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A flagellum swimming in a viscous medium is modelled by a one-dimensional
array of opposed active elements. The resultant model is mathematically described
by a fourth-order partial differential equation. In the model, the active element is
characterized by both hysteresis and exzcitability with respect to the sliding motion
between the filaments. Hysteresis means that the element is either turned “on” or
“off,” depending on the history of the sliding motion. Excitability is defined when
active sliding is triggered by passive sliding over a threshold. The combination
of these properties leads to a spatio-temporal sliding pattern within the flagellar
system, which in turn causes a bending pattern. Numerical simulations for the
present model reveal that (i) inirinsic instability arises from this model system,
(i1) the direction of propagating waves is reversed, (iii) such direction-reversing
propagating waves are replaced by unidirectional waves after.the insertion of a
passive region at one end, and (iv) the increase in the system size leads to chaotic
behavior.
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FIGURE 1 Propagating waves
typical of “normal” flagelia.
Successive waves (1 — 3)
propagate toward the tip of a
flagellum as indicated by the arrow.

1. INTRODUCTION

Flagella are hair-like projections which are found on eukaryotic cells.l!l Their pri-
mary function is to move single cells through a fluid for locomotion. Most flagella
show regular base-to-tip bend propagation’ as illustrated inFigure 1. However, oth-
ers show quite complex dynamical behavior such as the reversal of the direction of
propagating waves, 23 collision of waves which travel in the opposite directions,*5
intermittent movements with stopping and starting transients,® and co-existence of
different waves on different sections of a long insect flagellum.” Surprisingly, there
is no essential difference in the structure of these flagella. The problem is, thus,
to clarify the underlying mechanism leading to various modes of complex behav-
jor. Although many theoretical studies have been performed, they have focused on
the regular base-to-tip bend propagation only.3~1% No attempt has been made to
understand the potentially important complex behavior.

In the present paper, I will examine the above problem based on recent theo-
retical studies.!"—%

2. THE SLIDING FILAMENT MECHANISM .

It is now established that bending waves in flagella are caused by the sliding filament
mechanism.?223.24 Although actual flagella have nine outer microtubules,?® they
are approximated by a two-filament system on the assumption that bending occurs
in a single plane. As illustrated in Figure 2, bending does not occur when any
part of the filaments slides equally (Figure 2(B)). If, however, sliding is restricted
on local regions, bending is generated between the sliding and nonsliding region
(Figure 2(C)). For such bending to be reversed, the direction of sliding must be
reversed (Figure 2(D)). The flagellar system is, thus, modelled by a one-dimensional
array of opposed active elements, each of which has its own “preferred” direction.

N Confusingly, bacterial flagella share the same name as those of eukaryotes. They are, however,
completely different in structure and function.
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FIGURE 2 Diagrams showing how sliding motion causes bending motion in a two-
filament system. (A) The flagellum is straight and no bending occurs without sliding
motion. (B) No bending is initiated when sliding occurs equally throughout the length
of the flagellum. (C) If sliding is localized, bending occurs between the sliding and
nonsliding regions. (D) When the direction of sliding is reversed, the flagellum bends
in the direction opposite to the previous direction as shown in (C). The arrows indicate
the directions of relative sliding.
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3. DERIVATION OF THE BASIC EQUATION

An arc length, s, is introduced to measure the distance along the flagellum from
the base. Then, the sliding displacement, ¢, is defined as a function of time, ¢, and
space, s. Under the condition that sliding is restricted on local regions, we can
assume that the sliding displacement, o, is proportional to the bending angle, 6,
between a horizontal axis and a line tangent to the flagellum. Once o is specified,
we can easily obtain the flagellar shape by simple integration (cf. Figure 4). For
convenience, o is defined as a dimensionless sliding dlsplacement and is allowed to
vary between 0 and 1.
The moment-balance equation for a flagellum is written by

My+ Ms+ Mg=0 (1)
where My, Mg, and Mg are the external viscous, internal shear, and internal elastic
moments, respectively. To obtain the basic equation, let us specify each moment in
Eq. (1).

First, the external viscous moment, My, is given by the external viscous force,
F N:

OM
5. TEN=0. @)
The external viscous force, Fl, in turn obeys the following force-balance equation?®
OF
a—N +CnWw =0 (3)

where Cy and Vy are normal components of the external viscous drag coefficient
and the velocity, respectively. In Eqs. (2) and (3), inertial terms are ignored because
the Reynolds number of flagella is extremely small. The normal component of the
velocity, Vv, is, then, specified under the condition of continuation:

BVN do

8s ot “)
In Egs. (3) and (4), translational movements of the flagellum as a whole are ne-
glected based on the small-amplitude assumption.” This simplifies the algebra and
the essential results should not be affected.!®

Secondly, the internal shear moment, My, is defined by the internal shear force,?

5 oM
S ——
Os _.S' )
Lastly, the internal elastic moment, Mg, is proportional to the curvature:
do
Mg = Eg—é—; (6)

where Ep is the bending resistance.
Combining the above equations, we obtain the following basic equation:

dr 95 9%
Cny + 57 +Engg = 0. (7)

16 °
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4. THE MODEL

The problem is how to specify the internal shear force, S, in such a way that Eq. (7)
gives rise to various modes of wave phenomena. In the present model, the internal
shear force, S, is defined as follows:

do

S =Finy+ Fyinj; —I(c(0—0.5)—7'é? ’ (80)
Fr =Q(e —0.1)(c — 0.3)(1 — o) (8b)
Frr =Q(0 —0.9)(¢ — 0.7)(# — o) : (8¢)
_f1 0<s<02 (if initially ny =0 for 0 > 0.2) 8d
L _{0 0<s<08 '~ (8d)
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FIGURE 3 The cubic force-distance and hysteresis switching functions. (A) Fr and
Fyy are represented by solid and dotted lines, respectively. They are defined as a
function of the sliding displacement, o. The force constant, Q, is taken as 250 pN.

(B) The binary function is defined in the region 0.2 < ¢ < 0.8. ny and ns give either
the discrete values 0 or 1 under the condition of n; + nyy = 1.
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where F; and Fy; are two opposing force-distance functions, ny and njyy are two
switching functions,[?! K, is the force constant of the passive elastic component,
and v is the internal viscous resistance. In the following simulations, v is taken to
be zero except for Section 5.1 because it is negligible in experimental conditions.!®
Excitability is represented by Eqs. (8b) and (8¢c), where Q is their force constant.
See Figure 3(A) for details. Hysteresis is represented by Egs. (8d) and (8¢). To avoid
the competition between the two opposing elements, it is assumed that ny+n;; = 1.
See Figure 3(B) for details.

Equations (7) and (8) are solved on the assumption that moments and forces
vanish at both ends. These free-end boundary conditions are:

8%

= 542
s=0,L Os

oo

s =0 9)

8=0,L

where L is a length of a model system.

5. SIMULATION RESULTS
5.1 INTRINSIC INSTABILITY

Although the internal viscous resistance, v, has been considered to be negligible,
large values of v are empirically introduced to stabilize the wavelength of simulated
waves in some models.}%17 This section investigates the effect of changing the ratio
between the internal viscous resistance, 7, and the external viscous drag coefficient,
Cn, on the stability of solutions to Egs. (7) and (8). For this purpose, three sets of
values of vy and Cn are used: (i) ¥ = 50 pNms/24 nm, Cy = 0; (ii) 7 = 50 pNms/24
nm, Cy = 0.5 pNms/pm?; and (iii) ¥ = 0, Cy = 5 pNms/pm? A 50-pm-long model
flagellum is set to be homogeneous along the length of the system except that forced
periodic oscillations are applied at one end in order to generate propagating waves.

Figure 4 shows the simulation results. In each case, the sliding displacement,
o, is plotted against space, s, in the left, and the corresponding bending pattern is
shown in the right. The time interval between the two successive patterns is 5 ms.
As the ratio of 7/Cp is decreased, the sliding pattern is deformed in two ways (see
left panels) though its corresponding bending pattern does not change as much
(see right panels). First, the plateau phases of the sliding pattern become spiky at
local regions. Since spiky regions are localized, they are caused by the second-order
space derivative term in Eq. (7). Second, the plateau phases are globally inclined.
These global changes result from long-range interactions which are described by
the fourth-order space derivative term in Eq. (7).

[21Subscripts I and II indicate two subsystems I and II, respectively.
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FIGURE 4 The sliding displacement, o, as a function of the space, s, shown in the
left, and the corresponding bending pattern shown in the right. The model flagellum is
set to be homogeneous (Q = 250 pN and K, = 1 pN24 nmfor 0 < s < 50 um)
except that forced oscillations are applied. The period of the oscillations is 60 ms. The
flagellar shapes in the (x, y) coordinate are obtained by:

z(s) = /08 cos(o — 0.5)ds,  y(s)= /: sin(¢ — 0.5)ds.

Two successive patterns in each panel are shown at 5-ms time intervals. Parameters
are: (A)y = 50 pNms”24 nm, Cy = 0;(B)y = 50 pNms/24 nm, Cy =
0.5 pNms/um?; and (C) v = 0, Cy = 5 pNms/um?.
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The system described by Eq. (7) is highly subjected to intrinsic instability when
v =0 and Cy = 5 pNms/um? (see Figure 4(C)). In the following simulations, so-
lutions to Eqs. (7) and (8) are obtained under these conditions as they correspond
to the experimental conditions.!® Because of the instability inherent in this model
system, the dynamical behavior must be studied for a long time. For this purpose,
two types of representations are used. One is the energy dissipation which is ob-
tained by integrating (80 /8t)? with respect to space, s. This simply indicates the
intrinsic instability. The other is a space-time diagram of o’in which the regions
for ¢ > 0.5 are plotted by bars against space, s, at 5-ms time intervals. This plot
reflects the spatio-temporal sliding pattern. -

5.2 REVERSAL OF PROPAGATING WAVES

A 50-pm-long model flagellum has a homogeneous structure, in which opposed
active elements are arranged along the system from one end to the other. This
model system is initially set to be straight except for the one end (i.e., the left
end). Such an initial bend is developed and propagates toward the other end (i.e.,
the right end).

Figure 5(A) shows the energy dissipation. A number of spiky patterns exist
which correspond to intrinsic instability. There are two minima in the time course
of the energy dissipation: one is at ¢ = 1120 ms and the other is at ¢ = 2340 ms.
Figure 5(B) shows the space-time diagram of o. Waves which propagate toward
the right are represented by successive bars moving in the rightward direction. As
indicated by the first arrow at ¢ = 1120 ms, the direction of propagating waves
is reversed. This reversal occurs as follows. The trailing edge of the original wave
first slows down, while the leading edge does not significantly change its propagat-
ing velocity. Then, the wave changes its form and the deformed part sends out a
wave which propagates in the direction opposite to the original direction (i.e., wave
splitting?”). This new wave collides with the subsequent wave. Since the new wave
is large enough, it can destroy the other. As a result, there are only waves which
propagate toward the left. The next reversal of these propagating waves occurs at
1 = 2340 ms as indicated by the second arrow.

If two waves which propagate in the opposite directions are identical, they pass
through on collision.!® Non-annihilating propagating waves of this kind are known
as solitons. Non-annihilating waves are also observed in real flagella.®®

5.3 INSERTION OF PASSIVE REGION AT ONE END

The model system examined in the previous section demonstrated the reversal of
propagating waves and soliton-like behavior. The problem still remaining is how to
demonstrate unidirectional waves typical of “normal” flagella. To solve this problem,
let us consider the fine structure of sea urchin sperm flagella which show the regular
waves. These flagella are 41-43 um long. Each flagellum has an inert terminal piece
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FIGURE 5 The energy dissipation (A) and space-time diagram of o (B). The flagellum
is set to be homogeneous. Parameters are: ¥ = 0, Cy = 5 pNms/um? Q = 250 pN
and K. = 1pN24 nmfor 0 < s < 50 pm. Simulation results are shown up to

t = 3000 ms. )

of 5-8 pum long at the distal end” and has a basal plate at the basal end.?® Based
on these observations, opposed active elements are removed from the distal 10 xm
of the 50-um-long model flagellum, and a strong elastic component is placed at the
base. Mathematically, this situation is modelled when Q = 0 for 40 < s < 50 pm
and K. = 50pN/24 nm for s = 1 pm.
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FIGURE 6 The energy dissipation (A) and space-time diagram of ¢ (B). The flagellum
is set to be inhomogeneous. Parameters are: v = 0, Cy = 5 pNms/um?, Q = 250 pN
and K, = 50 pN/24 nmfor s = 1 um, @ = 250 pN and K, = 1 pN/24 nm for

1 <s<40pum,and Q =0 and K, = 1 pN/24 nm for 40 < s < 50 pm. Simulation
results are shown up to ¢ = 2000 ms.

Figure 6(A) shows the energy dissipation. The peaks of spiky patterns are
reduced extensively. The passive terminal region works like a bulk system which
can absorb the instability arising from the active region. Figure 6(B) shows the
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space-time diagram of o. As a result of the reduction of the intrinsic instability,
only unidirectional propagating waves are demonstrated.

5.4 INCREASE IN SYSTEM SIZE

The model system is set to be homogeneous again, but its length is set to be
100 um. A single propagating wave is initially present in the system. It propagates
to the right and two waves are reflected at the right end based on the wave split-
ting mechanism (see Section 5.2)). The first one propagates slowly, while the second
propagates quickly. Since the system size is doubled, the average value of the energy
dissipation is almost doubled as indicated by Figure 7(A). Figure 7(B) shows the
space-time diagram of o. As indicated by the first arrow, the second wave collides
with the first one at ¢ = 425 ms. After the collision, they continue to propagate.
Collision of two waves which propagate in the same direction is experimentally ob-
served. Following the collision, the system shows unidirectional propagating waves
for a while. However, as indicated by the second arrow, the spatio-temporal sliding
pattern begins to be chaotic at ¢ = 1260 ms. There are different sections which show
quite different wave parameters such as the wavelengths and wave frequencies. This
chaotic behavior may correspond to the wave patterns observed in a long insect
flagellum.”

6. DISCUSSION

The most important problem is how to specify the internal shear force, S, in such
a way that Eq. (7) gives rise to various types of wave phenomena. In the present
paper, the shear force, S, was defined as a function of o under the condition of
7 = 0 in Eq. (8a) as in Sections 5.2-5.4:

S = S(o). (10)

It is very difficult to solve the above problem because the system described by
Egs. (7) and ( 10) is subjected to the intrinsic instability. To understand this situa-
tion, let us consider a simple case where the internal shear force, S, is proportional
to the sliding displacement, o. Then, the second term in Eq. (7) corresponds to
the negative diffusion leading to destabilization, while the third term causes stabi-
lization. The competition between the two properties leads to intrinsic instability.
Furthermore, there are only even powers of the space derivatives. This means that
symmetry holds with respect to space, s; that is, the equation is invariant under
the spatial inversion s — —s. As a result, both distally propagating and proximally
propagating waves were equally developed.
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FIGURE 7 The energy dissipation (A) and space-time diagram of o (B). The flagellum
is set to be homogeneous. Parameters are: v = 0, Cy = 5 pNms/pm?, Q = 250 pN
and K. = 1 pNR24 nmfor0 < s < 100 um. Simulation results are shown up to

t = 2000 ms. )

To get unidirectional waves, the structural asymmetry such as the terminal
piece without active elements was taken into account. The passive region absorbed
instability arising from the active region. The passive region in isolation does not
show any function. But it can work to control orders when it coexists with the



Complex Dynamics of Flagella 13

active region. By analogy with this model behavior, it is important to study any
network systems (e.g., gene network, immune network, and neural network) which
involve non-active elements. .

Besides the present model, two other types of models have been proposed
in order to account for normal base-to-tip bend propagation: curvature-controlled
models®~ !¢ and self-oscillatory models.!® Curvature-controlled models assume that
the shear force, S, is defined as a function of the curvature, ﬂo/ Os:

S=S (%) . | Y

To understand the meaning of Eq. (11), let us consider a simple case that the shear
force, S, is proportional to the curvature, 9o /8s. Then Eq. (7) does not hold the
symmetry with respect to space, s, because of the presence of an odd power of
the space derivative. As a result, either distally or proximally propagating waves
are present depending on the sign of the proportionality constant. However, once
the sign of the constant is specified, these models cannot account for two waves
propagating in the opposite directions. Furthermore, there is no direct experimental
evidence which supports Eq. (11).

Self-oscillatory models assume high internal viscosity, v, to get unidirectional
propagating waves. Here, the shear force, S, is conventionally represented as follows:

S=8- »,%". (12)

Let us consider the extreme case of Cny = 0. Equation (7) can be reduced to the
following reaction-diffusion equation:

Oo 8%c
Yo = Prga

In this case, it is easy to get unidirectional propagating waves if an appropriate
pace-maker is placed at one end of the system. However, the internal viscosity, v, is
generally considered to be negligible, which is inconsistent with Eq. (12). It is now
clear that any model except for the present model is based on ad hoc assumptions
to account for regular wave phenomena.

Intrinsic instability has not been discussed in the field of cellular motility. One
reason for this is that theoreticians have focused on the regular hehavior though
there are experimental observations for irregular modes of wave phenomena. An-
other reason is that it is very difficult to grasp the deformed patterns from the flag-
ellar shape only (see right panels of Figure 4). For these reasons, the observed irreg-
ularity has been ascribed to random noise. Equations similar to Eq. (7) have been
discussed in different physical contexts. For example, the Kuramoto-Sivashinsky
equation??3%:3! and the generalized reaction-diffusion equation3? have this class of
intrinsic instability. Numerical simulations for these equations show complex dy-
namics. Despite the diversity of dynamical systems, it is very interesting to notice
that there may be a common principle behind them. I hope that the present study
stimulates the investigation of such a principle.

+8S. (13)
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