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We study subcritical fracture driven by thermally activated damage accumulation in the framework of
fiber bundle models. We show that in the presence of stress inhomogeneities, thermally activated cracking
results in an anomalous size effect; i.e., the average lifetime (¢;) decreases as a power law of the system
size (t;) ~ L™%, where the exponent z depends on the external load ¢ and on the temperature T in the form
z~ f(o/T??). We propose a modified form of the Arrhenius law which provides a comprehensive
description of thermally activated breakdown. Thermal fluctuations trigger bursts of breakings which have

a power law size distribution.
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Subcritical rupture, occurring under a constant load
below the fracture strength of materials, is of fundamental
importance in a wide range of physical [1,2], biological
[1], and geological systems [3], and has an enormous
technological impact. Recent investigations led to the sur-
prising discovery that thermally activated microcrack nu-
cleation plays a crucial role in subcritical rupture being
responsible for the finite lifetime of specimens [1,2,4-7].
Thermally activated slow crack advancements also affect
the surface roughness of growing cracks [8], and even the
emergence of earthquake sequences [3]. Macroscopic fail-
ure as a consequence of thermally activated damage accu-
mulation often occurs as a sudden, unexpected event. In
order to forecast the imminent failure, it is of high impor-
tance to derive relations of observables which characterize
the approach to the critical point.

Quenched structural disorder in the form of defects,
flaws, or microcracks gives rise to strong sample-to-sample
fluctuations of the fracture strength and the yield stress of
materials. These macroscopic characteristics show also a
strong size effect; i.e., their average values decrease with
increasing sample size, which is of high importance in
applications and is extensively exploited by industrial de-
sign [9,10]. During the last decade major progress has been
achieved in the understanding of the role of quenched
disorder in the size scaling of materials strength [9-11].
However, under subcritical loads, the interplay of annealed
disorder (thermal noise) and of the inhomogeneous stress
field in the rupture process still remained an open funda-
mental problem.

In the present Letter we study the effect of the inhomo-
geneous stress distribution around failed regions of mate-
rials on the process of subcritical rupture driven by
thermally activated microcrack nucleation. Based on a
fiber bundle model (FBM) of disordered materials, we
demonstrate that varying the temperature 7 and the exter-
nal load o, the relative importance of annealed disorder
and stress concentration can be controlled in the failure
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process tuning the system from the mean field limit to the
extreme of catastrophic failure. Model calculations show
that in the realistic situation of highly inhomogeneous
stress distributions, the simple Arrhenius law of rupture
life does not hold. The lifetime is found to exhibit an
anomalous size scaling; i.e., our calculations revealed a
power law decrease of lifetime with the sample size.
Thermally driven local failures trigger bursts of breakings
due to the redistribution of the excess load. The size
distribution of bursts has a power law behavior whose
exponent changes from one to two as the stress concentra-
tion becomes dominating over the effect of thermal noise
when the external load approaches the critical point.

Our theoretical approach is based on the fiber bundle
model, where we consider N parallel, brittle fibers with
identical Young modulus E. The bundle is subject to a
constant external stress o parallel to the fibers’ direction.
There are several possible ways to introduce time-
dependent rupture in stochastic fracture models. After the
pioneering works of Coleman [12] on time-dependent
FBM, the models were further extended to a broad class
of time-dependent damage accumulation laws and fiber
strength by Phoenix and Curtin [13,14]. In our work we
follow the approach of Guarino et al.; i.e., we assume that
the local load o; of fibers has time-dependent fluctuations
£&:(t) due to the presence of thermal noise so that the actual
load of fiber i at time 7 reads as o(f) = o¥(r) + &(1),
where o?(7) denotes the local stress arising due to the
external load and to load transfer following breaking
events. The fibers have a finite strength characterized by
a failure threshold o-{h, which is, in general, a random
variable. A fiber fails when the total load on it o;(¢)
exceeds the respective threshold value o). We assume
that the system consists of homogeneous fibers; i.e., all
the breaking thresholds are the same ol = oy, i =
1,...,N, where oy = 1 is set. Note that the quenched
disorder of fibers’ strength can have an important effect
on the evolution of the system with an experimental rele-
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vance, which will be explored elsewhere. The thermal
noise has a Gaussian distribution with zero mean and a
variance controlled by the temperature 7' of the system
p(é) = p(&T) = (1/¥27T) exp( — £2/(27)), from
which the complementary cumulative distribution follows
as P(&T) = [ g“’ p(x; T)dx. After a breaking event, the
load of the failed fiber has to be overtaken by the remaining
intact ones. Thermally activated breakdown has exten-
sively been studied by means of FBMs in the limit of equal
load sharing (ELS), where all the fibers share the same load
resulting in a homogeneous stress distribution in the sys-
tem [4,15,16]. To reveal the effect of stress inhomogeneity
on thermally activated breakdown, in our model the fibers
are organized on a square lattice of size L X L and local-
ized load sharing (LLS) is considered [17]: the load of
broken fibers is redistributed over their nearest intact
neighbors, giving rise to high stress concentrations.

Subjecting the bundle to a constant external load o, two
competing physical mechanisms contribute to the failure of
fibers: When the load is small enough o < oy,/N, even a
single fiber can sustain the entire load, and the load incre-
ments arising in the vicinity of failed fibers are not suffi-
cient to trigger further breakings. Hence, in this load
regime, the failure process is dominated by the thermal
fluctuations and there is practically no difference between
ELS and LLS calculations since the range of interaction is
irrelevant. However, at high load values o — o, the load
redistributions give rise to considerable increments of the
local load on intact fibers leading to additional breakings.
In the initial state of the system all the fibers have the same
load a’? =o0,i=1,...,N. When a fiber breaks due to
thermal noise 0¥ + &; > oy, the load ¢? is transferred to
its four intact neighbors resulting in the increment Ag® =
o /4. If the updated load exceeds the breaking threshold
50/4 > oy, the fibers break again transferring the load
further to their intact neighbors. Once this breaking se-
quence starts, removing all four neighbors of the initial
one, it does not stop until all fibers break leading to macro-
scopic fracture. It follows that due to the localized stress
transfer, the system has a critical load o, = 40,/5 above
which even a single fiber breaking triggers the immediate
collapse.

The most important macroscopic characteristic quantity
of the system is the average lifetime {¢;) which has a finite
value even at zero external stress o = 0 if the temperature
is finite 7 > 0. Under the assumption of equal load sharing
it has been shown analytically in FBMs with a fixed break-
ing threshold o, that (z) follows the Arrhenius law (¢) =~
(V27T /o) exp((oy, — )*/2T), without any dependence
on the system size N [15,18]. Using a different modelling
approach, a similar functional form was obtained in
Refs. [13,14]. Further analytical studies and computer
simulations with randomly distributed breaking thresholds
have revealed that the above functional form prevails also
in the presence of quenched disorder, only the effective

temperature shifts to a higher value [16]. Figure 1(a)
presents the scaling plot of lifetime obtained by our com-
puter simulations with the LLS FBM at the system size
L = 1024 varying the load o and the temperature 7. No
data collapse is obtained in the figure, which implies that
the simple Arrhenius law does not hold when stress con-
centrations are present.

Our analytical and numerical calculations revealed that
the interplay of stress concentrations and annealed disorder
results in an anomalous size effect of the lifetime of the
system, which is responsible for the discrepancy observed
in Fig. 1(a). At zero stress o = 0, the average number of
intact fibers (N;(r)) after ¢ time steps reads as (N,(r)) =
N[1 — P(oy; T)]'. The average lifetime (7;) of the system
can be obtained as a sum (t;) = (t;) + (ty), where (z,) is
the average time of breaking the first N — 1 fibers (i.e.
(N;(t;)) = 1 holds), while {#,) denotes the average time to
break the last fiber. Finally, we get,

(try = —(nN + 1)/ 1In[1 — P(oy,; T)]. (1)

Figure 2(a) presents the numerical verification of the above
analytic result, i.e., independently of the range of load
sharing, in the zero stress limit the average lifetime in-
creases logarithmically with the system size (¢;) ~ InN.
Simulations performed at o = 10> both for ELS and LLS
demonstrate in Fig. 2(a) that at finite load values the size
effect drastically changes: the logarithmic correction
gradually disappears and the lifetime (¢,) tends to a con-
stant value as the system size N increases. At the other
extreme, in the limiting case of high loads o — o, the
breaking of a single fiber can trigger the failure of the entire
system. Hence, the average lifetime of the bundle is equal
to the average time of the first breaking [18]

(ty) = —L7%/In[1 = P(og, — 0:T)], (2)

which shows a power law decrease (¢;) ~ L~2 with expo-
nent 2. In order to explore the regime of intermediate load
and temperature values, we carried out computer simula-

12

10 T T

T T
L=32, ...,2048

a) . 10 I
Wt b XX ] 107 7 7=0.001, ..., 0.1 ]
L S @hx S g fo=10,..,08 T
= 10’ F g 7 g
%\ S X >I<1:Ls E 10° - ]
2 [ R LS T j o
g 1w @ Agr=0005 ] &
5 | @ * =00 —x— Ny o0t & b
I S T=002 —K— 7 = 4
T=0.03 ~ et g{ 1
10° F T=0.04 D
T=005 —S— o b b) -
w'fE e T=01 @ ] P . .
. . T 0 s 10 15 20 25
E 2
(cm»c)Z/ZT (64,-0)"2T

FIG. 1 (color online). (a) Scaling plot of lifetime obtained at
different temperatures 7 and external loads o for a fixed system
size L = 1024. Based on the simple Arrhenius law [15,18], no
data collapse is obtained. (b) Taking into account the anomalous
size scaling of lifetime, a high quality data collapse is obtained
which verifies the modified Arrhenius law Eq. (4).
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FIG. 2 (color online). Size scaling of lifetime. (a) At zero load,
(t;) increases logarithmically with the system size. The dashed
line represents the analytic solution Eq. (1). (b) When stress
concentrations dominate, power law dependence is obtained
with a high precision. Note that o, = 0.8 in the model.

tions varying the system size in a broad range L =
32-2048. It can be observed in Fig. 2(b) that at any finite
load value o the average lifetime of the system exhibits a
strong size effect, namely, it decreases as a power law of
the lattice size

(t) ~ L70), (3)

The value of the exponent falls between the limits deter-
mined above analytically 0 < z(7, o) = 2 depending both
on the temperature 7" and on the external load o It can be
observed in Fig. 2(b) that at high temperature when thermal
fluctuations dominate in the failure process, the size effect
disappears z — 0 as in the absence of stress concentrations
(ELS) [16,18]. In the other extreme of high load values and
reduced temperatures, fiber breakings due to stress en-
hancements in the vicinity of failed regions drive the
system to rapid failure resulting in a large value of the
exponent z — 2. We note that in Refs. [13,14], using a
different type of damage law in a one dimensional fiber
bundle model, a power law dependence of (¢,) was found

on the logarithm of the system size (t;) ~ (InL)~%. Our 2D
model cannot be solved analytically; hence, a careful
numerical analysis revealed that the power law functional
form Eq. (3) provides a better quality fit of the simulation
results than the log-power law over the entire o — T
parameter regime considered. We propose a modified
form of the Arrhenius law which takes into account the
size scaling of the lifetime
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Figure 1(b) demonstrates that the modified Arrhenius law
provides an excellent scaling of the numerical data ob-
tained by computer simulations of LLS FBM varying the
system size L, the temperature 7, and the external load o in
the ranges L = 32-2048, T = 0.001-0.1, and o =
1073 — 0.8, respectively. Our numerical analysis showed

that no data collapse can be obtained when log-power size
scaling is assumed in Eq. (4) (not presented).

In order to determine the value of the exponent z as a
function of the external load ¢ and temperature 7, we
explored the o — T plane by means of computer simula-
tions. Since at low loads and low temperatures the lifetime
takes huge values, while in the opposite extreme it be-
comes very short, simulations performed on a super com-
puter were restricted to a stripe of the parameter plane with
feasible computation times and good statistics. Figure 3
presents that plotting z, determined at different o and 7', as
a function of ¢/T%/? an excellent data collapse occurs
which implies the functional structure z(o, T) ~
f(o/T??) of the exponent. This functional form is the
consequence of the diffusive growth of the largest cracks
which drive the macroscopic failure.

Fibers initially break due to thermal fluctuations, then
the load increments on intact fibers trigger additional
breakings at fixed values of the fluctuating loads &;(¢).
This way thermally activated breakdown proceeds in bursts
even when the stress distribution is homogeneous (ELS).
For equal load sharing, the average burst size (A(c)) can
be obtained analytically as a function of the load of single

fibers ¢ in the form (A(c?)) = % 2 N. Tt is

important to emphasize that (A(¢”)) has a minimum at
the location ¢, which is an increasing function of the
temperature 7, but is independent of the external load o.
The size distribution of bursts D(A) can be cast into the
form D(A(1) =[1 — P(ay, — o(0); D] 52|16, In
two limiting cases the asymptotic behavior of the distribu-
tion D(A) can be determined analytically: at low load
values o < o*, D(A) can be rewritten as D(A) =
A1 = P(oy;T)]/In[1 — P(0y; T)], which yields the
power law behavior D(A) ~ A~!. At high loads o > o*
and low temperatures T << o-tzh; however, the general ex-
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FIG. 3 (color online). The size-scaling exponent z is a unique
function of o/ T3/2. At each temperature, simulations were
performed for three o values varying the lattice size in the range
L = 32-2048. The line is to guide the eye.
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FIG. 4 (color online). Burst size distributions D(A) for homo-
geneous (ELS) (a) and inhomogeneous (LLS) (b) stress distri-
butions varying the load o and the temperature 7 at the system
size L = 1024 with o, = 1. In (a) the characteristic load o™ has
values 0.0128, 0.0412, 0.0932, 0.130, for the temperatures 0.001,
0.01, 0.05, 0.1, respectively. In (b) the load values should be
compared to the critical load o, = 0.8.

pression of D(A) reduces to the form D(A) ~[1 —
P(oy, — 0°(1); T)JA™2, which has also a power law
asymptotics but with a different exponent D(A) ~ A~2.
It can be observed in Fig. 4(a) that the burst size distribu-
tions D(A) obtained by computer simulations with homo-
geneous stress distribution (ELS), are in an excellent
agreement with the above analytic predictions: D(A) has
a power law behavior D(A) ~ A=*7-9) where the value of
the exponent a (7, o) recovers 1 and 2 in the limiting cases
discussed above. In the regime o = ¢*, no analytical
results could be obtained; computer simulations provided
power law distributions over 3—4 orders of magnitude with
exponents slightly above 2 [see Fig. 4(a)]. The distribution
for the parameters 7 = 0.1, o = 0.01 seems to switch
from the power law of exponent 1 to a steeper regime for
large bursts. Such switching occurs for external loads o <
0" due to bursts generated when the local load of single
fibers becomes significantly larger than o*. In the presence
of stress inhomogeneities (LLS) no analytical results could
be derived; however, computer simulations revealed that
D(A) has a Gaussian form for small bursts with a power
law decay for the large ones [see Fig. 4(b)]. It is important
to emphasize that the power law exponent « of the LLS
case does not vary continuously, instead, it suddenly
switches from @ =1 to @ =2 when the external load
approaches the critical value o — o, which is accompa-
nied by the shrinking of the Gaussian regime. In the
vicinity of o, the system becomes very sensitive to the
thermal fluctuations and cannot tolerate large bursts, which
is expressed by the higher value of the exponent «
[Fig. 4(b)]. This is an important unique feature of thermally
driven creep rupture; when quenched disorder dominates
the rupture process the opposite effect occurs; i.e., the
burst exponent decreases when approaching catastrophic
failure [19].

In summary, based on a fiber bundle model we showed
that stress inhomogeneities play a crucial role in the pro-

cess of thermally activated subcritical rupture giving rise to
a broad spectrum of novel behaviors. Stress concentrations,
arising in the vicinity of failed regions of the material,
make the system more sensitive to thermal fluctuations.
Consequently, an astonishing size effect emerges where the
average time-to-failure of the model system decreases as a
power law of the system size. On the microlevel, thermally
driven breakdown proceeds in bursts of breakings, whose
size distribution has a power law behavior. The value of the
exponent strongly depends on the temperature 7" and on the
external load o and goes to two when the system ap-
proaches the regime of sudden failure. Monitoring the
evolution of the system by means of acoustic emission
technique, the change of the burst size exponent with the
parameters of the system can be exploited to forecast the
imminent failure event.
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