Thermodynamic Glass Transition of Randomly Pinned Systems

Kunimasa Miyazaki Department of Physics, Nagoya University

(talk at japan-france 08/14/2015)

ACKNOWLEDGEMENTS

Collaboration

Misaki Ozawa Nagoya University

Walter Kob Universite Montpellier 2

Funded by

Fluctuation & Structure

Atsushi Ikeda Kyoto University

INTRODUCTION

Does the (thermodynamic) Glass Transition Point exit?

Yes!

Adam-Gibbs theory Random First Order Transition(RFOT) etc...

No!

Purely Kinetic scenarios Frustration pictures etc...

Kim (2000), Krakoviack(2005), KM and others (2009~)

- 1. Randomly distribute all particles
- 2. Let them run till equilibrated
- 3. Quench (pin) a fraction of particles while leave others moving
- 4. Take ensemble and sample averages

Cammarota and Biroli (2012)

p-spin mean field model with random pinning

$$H = -\sum_{i,j,k} J_{ijk} s_i s_j s_k$$
$$\left\langle J_{ijk} \right\rangle = 0, \qquad \left\langle J_{ijk}^2 \right\rangle = \frac{3!}{2N^2}$$

- T_K (ideal glass) and T_d (dynamic) transition line rise as c (density of pinned spins) increases.
- They meet and terminate at the end point

Cammarota and Biroli (2012)

The ideal glass transition is a mix of **1RSB** + **1**st order transitions

- The overlap *q* discontinuously jumps at *T_K*
- The configurational entropy S_c vanishes at T_K
- The end point (c₀, T₀) is of the universality class of Random Field Ising Model

Kob and Berthier (2013)

Replica Exchange Simulation for harmonic binary system

Distribution of q

Averaged overlap q

Discontinuous jump

Phase diagram

Double peaked:

The 1st order transition in finite sized box

Kob et al. (2013)

AGENDA

1. Overlap q: discontinuously jump at T_K

2. Configurational Entropy S_c : vanishing at T_K

3. Dynamic Transition (spinodal) line T_d :

merging with T_K at large c

Model and Simulation Method

System: Kob-Andersen LJ binary mixture N=300 (and 150)

Simulation methods:

Thermodynamics: Replica Exchange Dynamics (at higher *T*): MC and

Thermodynamic Integration

Overlap
$$q = \frac{1}{N} \sum_{i,j}^{N} \theta(a - \left| R_i^{\alpha} - R_j^{\beta} \right|)$$
 $(a = 0.3)$

Averaged Overlap

Overlap
$$q = \frac{1}{N} \sum_{i,j}^{N} \theta(a - \left| R_i^{\alpha} - R_j^{\beta} \right|)$$
 $(a = 0.3)$

Averaged Overlap

Phase Diagram

 $T_{K}(c)$ obtained as a point $[\langle P(q) \rangle]$ becomes symmetric

AGENDA

1. Overlap q: discontinuously jump at T_K

2. Configurational Entropy S_c : vanishing at T_K

3. Dynamic Transition (spinodal) line T_d :

merging with T_K at large c

CONFIGURATIONAL ENTORPY

Total Entropy of Pinned System

Thermodynamic Integration Method: Sciortino et al (1999), Coluzzi et al. (2000)

1. Integrate over a given pinned configuration \hat{S}

$$S(\vec{S},\beta) = S(\vec{S},0) + \beta \langle U \rangle (\vec{S},\beta) - \int_0^\beta d\beta' \langle U \rangle (\vec{S},\beta')$$

2. Average over pinned configurations

$$S(\beta) = \left[S(\vec{S}, \beta)\right]$$

Vibrational Entropy of Pinned System

1. Harmonic approximation around the inherent structures ${f e}_{IS}$

$$S_{\rm vib}(\vec{S},\beta) = \sum \left\{ 1 - \log(\beta \hbar \omega_a) \right\} (\vec{S})$$

2. Average over pinned configurations

$$S_{\rm vib}(\beta) = \left[S_{\rm vib}(\vec{S},\beta)\right]$$

CONFIGURATIONAL ENTORPY

CONFIGURATIONAL ENTORPY

Phase Diagram

AGENDA

1. Overlap q: discontinuously jump at T_K

2. Configurational Entropy S_c : vanishing at T_K

3. Dynamic Transition (spinodal) line T_d : merging with T_K at large c

DYNAMIC TRANSITON POINT

The dynamic (MCT) transition $T_{
m d}$ (Angelani et al., Broderix et al. 2000)

CONCLUSIONS

The first experiments in silico to detect the ideal glass at T_K and Sc = 0Strong support for RFOT

More questions than answers

- Glowing *static* length(s) at T_K ?
- RFIM universality class at the end point?
- A3 Singular dynamics at the end point?

