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Gravitational waves from a spinning particle in circular orbits around a rotating black hole
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Using the Teukolsky and Sasaki-Nakamura formalisms for the perturbations around a Kerr black hole, we
calculate the energy flux of gravitational waves induced Ispianingparticle of massw and spinS moving
in circular orbits near the equatorial plain of a rotating black hole of nM$s>x) and spinMa. The
calculations are performed by using the recently developed post-Newtonian expansion technique of the Teu-
kolsky equation. To evaluate the source terms of perturbations causedspiyrang particle, we use the
equations of motion of a spinning particle derived by Papapetrou and the energy-momentum tensor of a
spinning particle derived by Dixon. We present the post-Newtonian formula of the gravitational wave lumi-
nosity up to the ordery/c)® beyond the quadrupole formula including the linear order of particle spin. The
results obtained in this paper will be an important guideline to the post-Newtonian calculation of the inspiral
of two spinning compact objectgS0556-282(96)02016-4

PACS numbe(s): 04.30.Db, 04.25.Nx

[. INTRODUCTION principle prior to the standard post-Newtonian calculations.
The black hole perturbation approach is the only method
One of the most promising sources of gravitational wavesknown that is independent of the standard post-Newtonian
for kilometer size laser-interferometric detectors such as thapproach and that can handieot all but some important
Laser Interferometric Gravitational Wave Observatoryportion of higher order post-Newtonian effects in a rela-
(LIGO) [1], VIRGO [2], and future laser-interferometric de- tively straightforward way. In this approach, we consider a
tectors in space such as the Laser Interferometer Space Apatrticle orbiting a black hole and assume that the mass of the
tenna(LISA) [3] is the coalescing compact binary of neutron black holeM is much larger than that of the particle
stars and/or black holes. Since it is a highly general relativ- The black hole perturbation approach is based on the per-
istic event, detection of gravitational waves from those binaturbation equation derived by Teukolski3], which applies
ries will bring us very fruitful information about relativistic to a general rotatingKerr) black hole. One of great advan-
astrophysical objects if we know the physics of the finaltages of this approach is that it takes full account of relativ-
phase of the coalescence. Thus, there have been continudatic effects by construction and numerical methods can be
efforts made by many authors to understand this ph4a&é easily implimented to treat very general orbits. Moreover, it
Recently, it has been recognized that detection of the sighas been shown that one can formulate an analytical post-
nal from a binary in the inspiraling phase is particularly very Newtonian expansion scheme in this approach as well. Pois-
important because it can tell us a variety of parameters of theon first noticed this fact and calculated the energy flux in the
binary, i.e., mass, spin, e{6,7]. Furthermore, it may pro- case of a particle in circular orbits around a nonrotating black
vide some knowledge about the cosmological parametersole to 1.5PN ordef15]. A technically important point was
[6,8]. In order to extract these important parameters from théo deal with the Regge-Wheeler equation, which is equiva-
data, we need an accurate theoretical template of the wavéent to the Teukolsky equation but has a much nicer property
form. Especially, the accumulated phase of the emittedhan it. Along this line, Sasaki developed a systematic
gravitational waves is very sensitive to the binary param-inethod to proceed to the higher orders in the case of a non-
eters. Thus, the rate of change in the frequency of the orbitabtating black hold17], and Tagoshi and Sasaki8] gave
rotation due to the radiation reaction of gravitational waveshe analytical expression for the energy flux up to 4PN order.
must be evaluated accurately. Meanwhile Poisson calculated the case of a rotating black
The post-Newtonian expansion is the standard method tbole to 1.5PN ordef16], but directly dealing with the Teu-
calculate the waveform of gravitational waves. Recently, the&kolsky equation. Hence it seemed formidable to go beyond
energy loss rate to second post-Newton(@RN) order be- this order. Then, extending the method of Réf7], a better
yond the quadrupole formula has been derived by Blanchenethod was developed by Shibataal.[19] to treat the case
et al.[9] and to 2.5PN order by Blanchgt0Q] for a binary  of a rotating black hole and the energy flux up to 2.5PN
composed of nonspinning compact bodies. The leading orderder was calculated. This was made possible by using the
effect of spin, which appears at 1.5PN and 2PN orders, haSasaki-Nakamura equati¢h4], which is a generalization of
been evaluated by Kidder, Will, and Wisemldri] and Kid-  the Regge-Wheeler equation for a nonrotating black hole.
der[12]. Recently the calculation was extended to 4PN order by Ta-
However, difficulties and complications increase expo-goshiet al.[20].
nentially as one goes to higher orders with the standard post- In all of these previous papers, the small mass particle
Newtonian calculation technique. Hence it will be very use-was assumed to be spinless. However, apart from the interest
ful if we have different approaches to the higher orderin its own right, for the purpose of providing a better theo-
approximation and if we are able to provide some guidingretical template or at least a better guideline for higher order
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54 GRAVITATIONAL WAVES FROM A SPINNING . .. 3763

post-Newtonian calculations, it is desirable to take into acHere, _,S¢(6) is the spin-weighted spheroidal harmonics
count the spin of the particle. To incorporate this effect, wenormalized by
must know the energy-momentum tensor of a spinning par-

ticle as well as the equations of motion. Fortunately, we can

find them in the literature. The equations of motion of a

spinning particle were first derived by Papapetfad], and

they were put into more elaborate form by Dixf22] and and its eigen value i&. ThenR, ,, obeys the Teukolsky
Wald [23]. In particular, Wald[23] clarified all the con- equation

served quantities along the general particle trajectory. On the

. . . d/1dRn,
other hand, Dixorj22] succeeded in giving the general form 2 (K drm )—V(V)R/msz/mw(f) 2.3

fﬂ|_zs§‘;1( 0)|%singdo=1, 2.2
0

of the energy-momentum tensor of a particle with multipole dr
moments, which of course includes that of a spinning par-
ticle as a limit. Hence, by using them, we can calculate thénd
waveform and the energy flux of gravitational waves by a K2+ 4i (r— M)K
spinning particle orbiting a rotating black hole. V(ir=———m8M8M
Here, a word of caution is appropriate. Usually, we regard A
the small mass particle to be a model of a neutron star or a
black hole. Howzver, if we regard the spinning small ma:sé’vhere A=r2—2Mr+a_2 and K=(r’+a’)o-ma The
particle as a Kerr black hole with magsand spin angular source termT, m,(r) is cons.tructed fr.om thg Energy-
momentumuS, it should have definite multipole moments momentum tensor of the particle, and its explicit form is
(=uS"). Since we neglect the contribution of these higherg'veg Iater.l . f th Kolsk . infini
multipole moments in this paper, the particle in ourtreatmem( The SO ution of ‘the Teukolsky equation at infinity
is not an adequate model for(empidly rotating Kerr black r—w) is expressed as

+8iwr+\, (2.4

hole. To incorporate the contribution of all higher multipole 3 ior '\ oin ,
H H r-e « T/mw(r )R/mw(r )
moments to represent a Kerr black hole is a future issue. R (1) ———| dr’ —
Here, we concentrate on the leading order effect due to the ' 2i0Bm, Jr. AS(r’)
spin of the small mass particle. ~ 3 ior*
This paper is organized as follows. In Sec. Il we briefly =Z/mote” (2.9

review the Teukolsky formalism. In Sec. Ill we discuss the —_— .
equations of motion and the energy-momentum tensor of herer. =M+ {M"—a" denotes the radius of the event

spinning particle. In Sec. IV we solve the equations of mo-N0rizon andR7:,,, is the homogeneous solution which satis-

tion to the linear order of the amplitude of spin. There wefl€S the ingoing-wave boundary condition at the horizon:

obtain a family of “circular” orbits which have vanishing

radial velocity and stay close to the equatorial plane. In Sec. . D /e

V we evaluate gravitational waves from the spinning particle Rl o [3BoUt gior® 4 (—1giN  g-ior®  pk 4o

in circular orbits and give the formula for the energy loss rate /me /e ’

to 2.5PN order. In Sec. VI we consider the problem of the (2.6

radiation reaction. There we show that the assumption that . . .

the orbit remains circular under a radiation reactiorF: is con—Wh(.are k=w—ma/2Mr,. andr* is the tortoise coordinate

sistent with the energy and angular momentum loss rates iﬂefmed by

the linear order of spin. Then we evaluate the rate of change dr*  r2+a2

in the orbital frequency under this assumption. In Sec. VII, a r T 2.7

brief summary and discussion are given.
We use the unitsG=c=1 and the metric signature prq; gefiniteness, we fix the integration constant such that

(—,+,+,+). The ro_und_(square brackets on the indices x g given explicitly by

denote(anti) symmetrization, e.g.,

AZe—ikr*, r*_>_oo

Wdr:Hu—r,ln 2M r+—r,|n 2M

(2.9

. Jdr* 2Mr, r—=r, 2Mr_ r-—r_
P r== -

q)(MV):%((D/.LVJ’_@VM)’ (D[MV]:%((I),LLV_ V/.l,)'

Il. TEUKOLSKY FORMALISM wherer. =M+ \/MZ—_aZ.

In this section we briefly review the Teukolsky formal-  Thus, in order to calculate gravitational waves emitted to
ism. For details, see, e.g., RdR4] and references cited infinity from a particle in circular orbits, we need to know
therein. In the Teukolsky formalism, the waveform and thethe explicit form of the source terr® ., (r), which has
energy flux of gravitational waves are calculated from thesupport only atr =r, wherer is the orbital radius in the
fourth Newman-Penrose quantit5], which is expanded as Boyer-Lindquist coordinate, the ingoing-wave Teukolsky

function RY,,(r) at r=ro, and its incident amplitude

. .82 (0) B at infinity. We consider the expansion of these quan-
(i -4 —iwt —29/m\Y) /Mo Y- p q
4= (r —iacosy) f dwe™ /Em elme N tities in terms of a small parametef=M/r,. Note thatv is

approximately equal to the orbital velocity, but not strictly
XR/me(r)- (2.2 equal to it in the case af#0 or S# 0. A systematic expan-
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sion method to calculate these necessary quantities has benpowers ofaw is also a part of the post-Newtonian expan-
developed in Refs[19,20, by considering the Sasaki- sion. Note also that the spin parameter of the black lole
Nakamura equation first and then transforming the result taloes not have to be small but can be of orier
Teukolsky equation. The expressions of these quantities required to calculate
In addition to these, we need to expand the spheroidahe energy loss rate up to 2.5PN order are already obtained in
harmonics and their eigenvalues in powersaegh. Since  Ref.[19]. We summarize the results, omitting all the deriva-
w=0(Q), where() is the orbital angular velocity of the tions. The homogeneous solutions of the Teukolsky equation
particle, we haveaw=0(Mw)=0(v?). Thus the expansion with the ingoing boundary condition fof=2,3,4 are

Rin 4 z i 1128 i . 2378 [
oRom.=30" 257 1260 420° ' 45360 1134
A i mqZ1 4172°  277i 31i 7mq?
- _ 54 76—
tel 15 " 50™I7 0% t 45 3780 22680"97 " 37807 1620)
22 9’22 m?g%z% i mqZ i i
2l 4 - 1= B4 _ 24253
+€' 307 20M9%" 50 " 240 80° 30 0% 2 120 U? ) 2.9
z° i z’ [ A i 11mq?
P 6__ _ 8 _ 5
“Rimo=530" 1260° 3780 16200° © €| 252~ 189097 22 680)’ (210
Rite= z + iz’ 2.1
@Tame™717340" 28 350 (219

wheree:=2Mw, z:=wr, andg:=a/M. The incident am-
plitudes are

wherev*(7)=dz*(7)/dr, 7is a parameter which is not nec-
essarily the proper time of the particle, and, as we will see
later, the vectop”(7) and the antisymmetric tens&“"(7)

[ (A ) mq represent the linear and spin angular momenta of the particle,
BZm,= 8w 2[1_€§+'6(§_7’_|n2 T 1g€tOle )] respectively. HereD/dr denotes the covariant derivative
(2.12 along the particle trajectory.
We do not have the evolution equation fof(7) yet. In
1 ™o order to determine*(7), we need to impose a supplemen-
B~ W[l_fﬁﬂf e —In2) tary condition which determines the center of mass of the
particle[22]:
mq
72 —€e+0(€d) ¢, (2.13
S**(r)p,(7)=0. (3.2
Blim, = 8_wf{1+o(6)}' (219 Then one can show thai, p#= const andS,,S*"=const

along the particle trajectorj23]. Therefore, we may set
[ll. SPINNING PARTICLE

p¥=pu#,  u,ut=—1,
To give the source term of the Teukolsky equation, we
need to solve the motion of the spinning particle and also to
give the expression of the energy-momentum tensor. In this =€t )opS%, pS=0,
section we give the necessary expressions, following Refs.
[22,23,28. 1
Neglecting the effect of the higher multipole moments, 2= S,S"= S S, (3.3

the equations of motion of a spinning particle are given by

whereu is the mass of the particle” is the specific linear
momentum, ands* is the specific spin vector witls its
magnitude. Note that if we us&* instead ofS*” in the
equations of motion, the center-of-mass condit{@r2) will
be replaced by the condition,S“=0 (see Sec. IV.

D
g P (D=2 R, @) (1) S7(n),

D
— 5 (7)=2pl#(7)0")(),

ar (3.9
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Since the above equations of motion are invariant under 89 (x—2z(7)) d [ 89 (x—2z(1))
reparametrization of the orbital parametemwe can fixr to v“(x)Va( —) =— d—(— ,
satisfy V-9 4 v—9

(3.9

(1)v,(7) @4 the divergence of Eq3.6) becomes

Then, from Eqs(3.1), (3.2), and(3.4), v#(7) is given ag22]

(4) (x —
-1 VBTaﬁ(X):J' drg_fi(x,z(r))w

V-9

D M 1 1 v 0K
FPADE SR &)U (7)S7(7)

1/ ,1
vH(1)=UH(7)= 3| w2+ TRy (2(7)SHE( S ()

XS (T)Rype 2 "UP(T)S7(7). (3.5 X

With this equation, the equations of moti@&1) completely 1

determine the evolut_lon of the orbit and the spin. + EJ d7V | 9% (x,2( )9P(x,2(7))
As for the energy-momentum tensor, Dixf22] gives it

in terms of the Diracs function on the tangent space at

x#=zH(7). For later convenience, in this paper we use an X5(4)(X—Z(T)) ES/”
equivalent but alternative form of the energy-momentum ten- \/—_g dr (7)
sor, given in terms of the Diraé function on coordinate
space26]:
—2pl(n)o*I(7) |. (3.10
S (x—z(r
T“E(X)=fd7 IO(“(X,T)UB)(X,T)M . . . .
V=g Since the first and second terms on the right-hand side must
vanish separately, we obtain the equations of mot&).
( 8 s (x—2(7)) In order to clarify the meaning gb* and $*”, we con-
-V | "%, P (x,7) ——| {, ; : : :
Y \/—_g sider the volume integral of this energy-momentum tensor

such as [y(,,0kT*?d3z, where we take the surface
(3.6 3 (7p) to be perpendicular ta“(r). It is convenient to in-

wherev“(x,7), p*(x,7), and S*3(x,7) are bitensors which troduce a scalar function(x), which determines the surface

are spacetime extensions of(7), p“(7), and S**(7), >(70) by the equation7(x)=r,, and dr/ox’=—uy at

which are defined only along the world lidex*=z#(7). To ~ X=2(7o). Then we have

define v*(x,z(7)), p*(x,z(7)), and S*#(x,z(r)) we intro-

duce a bitensog?(x,z) which satisfies L(T T - j dx _g% S((X)— 7o) GET(x)
limgy(x,2(7))= 6, ’
e =f dT'[&(T'-TO) p*+pl#vlu,
limV 507 (x,2(7))=0. (3.7
X—2z _EDUVSVM o
> dr ] p*(70), (3.1

For the present purpose, further specificatiorgfx,z) is
not necessary. Using this bi-tensgr,(x,z), we define where we used the center-of-mass condition and the equation

pY(x,7), v¥(x,7), andS*A(x,7) as of motion for S#”. We clearly see thgt* indeed represents
— the linear momentum of the particle.
p*(X,7) =g, (X,z(7))p*(7), In order to clarify the meaning o&*”, following Dixon

_ [22], we introduce the relative position vector
vU(X,7)=0,(X2(7)v*(7),
XH:=—g"’d,0(X,2), (3.12
a3 — N "~ B v

ST =0, 2N)g (x2(r)S"(7). (3.8 where o(x,2) is the geodetic interval betweenand x de-

It is easy to see that the divergence-free condition of thidined by using the parametric form of a geodeg(a) join-
energy-momentum tensor gives the equations of motiomnd z=y(0) andx=y(1) as

(3.1). Noting the relations

e dy‘)‘dyﬁd a1
[V 595 (x,2(7)]6 ) (x—2(7))=0, o(%2):=7 | asgy qu v (313
Then noting the relations
1In the rest of this section, we ugev,o, ... as the tensor indi- lim X“=0, lim XMB: St (3.14

ces associated with the world lir&7) and «,8,7y, ... as those
with a field pointx, and suppress the coordinate indiceg(@af) and
x for notational simplicity. it is easy to see that

X—z X—2Z
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. a class of orbits that would stay on the equatorial plane if the
S/“’:zL XlEgIITAdS 5. (3.19  particle were spinless. Hence we assume that
0 6:=6— 7w/2=0(S/IM)<1. Under this assumption, we write

Now that the meaning o§*” is manifest. From the above down the equations of motion and solve them up to linear
equation, it is also easy to see that the center-of-mass condifder inS. In the Appendix we give a further analysis in the

tion (3.2) is the generalization of the Newtonian counterpart,C2S€ in which the spin vecté¢see belowis parallel or anti-
parallel to the rotation axis of the black hole.

3 i In order to find a solution representing a circular orbit, it
d*xp(x)x'=0, (316 s convenient to introduce the tetrad frame defined by
wherep is the matter density. A A
Before closing this section, we mention several conserved el :( \/:,0,0,_ asire \/:> ,
guantities of the present system. We have already noted that . ) )
p,p*=—u? andS,S*=S* are constant along the particle
trajectory on an arbitrary spacetime. There will be an addi- S
tional conserved quantity if the spacetime admits a Killing ei:(o,\/:'0'0>’
vector field¢, : A
E(un=0. (3.17) 2_
" e2=(0,04%,0),
Namely, the quantity
2 2
i v a r<+a
Qei=pHE,— ;S v (3.18 ei=( — —sing,0,0, sin@), 4.0
V2 V2

is conserved along the particle trajectd@2]. It is easy to
verify thatQ, is conserved by directly using the equations of

motion. where X=r?+a’cosd and e} =(ef, el ej.el) for

a=0-3. Hereafter, we use Latin letters to denote the tetrad
indices.
For convenience, we introduce;—wg to represent the
Let us consider “circular” orbits in Kerr spacetime with a tetrad components of the spin coefficients near the equatorial
fixed Boyer-Lindquist radial coordinate=r,. We consider plane:

IV. CIRCULAR ORBITS

a’—Mr

0_ 1_ 72 _
wo1 = woy = w1+ 0(6%), W1= AT

~ a
o  1_  o0_  3_  1_ 3_ 2 o
W3] = W30 = W13 = W10°= W3 = —wo1” = w1+ 0O(69), wz-—r_z,
1_ _ 2_ 1_ 3= .40 ’52 ._Al/z
Wy =~ Wy“= w3z = — w3 = w3+ O(69), w3l= 7
_ - a?
0_ 2 1_ 2_ 2 o
woz = Wop = w12 = ~ W11 = 0wa+ O(6%),  wai=— 13,
0 2 0 3 2 3_7 2 aA'?
W3y = W30°= — W3 = — Wy = Wo3z = —wo" = Hws+0O(0°), wsi=——3—,

~ ~ (r’+a?)
w33’ = — w3’ = Qwe+ O(6?), wei=— 3 4.2
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wherew,,°=eketes. . Since the following relation holds dz2
ek O P~ SR, 4.9
d dr
a__ fu___ fa_ a, bfc
eMde de wplv°fe, where
the tetrad components @ f#/dr along a circular orbit are 1
given explicitly as R =R* abcdvbucgd:ﬂsRabchbSCd (4.9
0 D w_ £0 1, 22 72 . . .
€ug, = (AF+0CTH+0(6), andR%, 4= 3Raper€® cq is the right dual of the Riemann ten-

sor. It will be convenient to write explicitly the tetrad com-

, D - 0. o , ~ ponents ofR%, .4 Since we only needR%, ., at O(6°), the
&g, =T (AF+BF+E) +0(6%), nonvanishing components &, ., are given by
D . ~ ~ ~
eid_q_fu: f2—(9Cfo+ 6DF3—EfL)+0O(6?), - §R3123: — RG215= Roa12= Riz05= — Rizoz= — §R§301
D _ M o@ 4.1
& —th=f3—(~Bf—IDF)+0(F), (43 - o). (4.10

Although we do not need them, we note that the following

whereA, B, C, D, andE are defined b¥y/ et
components are not identically zero but areQdf6):

A:= 00+ w3,
* * * * * *
0 s Riz12. Risia Rioior R2szs Roozo and Riggo.
B:=ww "+ w3v”,
A. Lowest order in S
C:=ww’+ wsv?,
We first solve the equations of motion for a circular orbit

D:=wsv’+ wgv?, atr=rg, at the lowest order ir8. For notational simplicity,
we omit the suffix 0 ofry in the following. For the class of
E:=w?, (4.9 orbits we have assumed, we have'=0 and

~ 02=0(5).Then the nontrivial equations are
and we have assumed that=0 andv?=0(#6).

Now we rewrite the equations of motion, changing the 1 0 3
spin variable. We replace the spin tensor with the unit spin d7? =Av +Bv°=0, (4.1
vector /2, which is defined by

0 0O A O 0
ga: = S_a: - _1 6abchbSCd (45) d d gl A 0 gl
S s 5020 | &= {
dr dr 0 -B 0
- e’ £
or, equivalently, by
Sab: S ab [ ,ced 4.6 (412
MUSE T qut ", (4.6)

) ] ) ] Equation(4.11) determines the rotation velocity of the or-
whereeqpqis the completely antisymmetric symbol with the pita) motion. By settingc: =v3/v°, we obtain the equation
convention ofegy,5= 1. As noted in the previous section, if

we use the spin vector as an independent variable, the center- w1+ 20X+ wax?=0, (4.13
of-mass condition is automatically satisfied, while it be-
comes necessary to impose another supplementary conditighich is solved to give

Then the equations of motion reduce to X= . (4.19
du? b ) _
szbcav u— SR, The upper(lower sign corresponds to the case thét is

positive (negative. Then, with the aid of the normalization
condition of the four-momentumy*v,=—1+ 0O(S?), we

2The symbolsA—E used here to define the auxiliary variable are find
applicable only in this section, and not to be confused with quanti-
ties defined with the same symbols, suchEagor energy, in the 0= . v3= ) (4.15
later sections. 1—x2 1—x°
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Note that, in this case, the orbital angular frequefiLyis 02=(Co%+ DU?’)E—SF\Q. (4.22
given by a well-known formula

The first equation gives the rotation velocity as before, while

0= M 4.16 the second equation determines the motion inétldgrection.
T2+ Ma’ ' Again, using the variable=v3/v°, Eq.(4.21) is rewritten
as
On the other hand, the equations of sfl2 are solved to S
i M
give 01+ 20X+ 05X+ 3 x=0, 4.23
L0 asin(¢+c,)+ B¢,
P=-¢, 2 =¢ cog ¢+c;) , whereS, : =S¢, . The solution of this equation is
53 —Bsin(¢+cq)—ac, +./Mr-a 3S, VM
(4.17 x=| — n )( = 2Lr3\{2—> +0(S?).  (4.24
where{, , {|, ¢4, andc, are constants and
Using the relationg4.15), it immediately givesv® and v®.
A _ 3 B 0 From the definition of the tetrad, we have the relations
A= —F——>-—+0U, ,8=—=iv,
BZ—A JBZ—A?
0 \/K dt . do
v0=1/5 | = —asirfd—|,
M S |dr dr
$=Q,7, Q,=\B*—A’= 3 (4.18
3 sing dt s o do

The supplementary condition®Z,=0 requires that,=0. v :E —ag T rtad) o) (4.29

The condition?,¢?=1 implies¢? + {f=1. Further, since the

origin of the time 7 can be chosen arbitrarily, we set Thys the orbital angular velocity observed at infinity is cal-

¢;=0. Thus, we obtain culated to be
O .
2 §1 asing 0 do a+xyA ro#
{ &, | ¢ g 5¢ . (419 At r2+a’+axyA
I — Bsing
WM 3S, *Mr-a ~
Here, we should note thd2,+# () in general ifa#0 or S =t 1—TL2— +0(6?).
#0 (see below. r iaN rerayMr
(4.26
B. Next order )
Having obtained the leading order solution with respect to ZI_n\%q;tir tg sol(\j/e the second equatigh22, we note that
S, we now turn to the equations of motion up to the linear’ — =roan
order inS. We assume that the spin vector components are 2
. . ! M 1+2x
expressed in the same form as were in the leading order but Cv+Duvi=-— Ep—va +0(9). (4.2
consider corrections to the coefficients g, and(} of or- X
derS. As long as we are working only up to linear order in '
S, Eq.(3.5) tells us thaw? can be identified witlu@. In order Then we find that Eq(4.22 reduces to
to write down the equations of motion up to linear order in . M 14 2%2— SM  x
S, we need the explicit form oR?, which can be evaluated rg=— — ~60—3 |3 5 Cosp, (4.28
by using the knowledge of the lowest order solution as re 1-x r* 1-x
RO=R3= O(’é), whereS; =S¢ . This equation can be solved easily by setting
= 0ycosp. Recalling that);=M/r3+0(S), we obtain
M ~
R1=3—70%3/2+0(6), S
r Oo=—— - (4.29
2 M 0,341 7 P P ;
R =3r—3v v +0(0). (4.20  Thus we see that the orbit will remain in the equatorial plane

if §,=0, but deviates from it ifS;#0. We note that there
First we consider the orbital equations of motion. With exists a degree of freedom to add a homogeneous solution of

the assumption thav'=0 and v2=0(5), the nontrivial Eq. (4.28, whose frequency

equations of the orbital motion are o - M 1+ 2x2
v1=Av°+By3-SR=0, (4.21) 0~ N3 1-x2
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the other hand, the correction €, will cause a large effect
after a sufficiently long lapse of time because it appears in
the combination of(},7. The small phase correction will
accumulate and become large. Hence, we sflyealone to
next leading order. Eliminating® and ¢3 from these three
equations, we obtain

S, (AC—BD

— —02%1= =
[(B2-A2)-02]=—| =

—Qf,wg). (4.39

Then, after a straightforward calculation, we find

Equatorial plane

, M 3S, =M (2r2-3Mr+a?)+ar’A(M—r)
FIG. 1. A schematic picture of the precession of orbit and spinQp_r_3 TR r2—3Mr+2ayMr

vector, to leading order i. The vectord represents the total an-
gular momentum of the particle. The vectoris orthogonal to the

orbital plane and reduces to the orbital angular momentum in the
Newtonian limit. In the relativistic case, however, these vectorsAS noted above
should not be regarded as well defined.

(4.39

, is different fromQ for S, #0. The
difference{),— Q gives the angular velocity of the preces-

is different from(}, and which corresponds to giving a small sion of the spin vectofsee Fig. 1

inclination angle to the orbit, indifferent to the spin. Here, for
simplicity, we only consider the case when this homoge- v. GRAVITAIONAL WAVES AND ENERGY LOSS RATE
neous solution td@ is zero. Schematically speaking, the or-

bits under consideration are those with the total angular mo- We now proceed to the calculation of the source term in
. o S the Teukolsky equation and evaluate the gravitational wave
mentumJ being parallel to the direction, which is the sum

of the orbital and spin angular momenga=L + S (see Fig. fl#x. For this purpose, we must write doyvn_ the expression _of
1). the energy-momentum tensor of the spinning particle explic-

itly. We rewrite the tetrad components of the energy-

Next we consider the evolution of the spin vector. To . . i
momentum tensor in the following way:

linear order inS, the equations to be solved are

O=A+C%0—-SvOrR,, )y
{P=Arr+Cy {*Rq Tab:de[ p(avb)é{ (x—2(7))
=AL+BEHEL, vTo
- ~ 8 (x—2(7))
2_ 0 gl _ al@gh) v -
| {°=(C+DE&)o—EL, ee)V, S vP N
’=-B{'~D%0-Sv3°R,. (4.30
:f dr[ [p@0®) + w4 2P SUC
The third equation is written down explicitly as
. — (4) (y —
{%=— 64 Kksinpcosp, (4.30 oy a0 ¥ AT
V=49
with 1
R (ay,b) 5(4)(y —
k:=aD— BC— Qo 4.32 __gaM[SF 0?6 (x 2(7))]]
Thus we find that . f a4l aab W (x—2(7))
=u T AP ————
Ood| K 9
P=—(+ 20, C0S2. (4.33 1
P ab 5(4) (y —
+ a,[ B*EPS8 M (x z(r))]}. (5.
| | . V=g”
Since the spin vectd®? is itself of O(S) already, the effect
of the second term is always unimportant as long as we ne-
glect corrections 0D(S?) to the orbit. The last line is the definition 0A%® and B3P,
The remaining three equations determinges, and (). The source term of the Teukolsky equation is expressed in

Corrections toa and 8 of O(S) are less interesting because terms of the components of the energy-momentum tensor
they remain to be small, however long the time passes. Oprojected with respect to the complex null tetrad defined as
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If‘:\/g(e’“re“)

A 0 1/
1 /A

=3 g(eg—e’f),

m“=(r+iacos9)‘1\/§(e§+ie§). (5.2

We adopt notation such ag,,:=n*n"T,, to denote the
tetrad components. Then the source term is giveh1i8y

ZSim

V2m '

(5.3

T/mw=4f dQdtp~5p Y(B,+BL*)e Mmetiet _——2

where

=

Sl _alp *Lo(p~ %~ 'T

Bé:__ nn)J

2

1
_ 8_A2L, —4_2'J —2_—2A—1T7 ,
Nk lp™"p?3(p™%p mn) ]

1
By =—2ppA%.[p "3, (p *pTrm)]
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with

p=(r—iacosd) %,

m . .
Li=dy+ W—aw sinf+j cotd,
iK
‘]+:ar+Kl (55)

and Q denotes the complex conjugate @f

As we will see shortly, the terms proportional $pin the
energy-momentum tensor do not contribute to the energy and
angular momentum fluxes at linear order $ In other
words, the energy and angular momentum fluxes are the
same for all orbits having the san% , irrespective of the
value of §|. Thus, we ignore these terms in the following
discussion. Further we recall that the particle can stay in the
equatorial plane if§;=0. Hence we fixd= /2 in the fol-
lowing calculations.

Using the formulg2.5), we obtain the amplitude of gravi-
taional waves at infinity as

1 P o Zjme=200 47T L 7mm (5.6)
~ S =p%PA2L [ A L a(p % T T e e
242
(5.4  where
|
dt) 1 e 1
Z/mw B/ 5(‘” mQ) Ann_l“’Bnn"_ImB Bnno—,r [L ZP 728€}m)]6 /2 AR/mw )
o] r=rq
~ T dt o 1[0 2iK 4
Pie= B/mw5(w mQ)(d—) [Aﬁ_'wBﬁ“mB Bﬁg}(l—z 2S0) o= W/Z\/Z[Zar_T__R/mw ,
r
(5.7
_— dt) ! J
Z 0= g BJ/_ Sw= mm( ) [Am—inWimBﬁm Inmar}
Mw
o 92 21 iK\ 9 [iK| 2iK KZRin
(—2Sim) o=mi2| 72 T Tt Xﬁ? 12| Rmo ,
' r=ro
and
1
Ann= 11- 2{1 S [(2wy+ w3)X+ wy]},
1 1 [r2+a?
B#”:ESLW T \/—XO\/_X+1 (5.8
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i In order to express the post-Newtonian corrections to the
Aﬁ:m W{ZX—SL((MXZ—MUZX_ w3)}, energy flux, we definey,,, as
_ dE|  1(dE 1
B/LZI_S 1 dt /m_.i dat N77/mv (5.19
mn 4\/§I‘ J‘l—Xz /
2. 2 where @E/dt)y is the Newtonian quadrupole formula:
x| ! ‘a X2+ ax, — JA(1+x?) Oix2+x
VA ’ A ’ dE| 32u®M® 32[u\? 61
- dt/ = s° s5\m/ " .19
A= — = ——5{X?+ S, (0(1+2x%) + w3X)},
21-x We calculater,, up to 2.5PN order, i.e., t®(v°). The
result is
8. — 25 T (o VAX,0,0)
mmop oL 752 (0:VAX.0,0), 107 19
2 - 3
772i2:l_ﬁv + 477—6(3]—?3 v
and
m + —4784+2 2+9g5|v*
Li=d,— Sing e sind+] cotf. (5.9 1323 <4 TYAs)v
. i 428 4216 2134,
The Lorentz factodt/d which appears in Eq$5.7) can be +| - Zqﬁ qur HS v

calculated from Eqs(4.25 as

dt 1
dr  ry1—x

ax+

(5.10

r2+a?
VA
When the orbit is quasiperiodic, the Fourier component of

gravitational waves does not have a continuous spectrum but
takes the form

Z /=2 = 0n)Z s (5.13)

Then the time-averaged energy flux is given by the formula
[19]

dE 1Z e |2 (dE)
__ = =" —_ . 6.1
< dt >GW /.Emn 47'ra)nz /,Em,n dt . (5.12

The z component of the angular momentum flux is also
given by a similar formula

<d‘]Z> 3 2 m|Z/mwn|2_. E (dJZ)
dt GW_/’m]n 47T(l)n _./,m,n dt /mn.

In the present case of circular orbits in the equatorial plane,
the indexn degenerates to the angular indexand w, is
simply given bym{ (n=m). Hence we eliminate the index
n in the following discussion.

Here we mention the effect of nonze8. If we recall
that all the terms which are proportional $ have the time
dependence af~'e7
the sidebands. That is to say, their contributionZ ip,, are

17 1 , 1 .\,
" " 504" 169 "89S

J[L_ 793 535
18" 90729 1008°/V
1215, 1215, (3645 1215
73+3%gogV T 112 '\ 448" 1129
10935 ) .
896 >V
5, 4 20\ .
773i2—@l) + @q-l— @S v,
1, 1,1 17 1,
73:1= 064"~ 1512° ' |4032" 90729 8064°)Y
1280 ,
7]4i4zmv )
_ 5 4 51
42~ 39600 * (5.19

: o whereq:=a/M ands:=S, /M. The rest ofy,, are all of
, we see that they give a contribution to pigher order. We should mention that if we regard the spin-
ning particle as a model of a black hole or neutron stas

all proportional tos(w—mQ =Qp). Then, since the energy of order . Therefore the corrections due $oare generally

and angular momentum fluxes are quadrati(?_jmwn, they

are not affected by the presence §f as long as we are ticle limit u/M<1.

working only up to linear order irs.

Putting all together, we obtain, to 2.5PN order,

small compared with th&-independent terms in the test par-
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dE> (dE) [ 1247 ) 73 25 ) VI. RADIATION REACTION

—) =] |1 amv? | 4w -3 . , o _

< dt/ g, \dt/ 336 1297 % In this section, we consider the effect of radiation reaction
on the orbit by equating the gravitational energy and angular

( 44711 33 , 71 ) momentum fluxes with their loss rates of the system.

9072 169
+( 8191 3749 2403

2+ —q%

A. Conserved quantities

(5.17 Here we consider the conserved quantities which are the
first integrals of the equations of motion. First we give two

Sincev is defined in terms of the coordinate radius of theconserved quantities which follow from the Killing vectors

orhit, the expansion with respect todoes not have a clear of the Kerr spacetime. The timelike Killing vector is given

gauge-invariant meaning. In particular, for the purpose of thdy

comparison with the standard post-Newtonian calculations, it

672" 33697 1125V

is better to write the result by means of the angular velocity _ \/K o . asing
observed at infinity. Using the post-Newtonian expansion of = NS eut NS €l 6.1
Eq. (4.26),
3 3 and its derivative is
MQ=0v31- 55+ 03+§q§v4+0(v6) , (5.18
: 2M(r’—a’cos’6) 0 4Marcosd ,
= e e, e e .
the above result can be rewritten as - 32 A A (] )
6.2
dE dE 1247 o3 1 5, _ » o
gt =\ gt 1- 336(MQ) +| 47— 7 —q— —s The rotational Killing vector is given by
GW N
A (r’+a®)sing
44711 33 31 0 3
_ 2, °- 4/3 aS|n20\/7 +—1e, (6.3
X(MQ)+( 9072 + 16q + qs)(MQ) €u NS u
8191 59 3. M5 - and its derivative is
6727 169" 16°) (M7 (519 _
2asir’e i1 0
where S < A [(r=M)Z+2Mr“]Jef e,
dE|  32(u 2 L0 2a\Asingcos) ,  2rsingyA
a9 N.—g M (MQ)->= (5.20 B T 1 R A
Since there is no sideband contribution in the present case 2c09 2 2202102 o3
) + —_ . .
the angular momentum flux is simply given by 32 [a*si6A - (r*+a%) lef,e ©4

(dJ,/dt)gw=Q X dE/dt)gw. The result(5.19 is consis-

tent with the one obtained by the standard post-NewtoniaiThen following the discussion around E€(B.18, we can
approach[11,17 to 2PN order in the limitu/M —0. The  construct the conserved quantities describing the energy and
s-dependent term of orderMQ)®? is the one which is thez component of the angular momentum from these Kill-
newly obtained here. ing vectors. They are given by

E_ 1sw
T g

\/K o, asing . M(r’—a’cos6) S'° 2Marcoy S*°
= gu + u

= + —+ —
\/i 22 i 22 ,U« '
£'=u — Sald
w . Xu 21“ Xujv
A (r2+a?sing , asirfo S a\/Asinfcosd S*° r+/Asing St3
=asin26\ﬁu°+ ud+ r—M)S+2Mr?—+ —+ —

23
—2—29[a25in26A—(r2+a2)2]S7, (6.5
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Since terms such as a®S?% and co® S are higher order ird, we neglect them in the following discussion.

For a spinless particle, there exists one more conserved quantity on the Kerr spacetime, known as the Cartd28hnstant
It is associated with the Killing tensdf,,, which satisfieX,,.,,=0. However, for a spinning particle, no such conserved
guantity has been known. Nevertheless, one can show that there exists an approximately conserved quantity which corresponds
to the Carter constant for a spinless particle. It is constructed as follows.

In addition to the Killing vectors, the Kerr spacetime has an antisymmetric Killing Yano tensor

f,,=2acos) ef €% +2ref el (6.6)
which satisfies
f vy =0. (6.7)
Note that fromf ,,, we can construct the Killing tensét,, as
K,o=f..f,7=r%g,,+231,n,. (6.8

When there is a Killing Yano tensor, the system possesses a quantity whiesivative is ofO(S?) and hence conserved to
linear order inS. Introducing the totally antisymmetric tensor

asing A
. _ 0 1.2 1 .2.3
fMW.—fW;U—G( S € .85 T \/% e[MeVeg]), (6.9
the approximate conserved quantity is expressefR@y
Q . 1 oMLy Y ,U,SPU v v
F.:Ef/ﬂ,fy u“u”"—u T(f ofp.pl/_f,u, fpo-v)
1 0y2 1,2 2 asind 013 1c30 3cl 3Q2
:E{E[(u )2—(uhH)2]-r2— \E{r(u S+ uls®0—2u3s19) + acoxgus?®
73
1 /A
~ g{acosﬁ(uzsg‘o— u3s?0+ 2u%s?3) — ru°sta, (6.10
|
The quantity corresponding to the Carter constant is Although the rigorous evaluation of the change rate of
C:=20-(J £)2 6.10 spin seems formidable, there exists an order-of-magnitude
:=2Q—(J,—aE)~. .

estimate by Apostolatost al. [29], in which they calculate a

For the case of circular orbits under consideration, we find torque acting |n5|de_a spinning star due to the radiation re-
action force. According to their estimate, the rate of change

%: —2as, . (6.12  of the spin isO(v*) smaller than that of the orbital angular
M momentum. This means we can safely ignore the time varia-
tion of the spin ifu<1. Since we are interested in the case
B. Frequency shift due to a radiation reaction v<1 in this paper, we may then assume that the circular

The orbit of a nonspinning particle is completely deter-Orbit obtained in Sec. IV remains circular with smaliebut

mined by the three constants of motid®, J,, andC. As with the same values &, and$S; under the radiation reac-
mentioned above the counterpart®ffor a spinning particle tion. Note that this implies that the approximate Carter con-
also exists in the linear order & This means that we need stant, Eq.(6.12), is conserved under the radiation reaction.

to calculate the radiation reaction to these quantities to obtain If this assumption is correct, we can obtain an evolution
the orbital evolution of a spinning particle. In both nonspin-sequence of the orbits under the radiation reaction. Namely,
ning and spinning cases, the radiation reactiofEtandJ,  the orbit is quasicircular and slowly spiraling in with con-
can be evaluated by equating their loss rates with the correstantS, andS;. Although not sufficient, we can consider the
sponding fluxes emitted by gravitational waves. Howevernecessary condition for this assumption to be true by exam-
we do not know how to determine the reactior@drom the  ining the consistency with the energy and angular momen-
asymptotic behavior of emitted gravitational waves at infin-tum loss rates evaluated in terms of their fluxes emitted by
ity. Furthermore, there are also spin degrees of freedom igravitational waves. Here the consistency means that the re-
the present case. It is not clear at all how to evaluate the badkition
reaction to the spin. In order to fully understand the radiation
reaction, it will be necessary to derive some regularized ra- dE SE /dJ,
diation reaction force which acts on the particle. However, <—> =—<—> ,
this is beyond the scope of the present paper. dt ow 92 dt GW

(6.13
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holds, where the variation$E and 5J, are taken keeping the
orbit circular with fixedS, andS;. As noted before, since

there are no sideband contributions to the energy and angular
we have

momentum fluxes in the present -case,
(dE/dt)gw=Q(dJ,/dt)cyw. Therefore the conditiori6.13
is equivalent to

oE

E_Q.

(6.19

In the following, we prove that Eq(6.14) indeed holds.
Since theS; does not appear in the expressions EorJ,,
(dE/dt)gyw and (dJ,/dt)gw to linear order inS, we only
have to examine the situation wig=0.

We introduce the function

V(E,J,.r,S,):=—g"uu—29"uu,— g*u,u,— 1,
(6.195

which is guaranteed to be non-negative and it becomes ze
when the orbit has no radial or vertical motion, i.e.,
vi=0v2=0. If we setE andJ, to the values for a circular
orbit with r=r,, we haveV=0 atr=r, andV>0 at any
other points near=r. Henceo’JV/ar|r=rO=O.

The momentum componentsuu; and uu,, are different

from the conserved energy and angular momenta due to the

presence of spin. From Eg&.5), we see

_Iu‘ut: E_MSLE(UO(E ‘]Z)vus(EaJZ)vr)y

pU=3,~ S j(U(E,J),u¥(EJ),r), (6.1
where
M
a(uo,u3,r)=r—2u3,
a A
j(uo,u3,r)=r—z(M+r)u3+ T\/_uo. (6.17

Inserting these expressions into E6.15), taking the varia-
tion of V while keeping the orbit circular with fixed spin, and
recalling <9V/0r|r=r0=0, we obtain the relation between

SE and 8, as

sv=2ut| sE— us, | 25 sE+ 25 53
Iu’ =czUu ,LL i &E an z
ourl 53— us [ XL sgr I sy
Ut od;— s | o +r9_Jz z
=0. (6.18
This gives
OE_uel [ de
53, Ut |t gel T et T
L% i Aol v ors? 6.19
at\ ~ gEY T oY (8. (619

By using the relations
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g
uozi[(r%az)E—aJ]
rVA =
3 1
u :F(JZ_aE)l
1 r?+a? a
ul=— ul+ —us,
\/K r r
1 a 1
=— —u%+—-ud (6.20
\/K r

which hold in the lowest order i, it is easy to verify that

the terms in the square parentheses on the right-hand side of
Eq. (6.19 become ofO(S?) or higher atr=r,. Thus Eq.
(6.14) is shown to hold to linear order i and our assump-
}bon of the stability of the quasicircular orbit is found to be
consistent.

Under the assumption that the orbit remains quasicircular
with fixed spin, we can evaluate the frequency shift due to
the radiation reaction by

) ()
GW

s

The post-Newtonian expansion of this quantity is calculated
to become

dQ
dt

dE
o

dE

at (6.21

dQ) 96'“ 5/ 3 23
0zt (MQ)E[ ~ 33 MY
113 25
+|am- - )(MQ)
4
34103 81 +79 e
T 144" 169 g 95| (MQ)
4159 31319 809 o]
" 672™ 10089 82 3|(MY)
(6.22

VIl. SUMMARY AND DISCUSSION

In this paper we have investigated the gravitational waves
emitted by a spinning particle in circular orbits around a
rotating black hole. First we have solved the equations of
motion of a spinning particle in Kerr spacetime, assuming
the spin of the particle is small and the orbit is close to the
equatorial plain. Applying the Teukolsky formalism of the
black hole perturbation, we have then calculated the first
order corrections due to spin to the energy flux up to 2.5PN
order. The effect of spin is always smak O(u/M)] com-
pared with the spin-independent contributions if we take the
limit w/M— 0. However, the result will be a useful guideline



54 GRAVITATIONAL WAVES FROM A SPINNING . .. 3775

to the standard post-Newtonian calculations because our ap-

proach is totally different from the standard post-Newtonian 11—
approach and gives the leading spin-dependent terms in the e
u/M expansion. Up to 2PN order, our results are in com- T~ p=3M
plete agreement with the previous ones obtained by the stan- 0.5 """"'\\\ \
dard post-Newtonian method. The spin-dependent term at B Iy
2.5PN order, which we have newly obtained, will be verified T~ gl O
by the standard post-Newtonian approach in the future. a/M 0 \‘\~~~\\ r _61‘{ N N
In this paper we have restricted our analysis to a class of S~ N
orbits which are circular and stays in the equatorial plane if 0.5 - \\\ \
the spin vector is orthogonal to it. In this case, the assump- ’ T S o
tion that the orbit remains in this class under a radiation } r=9M\ \“\\
reaction has been found to be consistent with the energy and N ™ ) .
the angular momentum loss rates evaluated from the gravi- -1 05 0 05 1
tational wave flux at infinity. Although we have not consid-
ered it here, it seems possible to incorporate the orbital in- S\ /M

clination. However, if the present restriction is relaxed, the
orbit may become too complicated and the same technique
used here may not work well. As long as one considers a

spinless particle, the orbit is parametrized by the three CON5,bits on the 6.S,) plane. The conserved angular momentiyis

served quantities, i.e., the energy, theomponent of the assumed to be positive so that the orbits withO are corotating
angular momentum, and the Carter constant. In that case, th&, the black hole and those with<0 are counterrotating.

particle will sweep through a certain region of phase space
restricted by these conserved quantities sufficiently fast com-
pared with the time scale of the radiation reaction. Hence the
quasiperiodicity will be a good approximation. On the other 0= w0200+ w,(0°U3+03U%) + wgp3ud
hand, for a spinning particle, there is not a sufficient number
of conserved quantities to confine the orbit to a restricted M
region of phase space. This means that the orbit is not guar- +S, —3(2v°u3+v3u°)=0. (A2)
anteed to be quasiperiodic. When we try to make a better r
template to be used for interferometric gravitational wave
detectors in the future by taking account of the effect of spinyn addition to the equations of motion there are constraint
this point may cause a difficult problem. equations to be satisfied. We list them below.
(1) From the time derivative of the center-of-mass condi-
tion S?Pu,=0, we have the relation betweert andv? as

FIG. 2. The contours of radii of the innermost stable circular
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5423, and 07740355, which is equivalent to Eq.3.5). This gives

MS?
ul=9°-— r3i (203 +v3u®)u?, (Ad)

APPENDIX

In this appendix, we present an exact solution of the equa- 5
tions of motion in the case when the spin ve@®iis parallel 3_ 3 MS] 20003+ 030 O A5
or antiparallel to the rotation axis of the Kerr black hole. We uT=v 3 (27Ut +otu Ju”. (AS)
assume that the orbit is circular and lies on the equatrial
plane. Thus the only nonvanishing component of the spin
vector isS{?=—S, and we seb'=v?=0 exactly. Further
we assumeit=u?=0, which will be found to be consistent.

With these assumptions, the only nonvanishing compo- (U9)?=(ud)?=1. (AB)
nent of R? is

(2) The mass conservatianu®=—1 gives
an,

(3) The normalization conditiom,v?=—1 of v? is
a

M
sR1=—er—g[2v°u3+v3u°)]. (A1) u%0—udp3=1. (A7)

Then all but one of the equations of motion are trivially We may considefS, andr as freely specifiable variables.
satisfied and the remaining nontrivial equation is Then the variables to be determined afg v, u°, andu®.
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However, there are five equations to be satisfied, i.e., Egs. S M
(A2) and (A4)—(A7). Hence one might think the system is T
overdetermined and inconsistent. Fortunately this is not the
case because E@A7) is guaranteed to hold by EqéA4),
(A5), and(A6), as can be seen by contracting E43) with  Multiplying Eq. (A4) by u® and Eq.(A5) by u®, equating the
U, . Thus our assumptions, in particulat=u?=0, turn out  right-hand sides of them, and dividing it v °, we obtain
to be consistent.

In order to solve the above set of equations, we introduce

) M
the new variables X, — TO'Z(ZXU+ X,)(u®)?=x,— TO'Z(ZXU+ X,)(u®)2.

(A11)

S. (A10)

S
I
|
I

c
w

U
XU=F and X“:m' (A8)

Using Eq.(A6), one readily sees this reduces to
In terms ofx, andx,, Eq. (A2) is rewritten as

M
X, — Xy— — 02(2X,+X%,)=0. (A12)
aZ—Mr +ayA(x,+X,) + Ax,X,+ oM VA (2x,+x,) =0, w2
(A9)
Thus we have obtained the coupled equati¢A®) and
where (A12) for x, andx, . They are solved to give

—(2ra+3Mro+aMa?) + JaAMr3+12aMr2o+ 13M?r2g%+ 6aM?r °— 8M3r o+ 9a2M 2™
X, = )

2JA(r—Mo?)

_ r—Mag? AL3
X“_H-ZMGZX”' (A13)

Then from Eqs(A6) and(A7), u®, u®, v° andv® are found most stable circular orbits on the,S,) plane. The contour
as of r=6M passes through thea(S,)=(0,0), which is the
well-known minimum radius for a spinless particle in
Schwarzchild spacetime. One readily notices that the mini-

ul= ! . ud= Xu , mum radius decreases asncreases for a fixe®, and it is
1-x; 1-x{ smaller for largelS, . Another interesting feature is that the
minimum radius approachas=a in the limit a—M irre-
spective of the values @&, . Although this latter feature can
1-x2 X, \1—X2 be explained only in a fully relativistic context, the main
0_ u 3_ v u
e v P (Al4)  feature of the contours can be understood as a consequence
v v

of the spin-orbit coupling, which is the dominant effect in a
mildly relativistic situation. It is repulsive when the spin and
We note that the terms inside the square root of the expresrbital angular momentum vectors are parallel and attractive
sion for x, in Eq. (A13) are not positive definite. Thus cir- when they are antiparallel. Now, if the contribution of the
cular orbits do not exist for very large values a@f  particle’s spin to the spin-orbit interaction could be ne-
(=S, Ir). However, they always exist for physically reason- glected, the contours of the minimum radii would be parallel
able values ob, i.e., fore<M/r<1. We also note that the to theS, axis, with decreasing minimum radii for largar
+ (=) sign in front of the square root corresponds to aOn the other hand, if the particle were another Kerr black
corotating(counterrotating orbit if we restrict the range of hole with the same masd, spins of the black hole and the
a to be non-negative, i.e.,<Qa<M. On the other hand, if particle would contribute to the spin-orbit interaction in an
we extend the range &f to —M <a<M, the = signs be- exactly symmetric way, and the contours would be straight
come redundant. Here we take the latter option and take thiénes at 45° downward in the right direction. In reality, nei-
+ sign. ther can the spin of the particle be neglected nor is its con-
Then a matter of interest is the stability of these circulartribution as large as that of the black hole. This approxi-
orbits. In Fig. 2, we show the contours of radii of the inner- mately explains the feature of the contours.



54 GRAVITATIONAL WAVES FROM A SPINNING . .. 3777

[1] R. E. Vogt, inSixth Marcel Grossmann Meeting on General (1982; Phys. Lett.89A, 68 (1982.
Relativity, Proceedings, Kyoto, Japan, 1991, edited by H. Satd15] E. Poisson, Phys. Rev. B7, 1497(1993.
and T. NakamurdWorld Scientific, Singapore, 1991p. 244; [16] E. Poisson, Phys. Rev. 88, 1860(1993.
A. Abramovici et al, Science256 325(1992; K. S. Thorne,  [17] M. Sasaki, Prog. Theor. Phy82, 17 (1994.
in Proceedings of the 8th Nishinomiya-Yukawa Memorial Sym{18] H. Tagoshi and M. Sasaki, Prog. Theor. Pt§2.745(1994).
posium on Relativistic Cosmologgdited by M. SasakiUni-  [19] M. Shibata, M. Sasaki, H. Tagoshi, and T. Tanaka, Phys. Rev.

versal Academy Press, Tokyo, 199p. 67. D 51, 1646(1995.
[2] C. Bradaschiaet al, Nucl. Instrum. Methods A289 518  [5q] 4. Tagoshi, M. Shibata, T. Tanaka, and M. Sasaki, “Post-
(1990. Newtonian expansion of gravitational waves from a particle in

[3] K. Danzmanret al,, LISA Proposal for a Laser-Interferometric
Gravitational Wave Detector in Space, 19@®publishegl

[4] C. M. Will, in Proceedings of the 8th Nishinomiya-Yukawa
Memorial Symposium: Relativistic Cosmolddy, p. 83.

[5] K. S. Thorne, inParticle and Nuclear Astrophysics and Cos-
mology in the Next Millenium, Snowmass, ®oceedings of

circular orbits around a rotating black hole: Up to
O(v® beyond the quadrupole formula,” Caltech Report No.
GRP-434, Osaka University Report No. OU-TAP-28, 1996
(unpublished

[21] A. Papapetrou, Proc. R. Soc. London Se&209, 248

the Summer Study, Snowmass, Colorado, edited by E. Kolb (1951. ) ) L )

and A. PecceiWorld Scientific, Singapore, 1995 [22] W. G. Dixon, inlsolated Gravitating Systems in General Rela-
[6] C. Cutleret al, Phys. Rev. Let,t70 2984(12393. tivity, edited by J. EhleréNorth-Holland, Amsterdam, 1979
[7] C. Cutler and E. E. Flanagan, Phys. RevA®) 2658(1994): E. pp. 156-219. See also references therein.

Poisson and C. M. Willibid. Phys. Rev. D52, 848 (1995. [23] R. Wald, Phys. Rev. [, 406 (1972.
[8] D. Markovic, Phys. Rev. D18, 4738(1993. [24] T. Nakamura, K. Oohara, and Y. Kojima, Prog. Theor. Phys.
[9] L. Blanchet, T. Damour, B. R. lyer, C. M. Will, and A. G. Suppl. 90, Parts Il and Il (1987. See also references

Wiseman, Phys. Rev. Letf4, 3515(1995. therein.

[10] L. Blanchet, “Gravitational-radiation energy losses in coalesc-[25] E. T. Newman and R. Penrose, J. Math. PI8/$566 (1962.
ing compact binaries to five halves post-Newtonian order,”[26] Y. Mino, M. Shibata, and T. Takaka, Phys. Rev.33, 622

Observatoire de Meudon report, 19@mpublished (1996.

[11] L. E. Kidder, C. M. Will, and A. G. Wiseman, Phys. Rev. D [27] G. W. Gibbons, R. H. Rietdijk, and J. W. van Holten, Nucl.
47, R4183(1993. Phys.B404, 42 (1993.

[12] L. E. Kidder, Phys. Rev. 32, 821(1995. [28] B. Carter, Phys. Revl74, 1559(1968.

[13] S. A. Teukolsky, Astrophys. 185 635 (1973. [29] T. A. Apostolatos, C. Cutler, G. J. Sussman, and K. S. Thorne,

[14] M. Sasaki and T. Nakamura, Prog. Theor. Ph§g, 1788 Phys. Rev. D49, 6274(1994).



