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Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by
merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel
effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic)
tides of the neutron star as well as the merger signal for neutron-star–black-hole binaries. We demonstrate
the importance of the dynamic tides by comparing our model against new numerical-relativity simulations
of nonspinning neutron-star–black-hole binaries spanning more than 24 gravitational-wave cycles, and to
other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective
description that makes explicit the dependence of matter effects on two key parameters: tidal deformability
and fundamental oscillation frequency.
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Introduction.—Neutron stars (NSs) represent the strong-
est gravitational environment where matter can stably exist,
with central densities several times higher than the density
of an atomic nucleus (∼3 × 1014 g cm−3). Under such great
compression the ordinary structure of nuclear matter
completely disintegrates; instead, novel phases of matter,
new particles, or deconfined quarks may appear. The
composition and equation of state (EOS) of ultradense
NS matter remains a long-standing science frontier, despite
recent constraints [1,2]. However, gravitational-wave (GW)
observations of merging NS-NS or NS–black-hole (BH)
binaries with ground-based interferometers (advanced
LIGO [3], Virgo [4], and KAGRA [5]) will have a unique
potential to probe the NS EOS, and possibly to combine
this information with that from associated electromagnetic
transients [6].
Yet, the success of extracting the EOS information from

the GW data requires highly accurate theoretical waveform
models (templates) for matched filtering, where the data
stream is cross-correlated with a template bank covering all
physical parameter values. Building such templates
requires a detailed understanding of the influence of NS

matter on the GW signal. This is a challenging problem due
to the diverse phenomenology resulting from systems with
different parameters (EOS, masses, spins, microphysics, or
magnetic fields) [7–11].
During the binary’s gradual inspiral, the signature of NS

matter in the GWs arises from tidal interactions [12–18],
where the gravity gradient across the NS causes it to deform
away from sphericity. The dominant effect results from the
NS’s adiabatic tide (AT), where the distorted NS remains in
hydrostatic equilibrium and tracks the companion’s tidal
force, which varies periodically due to the orbital motion.
The AT is characterized by a single constant for each
multipole: the NS’s tidal deformability or Love number
[16,19]. This parameter contains information on the NS’s
interior similar to the Love number measured for Saturn’s
moon Titan, which revealed the likely existence of a
subsurface ocean [20].
In this Letter we advance the modeling of NS matter

effects in binary inspirals by computing dynamical tidal
effects and demonstrating their importance for accurate
GW models. Dynamic tides (DTs) arise when the tidal
forcing frequency approaches an eigenfrequency of the

PRL 116, 181101 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
6 MAY 2016

0031-9007=16=116(18)=181101(6) 181101-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.116.181101
http://dx.doi.org/10.1103/PhysRevLett.116.181101
http://dx.doi.org/10.1103/PhysRevLett.116.181101
http://dx.doi.org/10.1103/PhysRevLett.116.181101


NS’s normal modes of oscillation, resulting in an enhanced,
more complex tidal response than ATs. Normal modes of
NSs are akin to oscillations of Earth excited by earthquakes
and used in seismology to probe Earth’s structure. We focus
here on the oscillation modes with the strongest tidal
coupling: the fundamental (f) modes describing the
NS’s quadrupole (l ¼ 2). They behave like harmonic
oscillators driven by a periodic force whose amplitude
and frequency are slowly varying. This well-studied gen-
eral problem, when specialized to the context of non-
spinning bodies on circular orbits in Newtonian gravity, is
described by the Lagrangian [14,16]

LQ ¼
Xl
m¼−l

�
−
1

2
QmEme−imϕðtÞ þ 1

4λω2
f

ð _Q2
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2
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�
:
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Here, overdots denote time derivatives, Qm are quadrupole
modes, Em are the amplitudes of the tidal field, ϕðtÞ ¼R
Ωdt is the orbital phase, and λ is the tidal deformability.

Gravitational radiation reaction (RR) effects cause the
orbital frequency Ω and Em to slowly evolve. The Euler-
Lagrange equations for Eq. (1) have the static solution
Q0 ¼ −λE0 and, in the AT approximation ωf ≫ jmjΩ, the
other modes are QAT

m ¼ −λEme−imϕ. By contrast, the
approximate dynamical behavior calculated from a two
time scale expansion [21] is
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where the upper (lower) sign is for m > ð<Þ0. The sub-
script f indicates evaluation at the resonance when
jmjΩðtfÞ ¼ ωf and the tidal force becomes phase coherent
with the f modes. Also, ϵf ¼ Ω−1=tRR is the ratio between
the orbital and RR time scales and Ω0

f is a rescaled
derivative. The first term in Eq. (2) is an equilibrium
solution causing an increasing correction to QAT

m long
before the resonance. Its divergence is canceled by the
second term in the first line of Eq. (2) while the Fresnel
integral captures the near-resonance dynamics. The solu-
tion Eq. (2) is finite and valid for frequencies
< ωf þOð ffiffiffiffiffi

ϵf
p Þ; the postresonance dynamics are omitted,

since for nonspinning binaries ωf ∼ jmjΩ near merger for
low l poles.
Aside from notable exceptions [14–16,22–24], most

previous studies exploited that ωf > jmjΩ during most
of the inspiral and hence focused on the adiabatic limit
ωf=ðjmjΩÞ → ∞. However, as we will demonstrate below,

depending on the parameters, the finite frequency
contributions illustrated in Eq. (2) can become appreci-
able and must be included in robust GW template
models. In this Letter we develop such physically more
accurate models for EOS measurements from GW
observations. While the main impact of our model is
for NS-NS binaries, we focus our assessments primarily
on NS-BH binaries with low mass ratios, which,
although less likely as astrophysical sources, currently
enable the most stringent tests against numerical-
relativity (NR) results.
Effective-one-body (EOB) model with dynamic tides.—

The EOB framework [25–29] combines results from the
weak-field post-Newtonian (PN) approximation, valid for
any mass ratio, with strong-field effects from the test-
particle limit. The perturbative PN results are resummed
through a mapping to a Hamiltonian, RR forces, and
GW polarizations, and further improved by calibrating
parametrized higher-order PN terms to NR data. This
yields an accurate description of the entire signal from
BH-BH systems [27–29]. Specifically, using geometric
units G ¼ 1 ¼ c, and setting M ¼ m1 þm2 and
ν ¼ m1m2=M2, where m1 and m2 are the compact-
objects’ masses, the conservative dynamics of the
binary is described by the Hamiltonian HEOB ¼
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðHeff=μ − 1Þp

−M, where Heff is the
Hamiltonian of an effective test particle of mass
μ≡ νM moving in the effective metric ds2 ¼
−Adt2 þ A−1Ddr2 þ r2ðdθ2 þ sin2 θdϕ2Þ, with A and D
being certain potentials that we discuss below. In the
nonspinning case, the motion is in a plane (θ ¼ π=2)
and the effective Hamiltonian is

Heff ¼
ffiffiffiffi
A

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where pϕ and pr are the canonical azimuthal angular and
radial momentum. Adopting the subscript “PP” for the
point-particle case (i.e., tidal effects set to zero), we use for
the potential APP the function Δu from Eq. (2) of Ref. [27]
and take 1=DPP from Eq. (10b) of Ref. [30]. Adiabatic tidal
effects have also been included in the EOB model
[18,31,32].
Here, we devise a novel tidal EOB (TEOB) model that

includes DT effects. We derive the Hamiltonian from the
Lagrangian in Eq. (1), its 1PN extension [33], and the PP
contributions, transform to EOB coordinates, and imple-
ment several EOB resummations of the tidal terms [34]. We
consider here the following choice: tidal interaction terms
not involving any momenta lead to replacing A in Eq. (3)
with APP þ ADT, interaction terms involving the orbital
momenta and the oscillator’s kinetic and elastic energy set
μ2 → μ2 þ μ2DT, and effects arising from a noninertial
reference frame and relativistic frame dragging add linearly
to Eq. (3) through a term fDT. Specifically,
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ADT ¼ EijQij; fDT ¼ −ZSQ · l; ð4aÞ

μ2DT ¼ zμ
2λ

ðQijQij þ 4λ2ω2
fPijPijÞ þQijCij; ð4bÞ

where Qij ¼
P

mY
2m
ij Qm with Y2m

ij symmetric trace-free
tensors [35], Pij is the momentum conjugate toQij, Eij and
Cij describe the couplings to the orbital motion, SiQ ¼
2ϵijkQnjPkn is the angular momentum associated with the
quadrupole, and l ¼ x × p=jx × pj is a unit vector along
the orbital angular momentum. For circular orbits and
for Qij expressed in a corotating frame with the orbital
motion, we obtain [34] z¼1þ3m1=ð2rÞþ27Mm1=ð8r2Þ,
Cij ¼ 3m2ð1þ 3M=rÞðlilj þ νninjÞ=ðνr4Þ, and
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where m1 ¼ mNS, m2 ¼ mBH. In the case where both
bodies are NSs, one must add to Eq. (4) the same
expression with m1↔m2 and the companion’s values of
fλ;ωfg. In Eq. (4) only the 1PN information is complete
since the 2PN Lagrangian is only known in the AT limit.
We have included this partial 2PN information in the
Oðr−2Þ coefficients in Eq. (4) by taking the AT limit,
matching Eqs. (6.9) and (6.10) of Ref. [31] to Eij, using the
redshift z from Eq. (6.3) of Ref. [31], and deriving Z from
Eqs. (3.13) of Ref. [36]. To quantify the uncertainty due to
the lack of > 1PN DT information, we also consider two
alternatives for incorporating tidal effects in the
Hamiltonian [34] where all the tidal terms are included
either in ADT or in μ2DT.
The TEOB equations of motion are _xi ¼ ∂HEOB=∂pi,

_Qij ¼ ∂HEOB=∂Pij, and

_pi ¼ −
∂HEOB

∂xi þ F i; _Pij ¼ −
∂HEOB

∂Qij þ F ij; ð5Þ

where the F ’s are the RR forces constructed from the GW
modes hlm in the form F ðhlmÞ ¼ F ðhlmPP þ hlmDTÞ. We use in
Eq. (5) the approximation F i ¼ F iðhlmPP þ hlmATÞ computed
from Eqs. (12) and (13) of Ref. [30] with hlmPP from Eq. (17)
of Ref. [30] and hlmAT from Eqs. (A14)–(A17) of Ref. [37]
(but including only those PN orders where the analytical
knowledge is complete). For the force on the oscillators in
Eq. (5) we approximate F ij ≈ 0. We also change variables
pr → pr� as in Ref. [30]. The initial conditions for the
6 degrees of freedom in Qij and Pij are the equilibrium
solutions to the equations of motion for circular orbits.

Effective TEOB model.—We next provide an approxi-
mate but more efficient description of DT effects for use in
practical implementations. In Eq. (3) we set A¼APPþAeff

AT ,
where the function Aeff

AT is obtained by replacing in
Eqs. (6.7) and (6.19) of Ref. [31] the constant Love
numbers kl by keffl given by

keffl ¼ kl

�
al þ

bl
2

�
QDT

m¼l

QAT
m¼l

þQDT
m¼−l

QAT
m¼−l

��
; ð6Þ

using Qm from Eq. (2). We express Eq. (6) as a function
of r by evaluating all quantities for a Newtonian point-
particle inspiral. The coefficients al and bl arising from
relative factors between Em≠l and Em¼l are fa2; b2g ¼
f1=4; 3=4g and fa3; b3g ¼ f3=8; 5=8g. For l > 2, we
neglect resonances with jmj < l since they occur at
higher frequencies. Also, Ω2 ¼ M=r3, ðϕ − ϕfÞ ¼
ð32M3=2μÞ−1½ð ffiffiffiffiffi

M
p jmj=ωfÞ5=3 − r5=2�, Ω0

f ¼ 3=8, and

ϵf ¼ 256M2=3ω5=3
f μ=ð5jmj5=3Þ. The behavior of keffl is

illustrated in Fig. 1; see Refs. [38,39] for other work on
effective tidal responses. The first peak in keffl corresponds
to the resonance which excites a free oscillation that
subsequently dephases from the tidal force, thus reducing
the net tidal effect. We find that discrepancies between the
result Eq. (6) and full DTevolutions are smaller than the PN
uncertainty in the DT model. From Eqs. (2) and (6) for
l ¼ 2, the maximum DT amplitude (if attained before the
inspiral terminates) scales as ∼C−5=4

NS ð1þ qÞ1=6= ffiffiffi
q

p
(where

CNS is the NS’s compactness), indicating the significance
of DT effects primarily for low mass ratios.
NS-BH merger model.—We complete the TEOB for NS-

BHmergers, when the NS either plunges into the BH or it is
tidally disrupted when the BH’s tidal force overcomes the
NS’s self-gravity. The latter produces a prominent EOS-
dependent damping in the GW signal [40,41]. This has
been incorporated in state-of-the-art phenomenological
models [42,43]. The NR simulations for CNS ¼ 0.1444
reveal that for q < 3 the NS is strongly disrupted as marked
by a sudden decrease in its central density corresponding to
the peak in the GW amplitude jh22j at time tApeak. The
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FIG. 1. Effective dimensionless tidal coefficient for DT effects
(solid lines) and the adiabatic values (dashed lines) versus the
orbital frequency Ω and separation r.
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GW frequency ω22 peaks at tωpeak > tApeak. For t ≥ tApeak
we model the GWs using fits to the NR results of
the form jh22jfit ¼ A0= coshðA1~tA þ A2~t2AÞ and ωfit

22 ¼
ðB0 þ B1~tωÞ= coshðB2 þ B3~tω þ B4~t2ωÞ. Here, ~tA;ω ≡
t − tA;ωpeak and Ai and Bi are fitting parameters subject to
constraints that aid in the convergence of the fitting
algorithm. The parameters Ai and Bi are interpolating
polynomials in q ∈ ½1; 2� and smoothly connect to the
inspiral portion of the signal via blending functions of the
form ½1þ exp ð�~tA=wÞ�−1, where w relates to the width of
the transition region.
Accuracy of the TEOB model.—The TEOB model relies

on several approximations; however, we checked that the
DTs dominate over other physical effects. Specifically, we
verified that the effects on the GW phase of a nonlinear
tidal response, nonlinear couplings, and higher multipoles
(l > 3) lead to corrections of only a few percent over
24 GW cycles, based on the hexadecapole and several
choices of nonlinearities. The DT effects in the hlm modes
are the subject of future work; using an effective descrip-
tion, we find that the resulting amplification of the net effect
in the GW signal is smaller than the contribution from DTs
in the Hamiltonian. Finally, the approximation F ij ≈ 0

showed a negligible influence on the phase over 24 GW
cycles in a Newtonian inspiral code. The dominant uncer-
tainties in our model are relativistic corrections to tidal
interactions which, however, leave the qualitative conclu-
sions about the significance of DTs unaffected.
Numerical-relativity simulations.—We produce NR sim-

ulations of nonspinning NS-BH coalescences with unprec-
edented length and high accuracy using the spectral
Einstein code (SpEC) [44]. SpEC evolves Einstein’s
equations on a pseudospectral grid, coupled to the general
relativistic equations of hydrodynamics evolved on a
separate finite volume grid (which only covers regions
where matter is present) [45]. We consider mass ratios q ¼
m2=m1 ¼ f1; 1.5; 2; 3; 6g to sample all degrees of tidal
disruption. We choose a NS mass m1 ¼ 1.4M⊙ and radius
RNS ¼ 14.4 km, with a Γ ¼ 2 polytropic EOS. This
implies CNS ¼ 0.1444, with k2 ¼ 0.07524, k3 ¼ 0.0221,
λ ¼ 2k2R5

NS=3, and Mωf ¼ 0.1349ð1þ qÞ=2 for l ¼ 2

computed as in Ref. [39]. For the cases q ¼ f1; 1.5; 2g,
we make the following improvements to SpEC with matter
[10,45]: (i) implementing higher-order (HO) finite-
difference methods to evolve the fluid [46], (ii) modifying
the criteria for the amount of matter leaving the outer
boundary before the hydrodynamic variables are interpo-
lated onto a larger and coarser grid, and (iii) using a gauge
[10] that smoothly transitions between a damped wave and
harmonic gauge. We compute initial conditions as in
Ref. [47] and achieve initial eccentricities of ≤5 × 10−4

following Ref. [48]. All configurations are simulated at
three different numerical resolutions, with N ¼ f1003;
1203; 1403g grid points for the hydrodynamics, and target

truncation errors halved at each resolution for the adaptive
pseudospectral grid. The mass escaping from the grid leads
to an error δϕdM ≈ ω22tδM=m1 [49], where we conserva-
tively use for δM the loss in total mass over the entire
inspiral. We define the extrapolation error of the GW signal
to null infinity to be the difference between second-order
(SO) and third-order polynomial fits in r−1 following
Ref. [50]. For the error due to the finite numerical
resolution, we assume that for a grid spacing ΔxFD the
error scales as ðΔxFDÞ2, and, in the cases where we
computed results with two hydrodynamics algorithms,
the HO and a SO method, we also include those
differences in the error estimate. This leads to δϕFD ¼
αFD max½ðϕhigh − ϕmedÞ; ðϕHO − ϕSOÞ�. The factor αFD is
computed by assuming second-order convergence between
the high and medium resolutions. To obtain the global
error estimate we sum the errors in quadrature: δϕ2

tot ¼
jδϕextj2 þ jδϕdMj2 þ jδϕFDj2. This is a very conservative
estimate, leading to four simulations at three resolutions
and using two different algorithms agreeing to much better
accuracy than the error estimate. The results of the error
analyses for q ¼ 2 are shown in Fig. 2.
Comparing TEOB to NR.—To test the TEOB model and

assess the importance of the DT effects, we perform
comparisons to NR simulations and to three different AT
models. These models are obtained by setting in Eq. (3)
A ¼ APP þ AAT, with AAT computed as follows. (I) The
2PN Taylor expansion from Eqs. (6.6) and (6.18) of
Ref. [31] (“ad. tides 2PN”). (II) The gravitational self-
force (GSF) results where AGSF

AT ¼ −3qλr−6½1þ 3r−2=ð1 −
rLR=rÞ þ ðm1=MÞa1ð1 − rLR=rÞ−7=2� with a1 from
Eqs. (7.24)–(7.27) of Ref. [51] (“ad. tides GSF”). The
quantity rLR is the light ring located at 3M in the test-
particle limit; here, however, we compute its location for
the dynamics described by the TEOB model (I) following
the prescription of Ref. [32]. We find that this shift of rLR to
larger values leads only to a marginal enhancement of the
tidal effects. (III) A modification of (II) discussed in
Ref. [32] obtained by adding to (II) an adjustable term
∝ðm1=MÞ2ð1 − rLR=rÞ−p with the choice p ¼ 4 (“ad. tides
Bernuzzi+”). All models further include the octupole
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FIG. 2. Error budget for NS-BH NR simulations. We show for
q ¼ 2 the phase differences δϕ (without alignment) with respect
to the highest resolution simulation available using HO methods
to quantify the sources of error due to finite resolution and mass
escaping from the grid.
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effects, using the AT result of Ref. [31] for models (I)–(III)
and using a similar treatment as for the quadrupole in the
DT model [34].
The upper panel of Fig. 3 shows the NR and TEOB

waveforms [using Eqs. (4)] for q ¼ 2; the lower panel
focuses on the phasing, where the blue shaded region spans
the NR error δϕtot computed after aligning the data over the
first five GW cycles. The net size of the NS matter effects is
∼2 rad as determined by comparing to a BH-BH EOB
waveform. The impact of DT versus only AT effects is
quantified by contrasting the AT 2PN results (orange curve)
with the DT model (red region), where the uncertainty band
results from different EOB resummations. The DT model
thus leads to a substantial improvement (here ∼20% at
tApeak) in capturing the matter effects in the late inspiral.
While the overall performance of this model is comparable
to that of the enhanced AT model (III) (solid blue curve),
the key difference is that it is a prediction from the
underlying NS physics whereas (III) relies on enhancing
the tidal field strength through the adjustable term as seen
by comparing to the GSF result (dashed blue curve).

We obtain similar results for the other NS-BH configu-
rations [52] for which, however, the size of the tidal effects
decreases as ∼ð1þ qÞ−5, as well as for NS-NS binaries as
shown in Fig. 4 using NR results from Ref. [53]. The net
matter effects are ∼4 rad. The DT effect contributes ∼30%
of the AT phasing at the peak. Through comparisons with
NR BH-BH data [54] we verified that the phase error in the
PP model is negligible (∼10−4 rad). These results clearly
demonstrate the importance of including DT effects in
robust GW template models. Moreover, since for non-
spinning point masses the EOB model has been extensively
tested to assess the small size of its systematic errors
[55,56], our TEOB model also mitigates concerns [57–59]
about systematic errors in the tidal parameters due to lack
of high-order PN point-particle results.
Conclusions.—We developed the first full EOB wave-

form model that includes dynamical tidal effects. By
comparing to new and existing NR simulations, we
demonstrated the significance of DT effects in both
NS-BH and NS-NS inspirals, for mass ratios ≲3 and for
low NS compactnesses. For large BH spins, preliminary
estimates indicate that DT effects may remain non-negli-
gible for mass ratios ≲5, although the net matter effects
decrease rapidly with the mass ratio. We further devised an
effective description of DTs for use in GW measurement
templates. Our TEOB waveform model also describes the
GWs emitted from nonspinning NS-BH mergers and will
be implemented for LIGO data analysis. This work serves
as the foundation for physically more realistic cases and
improvements to the model.
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cycles. Lower panel: Phase differences between the NR simu-
lation and tidal EOB models. The solid red curve corresponds to
the TEOB waveform presented above. The blue shaded region
indicates the NR error.
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