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A Lattice Formulation of Super Yang-Mills Theories with Exact
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Okayama Institute for Quantum Physics, Kyoyama 1-9-1, Okayama 700-0015,
Japan

We construct SU(N) super Yang-Mills theories with extended supersymmetry on hyper-
cubic lattices of various dimensions keeping one or two supercharges exactly.

It is based on topological field theory formulation for the super Yang-Mills theories.
Gauge fields are represented by compact unitary link variables, and the exact supercharges on
the lattice are nilpotent up to gauge transformations. In particular, the lattice models are free
from the vacuum degeneracy problem, which was encountered in earlier approaches. Thus, we
do not need to introduce any supersymmetry breaking terms, and the exact supersymmetry
is preserved wholly in the process of taking the continuum limit.

Among the models, we show that the desired continuum theories are obtained without
any fine tuning of parameters for the cases N' = 2,4,8 in two-dimensions. Also, the cases
N = 4,8 in three-dimensions are investigated, and a problem arising in four-dimensional
models is discussed.

§1. Introduction

Nonperturbative aspects in supersymmetric gauge theory are quite interesting
not only from the field-theoretical point of view beyond the standard model, but also
from the AdS/CFT duality between gauge theory and gravity in string theory.

A conventional approach to the nonperturbative study is lattice formulation.
However, there has been difficulty on the lattice approach to supersymmetry, because
of lack of infinitesimal translational invariance on the lattice and breakdown of the
Leibniz rule. As we will discuss here, in spite of the difficulty, it is possible to
construct lattice models, which do not have manifest full-fledged supersymmetry
but flow to the desired supersymmetric theories in the continuum limit.

Supersymmetric theories with extended supersymmetry have some supercharges,
which are not related to the infinitesimal translations and can be seen as fermionic
internal symmetries. It is possible to realize a part of such supercharges as exact
symmetry on lattice, and the exact supersymmetry is expected to play a key role
to restore the full supersymmetry in the continuum limit with fine tuning of less or
hopefully no parameters.

In sections 2 and 3, we construct lattice models for two-dimensional N' = 2,4
SYM theories based on (balanced) topological field theory formulation, and discuss
on renormalization near the continuum limit. In sections 4 and 5, starting naive
lattice actions for four-dimensional N' = 2,4 SYM theories, we construct lattice
models for N' = 4,8 in two-dimensions and for A/ = 8 in three-dimensions. Section
6 is devoted to the summary and discussion on the results obtained here.

Throughout this paper, we focus on the gauge group G = SU(N). At the points

*) This presentation is based on the works 1)-3).
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discussing continuum theories, notations of repeated indices in formulas are assumed
to be summed. On the other hand, when treating lattice theories, we explicitly write
the summation over the indices except the cases of no possible confusion.

§2. 2D N =2 SYM

2.1. Continuum Action

The action of ' =2 SYM in two-dimensions can be written as the ‘topological

field theory (TFT) form’:®)

1 T o
Sopn=2 = Qﬁ d*ztr [177 (¢, ¢] —ixP + xH — iy, D, , (2-1)

where p is the index for two-dimensional space-time. Bosonic fields are gauge fields
Ay, complex scalars ¢, ¢, and auxiliary field H. The other fields 7,, x, 1 are
fermionic, and @ = 2Fj3. Q is one of the supercharges of N' = 2 supersymmetry,
and its transformation rule is given as

QA;L = 1/],113 Q"/}u = iD,u¢)a

Q¢ =0,
Qx=H, QH=[¢,x],
Qé=mn, Qn=1I¢, 9. (2-2)

Q is nilpotent up to infinitesimal gauge transformations with the parameter ¢. Note
that the action has U(1)g symmetry whose charge assignment is +2 for ¢, —2 for ¢,
+1 for ¢, —1 for x and 7, 0 for A, and H.

2.2. Lattice Supersymmetry Q

We formulate the theory (2-1) on the two-dimensional square lattice keeping the
supersymmetry Q. In the lattice theory, gauge fields A,(x) are promoted to the
compact unitary variables

U(s) = eian(2) (2:3)
defined on the link (z,z + fi). ‘a’ stands for the lattice spacing, and = € Z? the
lattice site. All other variables are distributed at sites. (See Fig.1.)

Interestingly, the Q-transformation (2-2) is extendible to the lattice variables
preserving the property

Q? = (infinitesimal gauge transformation with the parameter ¢) (2-4)

as follows:

$(z) =n(z), Qn(z)=[g(x), d(=)]. (2-5)
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Fig. 1. On the lattice, the unitary variable U, (z) is defined on the link (z,z + ). Other fields are
put on sites.

Note that we use the dimensionless variables here, and that various quantities are of
the following orders:

Yu(), x(x),1(z) = 0(a*?),  ¢(),$(z) = O(a), H(z) = O(a®),
Q = 0(a"?). (26)
The first term in the RHS of “Q¢,(z) = ---” in (2-5) is of subleading order O(a?)

and irrelevant in the continuum limit.

2.3. Lattice Action

Once we obtain the @Q-transformation rule closed among lattice variables, it is
almost straightforward to construct the lattice action with the exact supersymmetry

Q:

S = Qg 30 tr | 11(0) 9(e), 60)] — ix()(B(0) + AB() + x(2)H )

2
+i Y (@) (8(@) — Uu(@)dle + U1 |, (@7)
p=1
where
?(z) = —i [Ura(z) — Un ()], (2-8)
A@(l‘) = —7'(2 - Ulz(l') - Uzl(ﬂ})) (29)

U, are plaquette variables written as

U (z) = Uy(2)U,(z + @)Uu(x + 9)10, ()1 (210)
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The action (2-7) is clearly @-invariant from its Q-exactness, and is U(1) g symmetric.
It is an almost straightforward latticization of the continuum action (2-1) except
AP(z) introduced. We will explain a role of AP(z).

After acting @ in the RHS, the action takes the form

S¥pN=s = % >t E[W), $(@)]? + H(x)? — iH (x)(#() + AB(a))
+3 (¢(@) — Uu(@)é(@ + )Uu(@)') ($(2) = Uu(@)(e + i) Up(2)')

— @B, n(@)] ~ x(@)[p(e), x(=)]

2
=3 Gu@u(@) (8(2) + Up)d(a + WUL)T) + ix()Q(B() + AB(x)
u=1

2
=i > Yu(@) (1) = Ualo)n(z + @)U ()1 | - (211)

In order to see the relevance of A®(x), let us consider the case without A@(z) in
the action. After integrating out H(z), induced &(x)? term yields the gauge kinetic

term as the form 1
202 D>t [~Uw(@) — Uu(2))], (2-12)

r u<v
which is different from the standard Wilson action

57 3 2 1 [2 = () = U] (213)

r u<v

In contrast with (2-13) giving the unique minimum U,,(x) = 1, the action (2-12)
has many classical vacua

Uw(z) = diag (£1,--- ,%1) (2-14)

up to gauge transformations, where any combinations of +1 with ‘—1’ appearing
even times are allowed in the diagonal entries. Since the configurations (2-14) can
be taken freely for each plaquette, it leads a huge degeneracy of vacua with the
number growing as exponential of the number of the plaquettes. In order to see the
dynamics of the model, we need to sum up contributions from all of the minima,
and the ordinary weak field expansion around a single vacuum U, (z) = 1 can not
be justified.*) Thus, we can not say anything about the continuum limit of the
lattice model (2-:11) without its nonperturbative investigations. In order to resolve
the difficulty without affecting the Q-supersymmetry, we introduce the A®(z) terms
with an appropriate choice of the parameter 7 = cot 6:**)

e 41 forvl=1,---,N. (2-15)

*) This kind of difficulty already appeared in Ref. 4).
**) For a discussion about how the degeneracy is removed, see Ref. 2).
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2.4. Renormalization

At the classical level, the lattice action (2-7) leads to the continuum action (2-1)
in the limit a — 0 with ¢72 = (ngo_2 kept fixed, and thus the N' = 2 supersymmetry
and rotational symmetry in two-dimensions are restored. We will check whether the
symmetry restoration persists against quantum corrections, i.e. whether symmetries
of the lattice action forbid any relevant or marginal operators induced which possibly
obstruct the symmetry restoration.

p=a+b+3c *Bbp2e
0 1
1 @
2 goz
3 ©%, P,  pdp
4 o', PPy, (89)®, &Y, o

Table I. List of operators with p < 4.

Assuming that the model has the critical point go = 0 from the asymptotic
freedom, we shall consider the renormalization effect perturbatively. The mass di-
mension of the coupling g is two. After a rescaling of fields as indicated in (2:6),
for generic boson field ¢ (other than the auxiliary fields) and fermion field %, the
dimensions are 1 and 3/2 respectively. Thus, operators of the type ©?8%1)%¢ have the
dimension p = a + b+ 3¢, where ‘9’ means a derivative with respect to a coordinate.
From the dimensional analysis, we can see that the operators receive the following
radiative corrections up to some powers of possible logarithmic factors:

p—4
(a — + 10”7 4 cpaP g’ + - ) /d2$ @0, (2-16)
g

where ¢y, co, - -+ are constants dependent on N. The first, second and third terms in
the parentheses represent the contributions at tree, one-loop and two-loop levels. Tt
is easily seen from the fact that g2 appears as an overall factor in front of the action
and plays the same role as the Planck constant 4. Due to the super-renormalizable
property of two-dimensional theory, the relevant corrections terminate at the two-
loop. From the above formula, it is seen that the following operators can be relevant
or marginal in the a — 0 limit: operators with p < 2 induced at the one-loop level
and with p = 0 at the two-loop level. Operators with p < 4 are listed in Table I.

Since the identity operator does not affect the spectrum, we have to check op-
erators of the types ¢ and (2 only. Gauge symmetry and U(1)g invariance®) allow
the operator tr¢¢, however it is forbidden by the supersymmetry Q. Hence, no
relevant or marginal operators except the identity are generated by radiative correc-
tions, which means that in the continuum limit full supersymmetry and rotational
symmetry are considered to be restored without any fine tuning.

*) Note that the U(1)r symmetry is not anomalous for G = SU(N) in the two-dimensions.
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§3. 2D N =4 SYM

3.1. Continuum Action

The action of N' = 4 SYM in two-dimensions can be written as the following
‘Balanced Topological Field Theory (BTFT) form’:6):7)

SopN=1 = Q1+ Q_FapN=4,

1 ) 1
FapN=4 = 37 d*z tr [—1345 — VYo = X X= T (3-1)

where Q4 are two of supercharges of the N’ = 4 theory, and ® = 2F},. Bosons are
gauge fields A, (p = 1, 2) and scalar fields B, C, ¢, ¢. Also, there are auxiliary
fields ﬁ”, H. Other fields 94,, X+, 7+ are fermions. Transformation rule of the
supersymmetry Q4 is given by

Qidu =i, Qutbin =Dy, Qi = 5DuC — M,

Q Ay=t 4 Qb u=—iDud, Quibu=3D,C+1H,

Qi Hu = 6, %-u] = 31, ¥4 — S Dy,

QB = (8, Yu, + 510, Yoyl + 5Dun (52)

QiB=xi, Qixs=[¢Bl, @ x:=3(C B-H

QB=x, Qx =I5B, Qx =, [CB+H
1 1

Q+H =[4, x-]+ 5[B, 1+] = 5[C x+];

QH =[5, x4] — 5B, 1]+ 5, x 1, (33)

Q-i—C =T+, Q+77+ = [¢7 C]) Q—U+ = _[¢7 (]_3],
QRQ-C=n-, Q-n-= _[¢a C]a Q+1- = [¢7 ¢],
Q+¢ = 0) Q—qs = — N+ Q+¢ =1n-, Q—¢ = 0. (34)
This transformation leads the following nilpotency of @+ (up to gauge transforma-
tions):
Qﬁ_ = (infinitesimal gauge transformation with the parameter ¢),
Q* = (infinitesimal gauge transformation with the parameter — @),

{Q+,Q_} = (infinitesimal gauge transformation with the parameter C). (3-5)

In this formulation, among the SU(4) internal symmetry of the ' = 4 the-
ory, its subgroup SU(2)g is manifest which rotates (Q4,Q_). Under the SU(2)g,
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each of (1#{?__”,1/1‘1_”), (X%, x%), (n%,—n%) and (Q4, Q-) transforms as a doublet, and
(¢%,C* —¢) as a triplet. Also, let us note a symmetry of the action (3-1) under
exchanging the two supercharges Q4 < Q_ with

¢$— -9, ¢——¢, B—-B,

X+ = =X-: X— = —Xt, Hu— —Hy,

wip - wzp,“ N+ — N=- (3'6)
3.2. Lattice Supersymmetry Q4+

Similarly to the N/ = 2 cases, it is possible to define the theory (3-1) on the
square lattice preserving the two supercharges Q1. The transformation rule (3-2) is
modified as

Q1Uu(z) = ipyu(z)Upy(z),
Q-Uy(w) = itp- (@)U (),
Qitu(w) = iy ) ypu(z) —i (4”
Q) = it upu(@) +i (9

Q-v1u(@) = 5 {¥1u(@), vou(@)} — 5 (C) ~ Uu(@)Cla + D)V, (2)") — Ay (o),

Quth-p(@) = + {ru@), Yop(@)} — & (C@) ~ Uu(@)Ola + DUL(@)') + Hla),

(@ + A)Uu(2)!

(x) — U#(ac)qﬁ
(@) — Up(@)d(z + )Upu(2)!

b

N———

QuH(z) = —3 [p-u(@), 9(@) + Vul@)(a + U(2)']
+ [Brue), C@) + Uu(@) Ol + U2 ]
5 (@) - Uyl )77+(fc + )Ua(@)")
; [44(@), Fu@)] + 5 oul@)rue)s vop(@)],

QH,(x) = — [1u(a), 8(z) + Uu(@)(a + )0, (2)']

(4 u(@), C(@) + Up(@)Cl + 1)Uy ()]
(RORAGTRCEIUAGY

2 [ou@), Bu@)] = 3 Wop @)oo, dale)]. (37)

The other transformations (3-3, 3-4) do not change the form under the latticization.
Note that this modification keeps the nilpotency (3-5).
Making use of the @QQ1-transformation rule in terms of lattice variables, we con-

SN S| =

struct lattice actions with the exact supercharges Q1 as

5%3%4—Q+Q_222tr —iB(z)(®(z) + Ad(x Z«m
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X+ @x (@) = gre@n @) (39)

where &(z) and AP(z) are given by (2-8) and (2-9), respectively. Note that the
lattice formulation retains the symmetries under SU(2)g as well as the Q4 < Q_
exchange.

Similarly to the N/ = 2 case, A®(z) ensures to remove the vacuum degeneracy.
With respect to the renormalization argument, symmetries of the lattice action are
sufficient to restore full supersymmetry and rotational invariance in the continuum
limit. For instance, gauge invariance and SU(2)p symmetry allow the operators
tr (4¢4 + C?) and tr B2, but they are not admissible from the supersymmetry Q..
Thus, radiative corrections are not allowed to generate any relevant or marginal
operators except the identity, which means the restoration of full supersymmetry
and rotational invariance in the continuum limit.

§4. 3DN =4

Also for A/ = 2 theory in four-dimensions, we can write the action in the ‘TFT
form’, and construct a nazve lattice action as

it = Q5 3 tr | 10(0) 8(e), 6]~ iX(0) - (B(a) + A8(0) + L) H(2)

4
+i> (@) (3(@) - U@l + U@ |, (41)
where FI(.’L‘), X(z), 5(:1:) and A!ﬁ(.’b‘) are three-component vectors, and
3
@A(.’B) = —1 U4’,A(.’L‘) — U,AA(.’B) + % Z EABC (UB(;(.’B) — UCB(-T))] s (42)
A@l(ﬂ?) = —T [W4’_1($) —|— ng(ﬂ?)] s ’
ADy(z) = —1 [Wy _o(x) + Wiy (2)],
A@g(ﬂ?) = —-T [W4’_3(CE) + ng(:v)] . (43)
W, (x) are defined by
Wi (&) = 2~ Uy () — Unale), U_p(e) = Upo — i)' (1-4)

The vacuum degeneracy is removed with the choice r = cot8: 0 < 6 < %.*) It turns
out, however, that the quadratic terms in A, in tr (®(x)+ Ad(z))? have surplus zero-
modes (other than gauge degrees of freedom) carrying the nonzero momentum in the
fourth direction. Fermion kinetic terms also have zero-modes at the same momenta,

which is consistent to the exact supersymmetry @ because the surplus modes are

*) For a detailed discussion, see Ref. 3).
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not exact zero-modes of the full action (only of the quadratic terms) and a fermionic
partner necessarily exist for each bosonic surplus modes.

Here, we do not resolve the problem, but consider the dimensional reduction
with respect to the fourth direction. Then, the four-dimensional N' = 2 theory
reduces to three-dimensional N’ = 4 theory where the surplus modes are all killed.
Thus, the dimensionally reduced lattice model reproduces desired three-dimensional
N = 4 theory in the classical continuum limit. The renormalization argument tells
that necessary is fine-tuning of three parameters for the counter terms with the mass
dimension three:

3

Q) tr(vé), Qtr(vud), QY tr(xads)

u:l A=1

in order to arrive at the desired continuum theory at the quantum level.
§5. 3D N =8 and 2D N =8

We can similarly construct a naive lattice action for four-dimensional N' = 4
SYM, where however the same problem of the surplus modes occurs. Considering
the dimensional reduction with respect to the fourth direction, we obtain a lattice
model for three-dimensional N = 8 SYM which reproduces the desired theory in the
classical continuum limit. Also, further reduction with respect to the third direction
leads two-dimensional N’ = 8 theory. For the three-dimensional N' = 8 model, one
parameter fine-tuning for an operator of the mass dimension three is required, while
the two-dimensional model of A/ = 8 needs no fine-tuning.?)

§6. Summary and Discussion

We have constructed varioius lattice models for SYM theories of N/ = 2,4,8
in two-dimensions and of N/ = 4,8 in three-dimensions, based on ‘(balanced) topo-
logical field theory form’ of the theories. The formulation exactly realizes a part
of the supersymmetry and employes compact link variables for the gauge fields on
hypercubic lattice. From the renormalization argument, we have shown that the
desired continuum theories are obtained by fine-tuning three and one parameters for
the three-dimensional A/ = 4 and 8 theories respectively, while the two-dimensional
theories require no tunings.

We have also seen that there exist surplus modes in four-dimensional naive lattice
models for N' = 2,4. It may be related to exact realization of the topological term
tr ' A F on the lattice which needs a nonabelian extension of the solution for the

U(1) case.®)®

*) Catterall has proposed lattice models for A" = 2,4 SYM theories in two- and four-dimensions
respectively, both of which are free from the problem of the surplus modes.®) However, all the fields
appearing in the models are complexified and we have to pick up the real parts in order to get
the correct theories. Unfortunately, it has been unclear how to do it with keeping the exact lattice
supersymmetry.
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