
Force induced dispersion in 
heterogeneous materials 

                   David Dean 
Laboratoire d’Ondes et Matière d’Aquitaine,  
           Université de Bordeaux and CNRS 

In collaboration with: Thomas Guerin, LOMA, Université de Bordeaux 

Physical Review Letters, 115, 020601 (2015) 



Plan of  talk 

• Revisting a very old problem – diffusion with spatially varying diffusivity 

• General Kubo formulae for diffusion constants and drifts in periodic systems 

• Spatially varying diffusivity in the presence of an external force – force  
enhanced dispersion 

•  Perspectives and conclusions 



Diffusion with variable 
diffusivity 

@p(x; t)

@t
= r · (x)rp(x; t)

dXt =
p

2(Xt)dBt +r(Xt)dt

h(Xt �X0)
2i = 2dD(t)t

De = lim
t!1

D(t)

Fokker Planck equation on medium 
with variable isotropic diffusivity 

Corresponding Ito SDE  

Mean squared displacement Effective diffusion constant- 
important for reaction rates, 
mean first passage times .. 
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Link with dielectric problem 
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Effective dielectric constant: 
 Maxwell 1873, Rayleigh 1892, 
 Maxwell-Garnett 1904, Bruggeman 
1935 –old problem 

r · ✏(x)r� = 0
Laplace’s equation in dielectric medium 

(x) ⌘ ✏(x) ) De = ✏e
Correspondance between effective  
diffusivity and effective dielectric 
constant 

Flat spatial 
average 



What we know 
Wiener variational bounds 1910  
(improved bounds by Hashin and 
Shtrikman 1962)  

What you might naively expect 
as equilibrium density is uniform  

In one dimension 

(�1)�1  De  

De = (�1)�1 harmonic mean 

Duality result in two dimensions if  (x) ⌘
2
0

(x)

then De = exp(ln) geometric mean (Dykhne 1971, Keller 1960s) 

A part from these exact results there is a huge literature on approximative 
methods – effective medium, perturbation theory, renormalization,  
homogenization 



The influence of  applied 
force 

@tp(x, t) = r · [(x)rp� � (x) F p ]

�(x) = µ(x) External applied, force 
e.g. gravity, electric field 

Local Einstein relation 
mobility/conductivity 

Vi = lim
t!1

hXi(t)�Xi(0)i
t

Dii = lim
t!1

h[Xi(t)�Xi(0)]2ic
2t

Effective drift 

Effective dispersion/ 
diffusion 



Example in 2d 

0 5 10 15 20
0.8

1

1.2

� F L

D
ii

Dxx

Dyy

Vx /(� F)

x / L

y 
/ L

�(x,y)

�0.5 0 0.5
�0.5

0

0.5

0.5

1

1.5

(a) (b)

x / L

Ps(x,y)

�0.5 0 0.5
�0.5

0

0.5

0.6

1

1.4

1.8

(c) (d)

101 102

100

101

� F L

D
ii

Dxx

Dyy

F

(x, y) = 0[1 + 0.8 cos(2⇡x/L) cos(2⇡y/L)]

D
xx

' cF 2

Non monotonic behavior 
of both diffusion constants 
with F  

Huge increase in 
dispersion in direction 
of force at large F 

Steady state 
pdf in periodic 
cell 



Kubo formula for dispersion 
in periodic systems 

Find explicit expressions for dispersion coefficients for Fokker-Planck 
equations with arbritary periodic diffusivities and drifts 

Generalize and extend know results for diffusion with applied force 
plus periodic potentials in one dimensions (based on first 
passage time arguments Riemann et al 2000 and Lindner and  
Schimansky-Geier 2002) to higher dimensions. 

Recover results from homogenization theory for stationnary incompressible  
flows (Brenner 1980, Schraiman 1987 Majda and Kramer 1999)   



Kubo formula from SDE 
General method from FP in 1d by Derrida 1983 – extension to higher d 
Dean et al 1996 

Here start with SDE – also allows computation of finite time corrections 

@p

@t
= �Hp Hf = � @

@xi

✓
@

@xj
(ij(x)f(x))�Ai(x)f(x)

◆

periodic 

dXi(t) = dWi(t) +Ai(X(t))dt

hdWi(t)dWj(t)i = 2ij(X(t))dt

Ito SDE 



Formula for MSD 

Xi(t)�Xi(0)�
Z t

0
dt0Ai(X(t0)) =

Z t

0
dWi(t

0),

Square and average –important to do it this way! 

h(Xi(t)�Xi(0))
2i � h2(Xi(t)�Xi(0))

Z t

0
dt0Ai(X(t0))i+ h

✓Z t

0
dt0Ai(X(t0))

◆2

i = 2h
Z t

0
dt0ii(X(t0))i

⌦Unit cell 

Diffusion in infinite periodic cell 

⌦

X(t)

Unit cell with 
Periodic boundaries 

X(t) mod(⌦)

In steady state 
this is in equilibrium 



X(t) mod(⌦) Has PDF obeying FP equation   
@P

@t
= �HP

Ps(x) steady state distribution HPs(x) = 0

Jsi(x) = � @

@xj
(ij(x)Ps(x)) +Ai(x)Ps(x)

Steady state  
current 

Effective drift 

Stratonovich 1953 

Diffusion coefficient 

HP̃ 0(x,y, 0) = �(x� y)� Ps(x)
Pseudo Green’s function of H 
on ⌦

Vi =

Z

⌦
dxJsi(x) =

Z

⌦
dx Ps(x)Ai(x)

De
ii =

Z

⌦
dx ii(x)Ps(x) +

Z

⌦

Z

⌦
dxdy P̃ 0(x,y, 0)Ai(x)[Jsi(y)�

@

@yj
(ij(y)Ps(y))]

P 0(x,y) =
X

�>0

1

�
 R�(x) L�(y)

Expansion in terms of left and right 
eigenfunctions 



Compact form for diffusion 
coefficients 

fi(x) =

Z

⌦
dy P̃ 0(x,y, 0)[Ai(y)Ps(y)� 2

@

@yj
(ij(y)Ps(y))]

Dii =

Z

⌦
dx ii(x)Ps(x) +

Z

⌦
dxAi(x)fi(x).

Hfi(x) =

✓
Ai(x)�

Z

⌦
dyAi(y)Ps(y)

◆
Ps(x)� 2

@

@xj
(ij(x)Ps(x))

�

Z

⌦
dx fi(x) = 0

Recovers results from homogenization theory for incompressible flows 

ij(x) = 0�ij Ai(x) = ui(x) r · u = 0 ) Ps(x) =
1

|⌦|

Define 

Gives 

Action of H on f 

Orthogonality from right/left 
eigenfunction expansion 
of P’ 



Alternative adjoint 
representation 

Dii =

Z

⌦
dx ii(x)Ps(x) +

Z

⌦
dxgi(x)[Ai(x)Ps(x)� 2

@

@xj
(ij(x)Ps(x))]

gi(x) =

Z

⌦
dy Ai(y)P̃

0(y,x; 0)

H†gi(x) = Ai(x)�
Z

⌦
dyPs(y)Ai(y)

Z

⌦
dyPs(y)gi(y) = 0

Useful to check numerical methods, compare results with f and g 

Define 

Action with adjoint of H 

Orthogonality  
condtion 



Finte time corrections 

Dii(t) ⇠ D(e)
ii +

Cii

t
,

Cii = �
Z

⌦
dx gi(x)fi(x)

Generalizes DD and G. Oshanin (2014) (periodic potentials) and  
DD and T. Guerin 2014 (diffusivity) – cases with no current 
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Leading finite time  
correction – next order 
decays as exp(��1t)/t



Stokes Einstein Relation 
Great interest in generalization of Stoke’s Einstein Relation for driven 
out of equilibrium systems – few explicit results before Riemann et al  
2000 and Lindner and Schimansky-Geier 2002. 

Vi =

Z

⌦
dx Ps(x)Ai(x) Ai(x) = A(0)

i (x) + ij(x)�Fj

@Vi

@Fi
= �

Z

⌦
dx Ps(x)ii(x) +

Z

⌦
dx

@Ps(x)

@Fi
Ai(x).

H
@Ps

@Fi
+

@

@xj
(�jiPs)

@Ps(x)

@Fi

Z

⌦
dx

@Ps(x)

@Fi

@Vi

�@Fi
=

Z

⌦
dx Ps(x)ii(x)�

Z

⌦
dx

Z

⌦
dyAi(x)P̃

0(x,y; 0)
@

@yj
(ji(y)Ps(y)) .

Perturbation of drift due 
to force and local Einstein 
relation 

differentiate wrt Fi 

= 0 = 0Differentiate steady state  
FP eq. wrt Fi 

Conservation of 
probability has periodic bcs 

Can compute 
@P

@Fi
with pseudo Green’s function P’ 



Relation between drift and 
diffusion 

Dii =
@Vi

�@Fi
+�i

�i =

Z

⌦

Z

⌦
dxdy P̃ 0(x,y, 0)Ai(x)Jsi(y)

Stoke’s Einstein recovered when  �i = 0

Violation in general when steady state has a non-zero current 



General Result in 1D 
Mean first passage time 

Variance of first passage time 

Riemann et al 2002 

�(x) =
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x

0
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0A(x)

(x)

I+(x) =
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(x)

Z 1

x

dx

0
exp (��(x
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0 dx (x)I±(x)2I⌥(x)

R L
0 dx I±(x)3

V =
L

R L
0 dxI±(x)

Effective drift Effective diffusion constant 

Effective potential – if periodic 
no current 



Varying diffusivity plus force 
in 1D 

A(x) =
dk

dx

+ (x)�F

(x) =

1
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for this case 

Express inverse diffusivity as 
Fourier series 

Force dependent  
diffusion constant 

zero force 

Diffusion constant saturates at  
large force 

Stokes Einstein 
only valid for F=0 

Becomes dependent on spatial structure of 
diffusivity 



Diffusion in stratified media 
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Dispersion at large force 

@

t

p(x, y, t) = @

x

[(x, y)@
x

p� h (x, y)p] + @

y

(x, y)@
y

p

with h = �F
x

@

x

[h (x, y) Ps(x, y) ] ⇡ 0At large h ) Ps(x, y) ' C(y)�1(x, y)

At large forces equilibriation in the direction x is rapid 

Ps(x|y) =
1

(x, y) L
x



�1(y)
.

g(y) = L

�1
x

Z
L

x

0
dx g(x, y)

L
x

Period in x direction 

@t⇡(y, t) '
Z L

x

0
dx @y{(x, y)@y[⇡(y, t)Ps(x|y)]}

p(x, y, t) ' ⇡(y, t)Ps(x|y)

In two dimensions but for arbitrary diffusivity 

Quasi-static applroximation for x given y 



Effective FP for y variable 
@t⇡(y, t) = @2

y [e(y)⇡(y, t)]� @y{[@yln(y)]e(y)⇡(y, t)}

e(y) = 1/�1(y)

⇡s(y) =
eln(y)

e(y)
R Ly

0 du eln(u)/e(u)
.

D
xx

=
[�FR(L)]2

W (L)

Z
L

0
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W (y)

W (L)
� R(y)

R(L)

�2
e�ln(y)Order F2 contribution to 

diffusion coeff in direction 
of force 

R(y) =

Z y

0
du eln(u);W (y) =

Z y

0
du �1

e (u)eln(u)

(x, y) = (x)when this F2 term vanishes – saturation in 1d  

Generic quadratic 
enhancement 



Conclusions 

• General formulae for transport coefficients for periodic FP equations in any  
dimension. 

•  Further applications to incompressible flows, periodic potentials in higher  
dimensions. 

•  Explict formula for violation of  Stokes-Einstein relation when a current flows.  

General points - perspectives 

Media with varying mobility/diffusivity 

• Rich non-monotonic behavior in transport coefficients 

• Force induced enhancement of  diffusions 

• Possible experiments – vary viscosity in liquids via temperature control … 


