Black hole dynamics in generic spacetimes

Helvi Witek, V. Cardoso, L. Gualtieri, C. Herdeiro, A. Nerozzi, U. Sperhake, M. Zilhão

> CENTRA / IST, Lisbon, Portugal

Phys. Rev. **D 81**, 084052 (2010), Phys. Rev. **D 82**, 104014 (2010), Phys. Rev. **D 83**, 044017 (2011), Phys. Rev. **D 84**, 084039 (2011), Phys. Rev. **D 82**, 104037 (2010),

work in progress

Molecule workshop:

"Recent advances in numerical and analytical methods for black hole dynamics" YITP, Kyoto, 28 March, 2012 **1** Collisions of black holes in higher dimensional spacetimes

2 Black holes in a box

3 Conclusions and Outlook

Black hole collisions in higher dimensional spacetimes

High Energy Collision of Particles

Consider particle collsions with $E = 2\gamma m_0 c^2 > M_{Pl}$

- Hoop Conjecture (Thorne '72) \Rightarrow BH formation, if circumference of particle $< 2\pi r_S$
- Collisions of shock waves (Penrose '74, Eardley & Giddings '02)
 ⇒ BH formation if b ≤ r_S
- numerical evidence in ultra relativistic collision of boson stars \Rightarrow BH formation if boost $\gamma_c \ge 2.9$

Low Lorentz boost, $\gamma = 1$ Large Lorentz boost, $\gamma = 4$ Choptuik & Pretorius '10

- \Rightarrow black hole formation in high energy collisions of particles
 - higher dimensional theories of gravity \Rightarrow TeV gravity scenarios
 - signatures of black hole production in high energy collision of particles
 - at the Large Hadron Collider
 - in ultra-high relativistic Cosmic rays interactions with the atmosphere

Life cycle of Mini Black Holes

Formation

- lower bound on BH mass from area theorem (Yoshino & Nambu '02)
- 2 Balding phase: end state is Myers-Perry black hole
- Spindown phase: loss of angular momentum and mass
- Schwarzschild phase: decay via Hawking radiation
- Planck phase: $M \sim M_{Pl}$

Goal: more precise understanding of black hole formation \Rightarrow compute energy and angular momentum loss in gravitational radiation Toy model: black hole collisions in higher dimensions

Numerical Relativity in D > 4 Dimensions

- Yoshino & Shibata, Phys. Rev. **D80**, 2009, Shibata & Yoshino, Phys. Rev. **D81**, 2010
- Okawa, Nakao & Shibata, Phys. Rev. 83, 2011
- Lehner & Pretorius, Phys. Rev. Lett. 105, 2010
- Sorkin & Choptuik, GRG 42, 2010; Sorkin, Phys. Rev. D81, 2010
- Zilhão et al., Phys. Rev. D81, 2010, Witek et al, Phys. Rev. D82, 2010, Witek et al, Phys. Rev. D83, 2011, Zilhão et al., Phys. Rev. D84, 2011.

Numerical Relativity in D Dimensions

- consider highly symmetric problems
- dimensional reduction by isometry on a (D-4)-sphere

general metric element

$$ds^2 = g_{\mu
u} dx^\mu dx^
u + \lambda(x^\mu) d\Omega_{D-4}$$

H. Witek (CENTRA / IST)

Numerical Relativity in D Dimensions

D dimensional vacuum Einstein equations $G_{AB} = R_{AB} - \frac{1}{2}g_{AB}R = 0$ imply ${}^{(4)}T_{\mu\nu} = \frac{D-4}{16\pi\lambda} \left[\nabla_{\mu}\nabla_{\nu}\lambda - \frac{1}{2\lambda}\partial_{\mu}\lambda\partial_{\nu}\lambda - (D-5)g_{\mu\nu} + \frac{D-5}{4\lambda}g_{\mu\nu}\nabla_{\alpha}\lambda\nabla^{\alpha}\lambda \right]$ $\nabla^{\mu}\nabla_{\mu}\lambda = 2(D-5) - \frac{D-6}{2\lambda}\nabla^{\mu}\lambda\nabla_{\mu}\lambda$

4D Einstein equations coupled to scalar field

Formulation of EEs as Cauchy Problem in D > 4

- 3+1 split of spacetime ⁽⁴⁾ $\mathcal{M} = \mathbb{R} + {}^{(3)}\Sigma$ (Arnowitt, Deser, Misner '62) $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = (-\alpha^2 + \beta_k\beta^k) dt^2 + 2\beta_i dx^i dt + \gamma_{ij}dx^i dx^j$
- 3+1 split of 4D Einstein equations with source terms
 ⇒ Formulation as initial value problem with constraints (York 1979)

Evolution Equations

$$\begin{aligned} \partial_t \gamma_{ij} &= -2\alpha K_{ij} + \mathcal{L}_{\beta} \gamma_{ij} \\ \partial_t K_{ij} &= -D_i D_j \alpha + \alpha \left({}^{(3)} R_{ij} - 2K_{il} K_j^l + KK_{ij} \right) + \mathcal{L}_{\beta} K_{ij} \\ &- \alpha \frac{D-4}{2\lambda} \left(D_i D_j \lambda - 2K_{ij} K_{\lambda} - \frac{1}{2\lambda} \partial_i \lambda \partial_j \lambda \right) \\ \partial_t \lambda &= -2\alpha K_{\lambda} + \mathcal{L}_{\beta} \lambda \\ \partial_t K_{\lambda} &= -\frac{1}{2} \partial^l \alpha \partial_l \lambda + \alpha \left((D-5) + KK_{\lambda} + \frac{D-6}{\lambda} K_{\lambda}^2 \right) \\ &- \frac{D-6}{4\lambda} \partial^l \lambda \partial_l \lambda - \frac{1}{2} D^l D_l \lambda \right) + \mathcal{L}_{\beta} K_{\lambda} \end{aligned}$$

Wave Extraction in D > 4

Generalization of Regge-Wheeler-Zerilli formalism by Kodama & Ishibashi '03

Master function

$$\Phi_{,t} = (D-2)r^{(D-4)/2} \frac{2rF_{,t} - F_t^r}{k^2 - D + 2 + \frac{(D-2)(D-1)}{2}\frac{r_s^{D-3}}{r^{D-3}}}, \qquad k = l(l+D-3)$$

Energy flux & radiated energy

$$rac{dE_l}{dt} = rac{(D-3)k^2(k^2-D+2)}{32\pi(D-2)} (\Phi_{,t}')^2 \,, \qquad E = \sum_{l=2}^\infty \int_{-\infty}^\infty dt rac{dE_l}{dt}$$

Momentum flux & recoil velocity

$$rac{dP^{i}}{dt} = \int_{S_{\infty}} d\Omega rac{d^{2}E}{dtd\Omega} n^{i}, \qquad v_{recoil} = \left| \int_{-\infty}^{\infty} dt rac{dP}{dt}
ight|$$

Numerical Setup

• use Sperhake's extended LEAN code (Sperhake '07, Zilhão et al '10)

- 3+1 Einstein equations with scalar field
- Baumgarte-Shapiro-Shibata-Nakamura formulation with moving punctures dynamical variables: χ , $\tilde{\gamma}_{ij}$, K, \tilde{A}_{ij} , $\tilde{\Gamma}^{i}$, ζ , K_{ζ}
- modified puncture gauge

$$\begin{array}{lll} \partial_t \alpha & = & \beta^k \partial_k \alpha - 2\alpha (K + (D - 4)K_{\zeta}) \\ \partial_t \beta^i & = & \beta^k \partial_k \beta^i - \eta_\beta \beta^i + \eta_{\Gamma} \tilde{\Gamma}^i + \eta_\lambda \frac{D - 4}{2\zeta} \tilde{\gamma}^{ij} \partial_j \zeta \end{array}$$

measure lengths in terms of r_S with

$$r_S^{D-3} = rac{16\pi}{(D-2)A^{S^{D-2}}}M$$

Equal mass head-on in D = 4, 5, 6

Brill-Lindquist type initial data

$$\psi = 1 + r_{5.1}^{D-3} / 4r_1^{D-3} + r_{5.2}^{D-3} / 4r_2^{D-3}$$

- Key (technical) issues:
 - modification of gauge conditions
 - modification of formulation
- increase in *E*/*M* with *D* ⇒ qualitative agreement with PP calculations (Berti et al, 2010)

D	$r_S \omega(l=2)$	E/M(%)
4	$0.7473 - { m i} 0.1779$	0.055
5	$0.9477 - { m i} 0.2561$	0.089
6	$1.140 - { m i} 0.304$	0.104

Unequal mass head-on in D = 5

• consider mass ratios $q = r_{S,1}^{D-3} / r_{S,2}^{D-3} = 1, 1/2, 1/3, 1/4$

• fitting function $\frac{E}{M\eta^2} = 0.0164 - 0.0336\eta^2$

within < 1% agreement with point particle calculation (Berti et al, 2010)

Initial data for boosted BHs in D > 4

- construct initial data by solving the constraints
- assumption: $\bar{\gamma}_{ab} = \psi^{\frac{4}{D-3}} \delta_{ab}$, $\bar{K} = 0$, $\bar{K}_{ab} = \psi^{-2} \hat{A}_{ab}$
- constraint equations

$$\partial_a \hat{A}^{ab} = 0, \quad \hat{\bigtriangleup}\psi + \frac{D-3}{4(D-2)}\psi^{-\frac{3D-5}{D-3}}\hat{A}^{ab}\hat{A}_{ab} = 0, \quad \text{with} \ \hat{\bigtriangleup} \equiv \partial_a \partial^a$$

ullet analytic ansatz for $\hat{A}_{ab} o$ generalization of Bowen-York type initial data

• elliptic equation for $\psi
ightarrow$ puncture method (Brandt & Brügmann '97)

$$\psi = 1 + \sum_{i} r_{S(i)}^{D-3} / 4r_{(i)}^{D-3} + u$$

 \Rightarrow Hamiltonian constraint becomes

$$\hat{\bigtriangleup}u + \frac{D-3}{4(D-2)}\hat{A}^{ab}\hat{A}_{ab}\psi^{-\frac{3D-5}{D-3}} = 0$$

Head-on of boosted BHs (preliminary results)

• evolution of puncture with $z/r_S=\pm 30.185$ with $P/r_S^{D-3}=0.4$

 $\begin{array}{c} 0.04 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.00 \\ 0.$

 $l = 2 \mod \Phi_{t}$

PP calculations (Berti et al, 2010)

Issues:

- dependence of radiated energy on D and boost
- long-term stable evolutions for larger boosts
- adjustment of (numerical) gauge
- requirement of very high resolution in wavezone for reasonable accuracy

Black hole binaries in a box

AdS / CFT correspondence (Maldacena '97)

- Anti-de Sitter spacetime
 ⇒ spacetime with negative cosmological constant
- consider scalar field propagation in SAdS background
 - $\frac{d^2}{dr^2}\psi + (\omega^2 V)\psi = 0$
 - potential $V \longrightarrow \infty$ as $r \longrightarrow \infty$ \Rightarrow view AdS as boxed spacetime
- \Rightarrow toy model: BH evolution in a box

Black Hole stability

- superradiant scattering of rotating BH (Penrose '69, Christodoulou '70, Misner '72)
 - impinging wave amplified as it scatters off a BH if $\omega < m\Omega_H$
 - extraction of energy and angular momentum of the BH by superradiant modes
- "black hole bomb" (Press & Teukolsky '72)
 - consider Kerr BH surrounded by a mirror
 - subsequent amplification of superradiant modes
- stability of Kerr-AdS BHs (Hawking & Reall '99, Cardoso et al. '04)
 - AdS infinity behaves as box \Rightarrow amplification of superradiant instabilities?
 - large Kerr-AdS BH: stable
 - small Kerr-AdS BH: unstable

- mimic AdS-BH spacetime by BHs in a box
- impose reflecting b.c. via $\partial_t K_{ij} = 0$ and $\partial_t \gamma_{ij} = 0$ at boundary
- wave extraction: Newman Penrose scalars Ψ_4 (outgoing) and Ψ_0 (ingoing)
- initial data: non-spinning, equal mass BHs
- head-on collision \Rightarrow non-spinning final BH quasi-circular inspiral \Rightarrow spinning final BH with a/M = 0.69
- Movie

BBHs in a Box - Waveforms

• spectrum of Ψ_{22}^4 after merger and before interaction with boundary

- assume quasi Kerr BH \Rightarrow critical frequency for superradiance $M\omega_C = m\Omega = 0.4$
- signal contains frequencies within and above superradiance regime

BBHs in a Box - Convergence Test

- simulations at 3 different resolutions: $h_c = 1/48M$, $h_m = 1/52M$, $h_f = 1/56M$
- 4th order accurate in merger signal
- 2nd order convergence in 1st & 2nd reflection
- loosing convergence afterwards ⇒ consider first 3 cycles

BBHs in a Box - Area and Spin

Relative horizon mass and spin

- successive increase in horizon area, mass and angular momentum during interaction between BH and gravitational radiation
- ullet absorption of $\sim 15\%$ of GW energy per cycle
- ullet increase of $\sim 5\%$ in angular momentum in *first* cycle
- no indication of superradiant amplification

H. Witek (CENTRA / IST)

BBHs in a Box

IDEA:

complementary phenomena

- high frequency modes: absorbtion of mass and angular momentum from radiation
 - \uparrow
- + low frequency modes: amplification of superradiant modes with $\omega < m \Omega_{\rm H}$
- frequencies in superradiant and absorption regime
 ⇒ at transition point between stable and superradiant regime?

ToDo:

- improvement of bcs \Rightarrow long-term evolution
- model highly spinning BHs

Press & Teukolsky '74

Conclusions I

Evolutions of BH head-on collisions in D = 5, 6 dimensions

- good agreement between PP and numerical results for unequal mass binaries
- collisions from rest: increase in radiated energy with increasing dimension
- setup of initial data for boosted BH solving the constraints
- evolutions of collisions with small boost parameter

Issues & ToDo list:

- dependence of radiated energy on D and boost
- go beyond D = 6
- long-term stable evolutions for large boosts
- adjustment of gauge conditions
- modification of formulation

Conclusions II

mimic AdS-BH spacetimes by BHs in a box

- "BH bomb" like setup
- monitor interaction between Kerr BH and gravitational radiation
- evidence for absorption of radiation by the BH

Issues & ToDo list:

- no clear evidence for superradiant amplification
- systems becomes numerically unstable after few reflections
- improvement of boundary conditions
 - \Rightarrow long-term modelling of system
- increasing amplification rate with increasing spin
 - \Rightarrow evolve highly spinning BHs

Arigato!

http://blackholes.ist.utl.pt