservative form in a concise way. We also
give conservative forms in black-hole spacetime with several
coordinate conditions in real-spacetime and momentum-
space coordinates. Section III is devoted to a summary.
Throughout this paper, we employ the units in which the
Planck constant, s, speed of light, ¢, and gravitational
constant, G, are unity. Latin indices a, b, ¢, and d denote
the abstract index while greek ones a, f3, 7, ... and latin ones
i, j, k, and [ denote the spacetime and spatial components,
respectively.

II. BOLTZMANN’S EQUATION

A. Basics

First, we review Boltzmann’s equation in the context of
the radiation transfer for massless particles in general
relativity. Let p“ be a null vector of massless particles,
and f(x% p') (x* = (t,x)) be their distribution function.
Then, Boltzmann’s equation is written in the form (e.g.,
[12-14])

dx® Of dp' Of
7 — — (—=p%7; Sr ll’ /4’ , 1
dr Ox*|,  dr Op'|. (=Plta) Sua(p" 2. 1), (1)
or
o af i a af an
ax(l p[ - F(l/}p p/} apl x“ = (_p Ua)Srad(pMy xﬂ’ f)’

2

where S,4 is a source term which is determined by
interaction processes between the radiation and matter
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fields, 7 is the affine parameter for a trajectory of radiation
particles (i.e., p? = dx?/dr), and it* may be in general any
timelike unit vector (e.g., the four-velocity of a fluid).
Here, (0f/0x*)|, and (Of/dp')| s are partial derivatives
of f fixing p' and x*, respectively.

Instead of p’, we may use other sets of variables for
describing the momentum space: let g(;) (i =1, 2, 3) be a
set of the momentum-space variables. Then, Boltzmann’s
equation is rewritten as

«Of

3. dq) Of
L R Dy

= (=p“flg) S (3
dr aq(l) (pua) rad ()

X%

q(j) i=1

We will mainly employ this form in this paper.

As described by Lindquist [12] and Ehlers [13], the
number of world lines crossing an invariant three volume
dV, with four-momenta in the range of an invariant
momentum-space volume dV, is

dN = f(x*, p')(=p“it,)dV.dV, “)
where
dV, = 0°€peqdxt dxSdxd, ®)
av, = % 1€apeadpdp5dps, 6)
(=p°.)

and x* = (t,x1,x,,x3) and p* = (pg, p1, P2, P3) denote
real-spacetime and momentum-space coordinates, respec-
tively. Again, & and 9 are arbitrary timelike unit vectors
(?* may be equal to 1?). €44 1s completely antisymmetric
tensor with €y,,3 = /=g where g is the determinant of the
spacetime metric g,,. dV, may be defined by an integral
with the on-shell condition as [15]

a C e _g
> / Curead i} dpsdpt(p ) =L pydpadps, ()

where p¢p, = 0 for massless particles and §(x) is the delta

function.
In any local orthonormal frame, dV, is written as [16]

dp'dp*dp?
PET ®)

dv

where p* denotes four-momenta of a radiation particle in a
local orthonormal frame. dV,, may be written as

dv, = vdvdQ, &)

where v is a frequency (energy) of radiation particles
measured in the local orthonormal frame, v = —pae’(l())
with e<“0) being the timelike unit vector in this frame:
In numerical relativity, one of the simplest choices would
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be ef;, = n“ where n® is the timelike unit normal to spatial
hypersurfaces (but see Sec. II C for examples that with this
choice, the equations are usually complicated). If eE‘O>
denotes the four-velocity of a fluid, v is a frequency
measured by the fluid rest frame. Q denotes the surface
element over the solid angle of a unit sphere. The specific
definition of a local orthonormal frame will be given below.

In numerical astrophysics, Boltzmann’s equation is often
rewritten for the distribution function as a function of (¢, x')
and momentum-space argument variables defined in a local
orthonormal frame. This method is in particular robust in
spherically symmetric spacetime [12,17]. Basic equations
along this line are derived by setting

3
P = y(%) +y f(,.>egl.>>, (10)
i=1

where e?ﬂ) (u =20, 1, 2, 3) denotes a set of the tetrad basis
for a local orthonormal frame satisfying gabez’a)ef’ﬂ) = Nap

aff ed b

and 7 W€ = g*?, with s being the Minkowski

metric. Following Lindquist [12], we write z,”(i) as

Z(1) = cos0, o) = sin@cos ¢, £i3) = sin@sin @,

(11)

where € and @ denote angles of radiation rays in the
momentum space at each spatial position (see Fig. 1) and in
this context, ef’w, efz), and eé) should be unit vectors
pointing approximately to r, 0, and ¢ directions, respec-
tively. Using @ and &, the area element is written
as dQ = sin 6d0dp.

Choosing the argument variables as q(;) = v, q(3) = 0,
and g(3) = @, the second term of Eq. (3) is written as

FIG. 1. The locally defined angles (6. §) of null rays, p(= p®).
r, 0, ¢ denote unit vectors pointing to radial, 8, and ¢ directions,
corresponding to eE‘l), e‘@, and 6?3), respectively.
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S O _dor b0y dnoy
‘~ dr Jq; drdv dr00  drdp’

(12)

To proceed further, we should remember the following
relations,

V= "=Pa )= ~ P(0)
2 2
_ Pyt P
tand — ) 3) ’
Pq)
tanp = L&) | (13)
P@)

where p(;) = Pac) and thus, >3, p(zl,) =12 = p%()).
Using the geodesic equation for p?, p?V,p® =0, and
Eq. (13), we obtain

% = PPV (14)
fi_f - %; agg) dZiﬁ = %,i: a;ﬂg) ppiVaely,  (15)
dp _ 1 _i:afm dp)
dr  vsin®6  0p do
= l/Siilzé i: 6520/) P“phvaeé’j). (16)

J=2

Here, V, is the covariant derivative with respect to g,.
In the general curved spacetime, we have to constitute
e‘(lﬂ) for a general geometry. However, in the local ortho-

normal frame with the choice e?o) = n“, the procedure is

quite straightforward because eE‘i) should have only spatial
components (remember n, = —aV,t where « is the lapse
function). For example, for the spherical polar coordinates
(r,0,), it is easy to find the following set as the tetrad

basis,

e((ll) = (0’ Y:rl/zy 07 O)’

7ro Vrr
e((lz) = (05 - ) 2 70>9
(yrryﬁé‘ — y%ﬁ) VYrrYoo — Vo

Op
a 4 4
i = (0 T V™)

where v, = g, + 141y, is the induced metric on the spatial
hypersurface.

In numerical astrophysics, e?o is often chosen as the
four-velocity of a matter field, e, = u®. In this case, all
the momentum-space argument variables are defined in the

Vrr
rey

(17)
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local rest frame moving with the matter field. This choice of
the momentum-space basis vector has an advantage that we
do not need to perform a transformation of the frame for
evaluating the source term of Boltzmann’s equation which
should be evaluated in the local rest frame. However, there
is a serious drawback in this scheme that we have to take
derivatives of the four-velocity in general relativity, as
shown in Egs. (14)—(16), for which accurate numerical
computation is not an easy task in numerical hydrody-
namics. In the following, therefore, we will take the other
basis than ef, = u“. With such general argument variables
for the momentum space, we then have to perform a
transformation of the frame to adjust the variables, for
which the reader may refer to Appendix B.

B. Conservative form

In numerical astrophysics, it is often desirable to write
Boltzmann’s equation in a conservative form, in which
accurate conservations of the particle number and total
energy can be numerically guaranteed in the equation level
[5,9]. The existence of the conservative forms itself can be
shown in a purely geometrical and covariant manner [13]
(see Appendix A for a brief discussion). Explicit expres-
sions of Boltzmann’s equation in its conservative form are
also given by a straightforward procedure, remembering the
fact that dV, and dV, are invariant real- and momentum-
space volume elements, as follows.

Starting from Eq. (2), a conservation form is derived as

e (50) o (5w

= (_paaa)srad-

(18)

This equation was also derived in a straightforward
calculation using the following relations,

LA Olf(=g)p°]
Ox® p’ (_g) ox* p’
op'
—2porP - F=
p aﬂf f at pj
op' ppP 1
_ =" 9 — __Fﬁ a
ot ol 2pz tga[f P, tal pﬁ
_ ldp,
~ p,dt’
af 8pl x“ apl x“
. . Op!
+2fp (T + T 22,
op' | w
; Op' . Di P
FltaF = _rlta_ = _Fﬂta_ﬂ + Fttav
P Pt Pt
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and remembering the definition

dp, _dx"0p,|  dp'Op,
dv  Ov x%|,  dr Op'|.
op; . op
— pa T app L 19
P o ) apP" P op|. (19)

The conservative form is also derived for a local
orthonormal frame. Starting from Eq. (3) with the choice
of i = ¢¢ >and Egs. (12), (14)—(16), we obtain

1 9(/=gv ' p*f)
Ne Ox”

L0 (2 aeN o)
I 0 an Vel U
T Sind00 <” sin 6 j;p PpVec() " gg

10
~ Y an V.o
o + 2 81/( vfp Pp ae(o))

3

1 0 5 ot
—— | v~ ap .V [f’ D) —g .0
+ Sin29 8(7) <D fj; P Pp ‘16(1) 8@ rad ( )

or a practical form

3
) [(e?oﬁzfo
(i)

i=1

L2
/=g 0x*

1 .-
Ty (1 fog) + <0390 (sinff o)

ety ) v=ar|

——_<fw((0)) = Stad> (21)

where
3 3
w(g) = V_zpap/svaefo) => %0 <7i00 +> yioff(f))’
i=1 J=1
=3

3
=1
3

Zw

j=2

.

(22)

.

and
w(j) =V 2p° pﬁVaeJ

3
=Yoo + Z f(i){(]’o,'i +7ijo) + z }’ijkf(k)}- (23)
i=1 T

k—

Yapy = —Ypay 18 the Ricci rotation coefficients defined by
Vapy = €{y efy)vb(e(ﬁ))a. We also used
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( +Z"ﬂ ) il(zm Vozof +Z%k1 >

—cotf - =,
ot 8@2 v

5 - =5, — L)

060 00 + sin? O0p Op VRSOV

Note that the partial derivative with respect to x“ that
appears in the first term for Egs. (20) and (21) has to be
taken fixing v, 6, and & (not fixing p’). For Eq. (21), it is
trivially seen that N = [ dN is the conserved quantity [see
Egs. (4) and (9)].

It is soon found that @) is related to w(;) by

o) = — Z o) ()- (24)

Since £ ;), O¢; /69 and (0¢;/0p)/ sin@ constitute an
orthonormal set of the unit vector in the local three-
momentum space of subscript (i), we find that @),
w(p), and ;) are the independent components of w;).
[00), (p), (3] are independent projection components of
the ;) vector, satisfying

7). (25)

We note that w) and w(;, are composed of nine basis
functions of Y, (0,p) with 0 <1<2 and 0 < |m| <2,
where Y, is the spherical harmonics function. Also,
w(p) sin and w(;) are composed of fourteen basis functions
of Y;,(0,p) with 0 <1<3 and 0 <|m|<2. Thus, in
general, [0 ), (), w(;)] are written as functions of these
basis functions, although with a good choice of the tetrad,
they can be written in a simple form in particular for
spacetime of a special symmetry (see below).

C. Explicit form in black hole spacetime

1. Schwarzschild black hole

As an illustration, we explicitly describe the con-
servative form of Boltzmann’s equation in black-hole
spacetime. As the simplest case, first, we choose the
Schwarzschild background for which the line element is
written as

-1
ds® = —<1 —2M>dt2+ (1 —2M> dr?
r r
+

r2(d6? + sin20dg?), (26)
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where (7,7,0, ) are usual Schwarzschild coordinates. In
this case, one of the natural choices of the tetrad compo-

nents is
. M -1/2 o\«
o=\'"7) &)
; 2MN\ 1/2 0\ a
‘hy=\1=7) \a;)°
R WA
‘@~ \a0)
1 [0\
a . 2
“6) rsinH(&p) ’ @7)
and thus, dV,= (1-2M/r)""/?r?sinOdrdfdgp. This

choice is valid only for r > 2M because for r <2M,
e?o) is not timelike and e’(ll) is not spacelike, respectively.
The nonzero components of y,;, for this tetrad are

1 2MN\ 1/2
V122 = —V212 = V133 = ~V313 = - 1-— ,

-
cotd
V233 = —V323 = — )
-
M 2MN\ ~1/2
Y100 = —Yo10 = 3 <1 - —> . (28)
r r
Hence,
M 2M\ —1/2
W) = —5 (1 — —) cosd (29)
r r
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M oM\ -1/2 1 2MN\ 1/2 _
oy — -1 <1 _ _) ! (1 . _) S0, (30)
r r r r
1 2MN\1/2 -
W) = - (1 _T) sin @ cos 0 cos ¢
to -
Lo sin?6sin’{, (31)
,
1 2MN\ V2 ~
w(3) = - <1 _T> sin @ cos @ sin
to -
_ O in%0 sin & cos @, (32)
-
and
3M — 2MN\ 172
WG = - r< T) sin @, (33)
to -
w(¢) = —CO sin39 sin @ (34)
r

We note that (), @), and @) are composed only of

)
one basis function of (6, ), respectively, although they
may have more functions in general. Hence, the equation
for f in the Schwarzschild background is written in a quite

simple form:

2M\-129f 1 (. 2M\'/2 19
(202 e (-2) ] L s

rsiné 8(p 2 ov

1
 sinhoo { sin

0 f—esmesmgo = Siad-
B(p r

It is found that the transport term associated with v in
Eq. (35) is present only for the curved spacetime; hence,
this term is related to the gravitational redshift (for
cos @ > 0) and blueshift (for cos @ < 0). It is also interest-
ing to point out that the transport term associated with
changes the sign at the so-called photon sphere r = 3M: for
r > 3M, the direction of outgoing rays tends to converge
toward @ — 0 as usual in the flat spacetime, while for
r < 3M, rays are dragged by the gravity of the black hole.

By setting M =0, we can also obtain Boltzmann’s
equation in the flat spacetime (e.g. [8]):

_ -1/2
! 6(fsm«951n(p) ig{fﬁc()Sg%Z(l_z_M) }
r

r

—3M . 27M -1/2
r r

(35)
|
of 10 _— 0 =
E+_25(fcosar)+rsin9%(fsm6’smecosq))
1 0 L1 o, . ,
+rs1n96 (f sin @ sin p) —;m%(f in“6)
0 <f—6s1n051n(p> = Sa- (36)
B(p r

This equation together with Eq. (35) shows that for wg),
(), and @ z), cos 0, sin 0, and sin’@ sin ¢ are the primary
basis functions, respectively.
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Nonrotating black holes may be written in the
Eddington-Finkelstein form (e.g., [18]) as

2M 2M
ds? (1——>d—2+—d—d +< +—>dr2
r r
+ r2(d6* + sin*0dg?), 37

where 7 =t +2Mlog|r/2M — 1]|. In this case, the lapse
function, a, is always positive for r > 0,

1/2
) ; (38)

and n, = —aV,1 is well defined for r > 0. This coordinate
has a horizon-penetrating property (i.e., 7 is a timelike
coordinate even for r < 2M), and thus, it could be useful
for numerical simulations covering the region up to
r <2M. If we choose

a a a 2M _1/2 a “
o= =1t =7) &)
Co1foNe .1 [0\

@ 7(%) S A rsine<%) -9

efo) and e} are timelike and spacelike for the entire

region with r >0, respectively, and dV,=(1+
2M /r)'/? sin r>drd@deg is not singular for r > 0. For this
case, the equation for f becomes

roN2oF 10 L r \V2f . 2M
<r+2M> Eﬂ?ar{f’ <r+2M> (COSH_T)}

1 0
+ 950 —(fsin@sinfcosp)

d
+ rsin09p ——(fsin@sinp)

B r
C\r+2Mm

———[ §0) ]+L9%(fsm9a) )

- (f—esinésin(p) =Sds (40)
0P r

M 2M\-32
o) =3 (1+—
r r

X [-M + rcos@ + (2r + 3M) cos(26)],  (41)

(22
60(6) =3 +T Sin

X [=r(r + M) +2M(2r +3M)cos6]. (42)
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w(o) and o in this case are different from Egs. (30) and
(33), respectively: They are composed of three and two
functions of @, respectively, and hence, it seems that they
might contain redundant unphysical components, although
they are regular functions for the entire region with r > 0
and hence for the numerical simulation, this has a tractable
form. On the other hand, if we choose

2MN\ -1/2 £ 9\ a
w=(-3)"(7)"
= (-2 10 @) T @)
1) r or r \Of

L 1[0\« A VA
0 _?<%) D Ume(@) ’ )

the resulting form of w(), w@p), and @@ agree with
Egs. (30), (33), and (34), respectively (although eE’O) is
timelike only for r > 2M). In this case, the resulting
equation for f is the same as Eq. (35) except for the term
(1—=2M/r)""20f /0t which is replaced by (1 —2M/r)™!
(14+2M cos@/r)0f/0t. These examples show that the
functions included in the transport term of the momen-
tum-space variables depend in general on the choice of the
tetrad basis. This implies that choice of e( ) corresponds to

the “gauge choice” of the momentum space composed of v,
6, and . For a physical interpretation of the momentum-
space variables, the appropriate choice of the tetrad basis as
well as the spacetime gauge would be necessary.

We note that the resulting equation for f often becomes
singular due to the presence of the term (1 —2M/r)~!/?
even in the Eddington-Finkelstein coordinates for a choice
that e?o) is timelike only for r > 2M. Thus, to avoid the
appearance of the singular term, a horizon penetrating
coordinate together with an appropriate choice of the tetrad
is necessary.

2. Kerr black hole

Next, we consider spinning black holes (Kerr black
holes). In the Boyer-Lindquist coordinates, the line element
is written as (e.g., [18])

2Mr 4Marsin?0 >
ds* =—(1- dr* — dtdp + =dr?
s ( 5 > 5 (p+A r

1 de? + ;sinzﬁdqoz, (44)

where a is the spin parameter from which the angular
momentum of the black hole is derived as J = Ma. Z, A,
and = are defined by
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T == r? + a’cos®0,
A:=r>—-2Mr+ a?,
= (r? + a*)Z + 2Ma*rsin®0),

[1]

(45)

and /—g = Zsinf. The canonical orthonormal tetrad
introduced by Carter [19] is

. 1 ( + ) (9 a+ 3 a
6(0)7\/Z_A r 6t a By )
a_ﬁﬁa W _ L (0)
‘O=Vz\ar) 0 ‘@7 &s\ae)
L1 L (0N [ d)\a

‘07 Vxsing {asm 9<5f> " (3(.0) ]

and thus, = (r* + a*)\/Z/AsinOdrdfdp. This
choice is valid only outside the horizon for which A > 0
because e?o) is timelike only for this region. For this case,
Yapy has many zero components and, furthermore, the
nonzero components are described probably in the simplest

way as

(46)

a?sinfcos @

Y121 = ~V211 = Y200 = ~Y020 = — $3/2 )
rAl/2
Y12 = —V212 = Y133 = V313 — SR
arsin@
Y130 = ~V310 = Y103 = —Y013 = Y301 = —Y031 — T Tss2
(r? + a?) cotd
Y233 = ~V323 = Tz
Y230 = —V320 = Y203 = —V023 = ~V302
aAV? cos 0
=703 = Tz
Mr? — a®rsin®0 — Ma*cos*0
Y100 = —Yo10 = SN . 47)
and thus,
> +ad*> asinf . ]6}‘ 10 ~
7+—sinesin 7 —+—— VvVZAcos6
1
+Zs1n989 (fVZ sin 0sin 0 cos )
{sm@smgodl_ a } of
VIsing VA O
1 0 -
3 .
— = + ———=(sinffw;
v* v ( faox ) sin989( fw((,))
1
+ (fw ) - Srads (48)
sin’0
where
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cos O(Mr* — a*r + a*(r — M)cos>6)

1
23/2A‘/2[
—2arA'/? sin @sin O cos O sin
— a*A'? sin 6 cos Osin 6 cos ], (49)
ST
—a*(r — M)cos*6
+ 2arA'/? sin @ sin Osin @),

W@ = — —3Mr +2a?)

(50)

. 2_
sin“6@ 7
w5 = r? + a® + a*sin6) cot @ sin O sin

?) T T v [(

+ 2acos OA/?]. (51)

Note that for a — 0, (), @(p), and w(p) agree with
Egs. (30), (33), and (34), respectively.

It is worthy to note that w5 and ;) are composed only
of two basis functions of (6, @): only one component is
increased compared to the Schwarzschild case. Here, the
linear order term of a in the above functions are qualita-
tively new terms associated with the frame-dragging effect
of the rotating body. They couple or decouple with sin ¢ in
a unique manner. Namely, even if a swarm of light rays is
emitted locally in the isotropic manner with respect to {,
the isotropy is violated by the frame-dragging effect.
Besides such a physical term, no additional function of
(0, ») appears. (o) also has only three terms, one of which
is associated with the frame dragging effect.

Other tetrad sets such as the locally nonrotating frame
[20] may be chosen as a tetrad basis,

a i g Q+M i ¢
o~ Vax|\ar = \9¢p) |
a_ﬁﬁﬂ W _ L ()
‘o=Vz\or) 0 @7z \oe)
= Tamg (3>“

G /Esing \9¢p)

where e, —aV,t(=n,), a=+/AX/Z, and thus,
v, = \/HZ/A sin 0drdfOdp. Again the choice of this
tetrad is valid only outside the event horizon due to the
choice of the spacetime coordinates. For this case, the
equation becomes a bit complicated because y .z, has more
non-zero components and moreover the non-zero compo-
nents are not written as simply as those in Eq. (47) (see
Appendix C). For such a case, the physical meaning of the
transport terms with respect to the momentum-space
variables are slightly obscured.

?)

(52)
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In the Kerr-Schild coordinates (e.g., [18]),

2Mr AMr > .
ds? = —<1 5 )diz + s [rz 2 dr — asmzé’d(p]di
> 2MrX
+ (s " )ar 4 zde?
r?+a*  (rP+a*)?

sinOdrdep,

= . AMra
+ §s1n2«9dgo2 s (53)

the equation is even more complicated except for the choice

of the Carter’s tetrad [19]. First, we simply choose a locally
nonrotating frame as

170\ 0\ 9\
a _ pa _ _ || —_prl =) —pel _—
to=r =al ) (@) G
o~ L (O e L (D)
‘o= g \or) 0 ‘@ x\ae)
.« yrfﬂ 0\4 0 \¢
= (3r) V7 ()

where n, = —aV,f and

(54)

(r* 4+ a*) cos 0
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B z §r— 2Mr
““Nziomr CESDN

pr = — 2Mar o =
T EroMn (P rad) T T EE M)
o _ 2Mar
T M (Pt )
oo 2(r? +2Mr + a?)

(r* + a*)*(L + 2Mr)sin?0°

Then the timelike nature of e?o) is guaranteed for the entire
region with r>0, and also dV,= /ydrd0dg =

VEZ(Z + 2Mr) sinOdrd6 is guaranteed to be nonsingular
for r > 0. However, in this case, all the components of 7,

are nonzero (see Appendix C). As a result, @), sin éa)@,

() are written by many basis functions of ¥ m(0, ) (see
also Appendix C), although all these functions in the
equation for f are regular for r > 0 and hence in numerical
computation, this choice of the tetrad will be useful. Indeed,
the following equation for f does not have any term that is

the singular at the horizon:

2Mr 1/28f 2Mr
<1+ z) E Zar[f\/_< Nors 7

Vit +2Mr + a?
2Mar

2Mar sin @sin @ sin >]
V(Z+2Mr)(r* +2Mr + a?)

1 9
~|—Zsmeae(f\/§sm9smﬁcosgo) + {

1

o (o) o

sin 0 00 (sin Qfa)(g)))

On the other hand, if we choose the Carter’s tetrad which
1s written in this case as

et L (r* + a?) 9 “ta LAY
0 /FA ot op) |’
; _ﬁ O\, 2Mr (9
‘o= Vz\or VEA \OF
N 2Mar <8>“

VEA(PR 4+ a*) \Op)
. 1 A
‘@7 s\oa)
0 1 5 Q a 3 a
‘D7 VEsino {asm 0<5f> - <3¢> ]

the resulting forms of 7, (), (5 ,and Wy are the same
as Egs. (47), (49), (50), and (51). Thus the equation for f is
only slightly modified from Eq. (48) and is simple as

(56)

(E+ 2Mr)(r2 +a?)

Sln298¢<fw ): rad+

VE(r? +2Mr + a*) sin O sin (7)} of
(r* + a®)V= +2Mrsing | Op

(55)

[
{(r2 +a?) +2Mrcos 6

JZa A
—I———(f\/_ACOSH)

asinf . - 10f
indsing| &
sin sm(p_ o

2(f\/isin@sinécos@)

Y sin6 060
N [sm&smgoJr a (1 +2Mrcos9)' of
VZIsing  VZA r+a* )| op

19, , 1o, .-
—28_( f ) + ﬁ% (Sln@fa)<9))
1 0

57
%o sin20 ¢ 57)

(fw(zﬁ)) = Srad-

Again, the choice of this tetrad is valid only for A > 0, and
the resulting equation for f becomes singular due to the
presence of the term A~!/2. This illustrates the fact that only
for the horizon penetrating coordinates together with an
appropriate choice of the tetrad, the appearance of the
coordinate singularities at the horizon are avoided.

It is worthy to note that at the horizon where A =
24 a? —2Mr =0 with 6 = z, the coefficient of term
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df /0t (and f /D) in Eq. (57) vanishes. For this point, we
have to impose a particular condition for 9(f1*)/0v* based
on the consistency, and this gives f « v irrespective of the
value of a/M.

III. SUMMARY

We derived a conservative form of Boltzmann’s equation
in general relativity, which is concisely written. As an
illustration, we described explicit forms of Boltzmann’s
equation in black-hole spacetime with several coordinate
conditions in real spacetime and momentum space, and
showed that the conservative forms can be indeed written
in a concise form. It is also found that the meaning of the
transport term in the momentum-space variables is clearly
understood in the black-hole spacetime for a suitable choice
of the tetrad basis, while for less suitable choices, the
meaning is obscured. This indicates that an appropriate
choice of the tetrad basis may be necessary for understanding
the physical meaning of the numerical results of Boltzmann’s
equation in general relativity. We showed the properties of
several tetrad sets in the Schwarzschild, Eddington-
Finkelstein, Boyer-Lindquist, and Kerr-Schild coordinates.

In numerical computation, by contrast, the absence of the
singular terms, which could appear at the horizon in the
equation, is a more serious requirement for the basic
equation. For this, Eddington-Finkelstein and Kerr-
Schild coordinates together with the locally nonrotating-
frame tetrad with e?o) = n? have the suitable property. We

described the equations of f for such choices in an explicit
manner for the future numerical simulations.

For the practical implementation, the finite differentiation
has to be carefully chosen so that the physical principles, such
as conservation laws and Fermi statistics of neutrinos, and the
other numerical issues, such as the correct limiting behavior
of numerical fluxes in free-streaming and diffusion regimes,
should be fulfilled. In particular, ensuring the correct dif-
fusion limit in a solution of the discretized Boltzmann's
equation is a difficult problem, as detailed in [4]. However,
discussions of this are beyond the scope of the present paper.

ACKNOWLEDGMENTS

This work was supported by Grants-in-Aid for
Scientific Research (No. 23740160, No. 24244028, and
No. 25103512), by a Grant-in-Aid for Scientific Research
on Innovative Area (No. 20105004), and by the HPCI
Strategic Program of Japanese MEXT.

APPENDIX A: ON THE EXISTENCE OF THE
CONSERVATIVE FORMS

The existence of the conservative forms is guaranteed by
the following mathematical fact described in [13]. We here
outline it.

PHYSICAL REVIEW D 89, 084073 (2014)

The so-called Liouville vector field is defined as

0 0
L= P"w - Fﬁnpbpoa—lﬂ, (A1)
in the eight-dimensional tangent bundle of the four-
dimensional spacetime. It is easy to confirm that the
vector field is tangential to the seven-dimensional closed

submanifold of the tangent bundle defined by
p'p,=m’ (A2)

at each point where m is the mass of particles described by
Boltzmann’s equation (m = 0 for radiations). We can hence
regard the Liouville vector field as a vector field on this seven-
dimensional submanifold or mass shell, which is nothing but
the differential operator on the left-hand side of Eq. (2). It is
then confirmed by direct calculations that this seven-dimen-
sional version of the Liouville vector field is divergence free:
divC = 0. (A3)
The tangent bundle is naturally endowed with a (pseudo-)
Riemannian metric, which is inherited from the four-
dimensional spacetime. The metric is then pulled back to
the mass shell, making it also a (pseudo-) Riemannian
manifold. The volume element of the mass shell may be
written as

Q=nAmx,, (A4)

with the volume element n = \/=gdx" A dx' A dx* A dx? of
four-dimensional space-time and the volume element z,, =
(v/=39/|pol)dp" Adp* A dp? of the three-dimensional fiber
space. Here the wedge product of forms is denoted by A. If
we define a volume element @ on an arbitrary six-dimen-

sional momentum space by the inner product of the Liouville
vector field with the volume element Q as

w=L-Q, (AS)
then we find that its exterior derivative vanishes,
do =0, (A6)

as a consequence of Eq. (A3). It is also confirmed that @ is
invariant with respect to the Liouville flows, i.e. integral
curves of the Liouville vector field.

The momentum space is composed of six-dimensional
hypersurfaces in the mass shell, which are traversed by the
Liouville flows. Recalling that Boltzmann’s equation can
be cast in the following integral form for an arbitrary
domain in the mass shell:

foro= (5.2

(A7)
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and using the Stokes’s theorem,

| ro= [ ao)

as well as Eq. (A6), we obtain the following relation:

/apfw:%)df“":[)dfﬂﬁ'ﬂ):AE(f)Q

“ (5.

Since the domain D is arbitrary, this relation gives
Boltzmann’s equation in the ordinary form. Here the
collision term is denoted by [, (6f/67).,€ which is
identical to —p®*i1,Sq of Eq. (1). If we use instead the
following relation in Eq. (A8),

(A8)

(A9)

d(fw) = d((fL) - Q) = div(fL). (A10)
then we obtain the conservative form of Boltzmann’s
equation as follows:

. 19
div(fL) = (5—];) K

Note that the mass shell is a (pseudo-) Riemannian manifold,
and the divergence in the above equation is identical to the
one defined by the covariant derivatives for the Levi-Civita
connection, which is then recast into the conservative form
such as Egs. (18) and (20) with ordinary partial derivatives.
The above derivation is completely covariant and hence
applicable to any local coordinates on the mass shell
including the ones considered in this paper.

(A11)

APPENDIX B: TRANSFORATION TO THE
LOCAL REST FRAME

In Sec. II, we focus only on the left-hand side of
Boltzmann's equation. When solving Boltzmann’s equa-
tion, however, we have to consider how to handle the right-
hand side, i.e., collision terms, which is associated with the
interaction of the radiation field f with matters and should
be calculated in the matter rest frame. For this, we need to
perform a coordinate transformation for the momentum-
space variables. Specifically, we have to obtain the momen-
tum-space variables in the matter rest frame, (2, 0, ®). In
our formulation in which a local orthonormal frame with
respect to a tetrad is prepared, however, the procedure is
quite straightforward, as shown in the following.

First, U is simply obtained by

3
D=—piu, = —v<u<o> + qu)“(z‘)) (B1)

PHYSICAL REVIEW D 89, 084073 (2014)

where u“ denotes the four-velocity of the matter as before,
and

ug) = uae?o) and  u;) = uae?l.), (B2)
Here u(® denotes the spacetime component of the
four-velocity in the local orthonormal frame of a tetrad
basis, and u(o):—u(o) and u? =u(;) which satisfy
n,,ﬂu<")u(ﬁ) =—1. We also define the spacetime components
of p? in the local orthonormal frame of the tetrad basis as
P) = Pa€(,) = v(=1,¢ and p¥ = u(1,¢").

The next task is to determine @ and ¢. For this, we first

determine three spatial unit vectors in the local orthonormal
frame, q(la), qga), and qga), which are perpendicular to u(®).

Because these vectors are independent of each other,
qaﬂqga)q;ﬂ ) = 0;j. Now, we suppose that q(la) points to the
radial direction in the matter rest frame, and qgﬂ and qga) are
unit vectors in the two angular directions as in ;) and £'3).
Then, we can define the angles in the matter rest frame by

cosf = 1 Ap(a)’ (B3)
v
a'p
tan ) = A?a) @ (B4)
4y DP(a)
Here, for example, we can choose
. 1
g\ = [, u©,0,0, (B5)
(u9)2 = ()
VA ) et s
q =
T )2 - w2 - @y
(0),(2) (1))
x| L 1,0/, (B6)
(O = @) @) = (ul?
(@) _ 1

[ u® 1Dy 1@ y®) (WO Z (D)2 Z (43R,

Therefore, the transformation from (v, 8, @) to (9,0, §) can
be done only with several projection procedures (we do not
have to solve any equation).

APPENDIX C: RICCI ROTATION COEFFICIENTS
FOR ROTATING BLACK HOLES

In this appendix, we list Ricci rotation coefficients and
resulting forms for @(g), @), and w(;) for the zero angular
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momentum frame in the Boyer-Lindquist and Kerr-Schild
coordinates of rotating black holes.

For the choice of the zero angular momentum frame in
the Boyer-Lindquist coordinates,

a?sinf@cos b

Y121 = V211 = T sz
rAl/2
Y122 = —V212 = Ty
A1/2 .
7133 = —V313 = ST [—rE2 + (r? — a*cos*0)a*Msin?0),
Y130 = —V310 = Y103 = ~7Y013 = V301 = ~Y031
aM sin 6
=~z [2(3r% + a?) + a*(r* — a*)cos?d)],
y = - = L X [(,2 + (12)2(7'2 _ 02C0829)
100 Yo10 SIS
— 4a’*Mr3sin®0),
cotd
Y23 = 1 = Tans [ (r* + a®) + 2Mra*(2r* + a?)

+ a’cos?0(2r* + a’cos*0)Al,

Y230 = V320 = V203 = —Y023 = V302 = —7Y032

2a°MrA'/*sin’@ cos 0
- 232z '
2Ma*r(r* + a?) sincos 0
Y200 = —Y020 = — S ) (CD)
and thus,

®(0) = Y100 COS 0 + 7200 Sin 0 cos @ + 2y ;30 sin & cos O sin

+ 27,305in%0 sin @ cos @, (C2)

w(g) = sinO(y100 + 712208’ P + y335in°p)
+ (Y121 + 7020) €OS 0 cos p + 2y,3ysin’0 sin
— 2¥230 sin @ cos Osin @ cos P, (C3)

®(z) = $inOsin plyann — 7121€05%0 + y2335in0
+ 2¥530 Sin 0 sin 17

+ (7133 — 7122) sin @ cos O cos ). (C4)

For the choice of the zero angular momentum frame in
the Kerr-Schild coordinates,

PHYSICAL REVIEW D 89, 084073 (2014)

a?sinfcos O

Y121 = —7211 = T sz
r(r* + a?)
Y122 = —T212 = _23/2(r2 T OMr+ 02)1/2,
Y123 = —V213 = —V231 = V321 = ~V132 = V312
B 2Mar cos @
TSz oM

Y120 = ~V210 = —7102 = Y012 = VY201 = Yo21
2Ma?rsin @ cos @
B 322 4 2Mr + a®)' 2 (Z 4 2Mr) /2
2Masin O(r*+Mr3—a*(Mr+a?)cos?0)
PRI TN T TSR (2 1 oM + @) (2 + 2Mr) P
1
12+ 2Mr + a?)3%(Z + 2Mr)
X [—=r(r? +2Mr + a*)2% + M{a*(—r* + a*)cos*0
— a’cos?0(5r* + 8Mr* + 2a*r* + a*)
+r2(=2r* —4M7P + a®r* + 4Ma’r + a*)}],

7133 = —V313 = 23/2(

Y130 = V310 = 7103 = Y013 = V301 — —Y031
aM sin 0[r*(3r* +4Mr+a?) + a*(r* — a*)cos*d]
32(r2 4+ 2Mr + a*) (T + 2Mr)
2M[r* + M7 — a®>(Mr + a*)cos?0)
2P 4 2Mr + a®)(Z + 2Mr)' /2’
M(r?* + a®)(r* — a*cos*0)
Y100 = ~Yo10 = 3/2(,2 2172 s
E(r* 4+ 2Mr + a”)' /2 (X 4 2Mr)

’

Y101 = —Yo11 =

B B 2Mar? sin 0
122 TR TSR oMy + @) A (E + 2Mr)
cotd 3
_ - = —_—-— I + 2M
7233 V323 23/2(2 M) [r (r )

+ a?(2r’cos?0 + 2Mr + a*cos*0)],

7230 = V320 = V203 = —Y023 = 7302 = —V032
- 2Ma’rsin®6 cos 0
N 22 4 2Mr + a®) 2(Z 4 2Mr)’
2Mr?
Y202 = ~Vo22 = —23/2(2 T 2Mr)1/2’
2Ma?rsinf cos 6
7200 = —Vo20 = — 23/2(2 oMy )
2Mr

7303 = 7033 = S32(Z 4 2M 1) (r? 4 2Mr + a?)

X [(M+r)Z+M(r?—a*)Z

+2M P (r? + 2Mr + a?)],

2M*ar(r* — a*cos*d) sin 0

P4 2Mr+a®)' 2 (Z+2Mr)3?"

Y300 =" "Y030= B (C5)
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Then,

PHYSICAL REVIEW D 89, 084073 (2014)

W(0) = Y100 €08 B + 7200 SN O c0S P + 7300 SN O'8in P + 7100870 + 72028In*Oc0s?P + 73035in*Psin’p

+ 2¥102 COS 0sin 6 cos @ + 2y103 cOs 0 sin 6 sin @ + 2y203 sin%0 sin P cos p, (Co6)

@) = sinOly 00 + 7122€08%P + y133810°9] + (7121 — 7200) €08 0 €08 P + (7131 — ¥300) CO8 O'5in P

+ 5in0 cos O(—yo11 + 70220087 P + ¥335i0*P + 273 Sin P €08 P)

+ 27001€08%0 cos p — 2y,35in%f sin p,

(C7)

W () = sin (Y200 SIN @ — 7300 COS @) + 2¥20; sin @ cos O sin @ + sin®A[(y202 — ¥303) Sin P €OS P + 2y2038in>P]

+ sin0cos*0(y211 sin § — y311 c0s ) — sin*0(y35, €08 P + 7353 5in P)

+ sin0 cos 0[(r212 — ¥313) Sin @ €08 P — 27 13).

(C8)
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