Contrastive Divergence by Accelerated Langevin Dynamics

Masayuki Ohzeki

Kyoto University

2015/08/11

Japan-France Joint Seminar "New Frontiers in Non-equilibrium Physics of Glassy Materials" This work is in collaboration with M. Yasuda (Yamagata Univ.) and A. Ichiki (Nagoya Univ.)

- Formulation
- Example: double-valley potential
- Example: XY model

Boltzmann Machine Learning

- Basic
- Contrastive divergence
- Preliminary result

2015/08/11 2 / 20

What is the accelerated stochastic dynamics?

M. Ohzeki (KU)

Japan-France Joint Seminar

2015/08/11 3 / 20

The over-damped $N\mbox{-dimensional}$ Langevin dynamics is given by

$$d\mathbf{x} = -\frac{\partial E(\mathbf{x})}{\partial \mathbf{x}} + \sqrt{2T}d\mathbf{W},$$

where T is the temperature and \mathbf{W} is the Wiener process.

Equilibrium distribution

The equilibrium state is

$$P_{\rm eq}(\mathbf{x}) = \frac{1}{Z} \exp\left(-\frac{E(\mathbf{x})}{T}\right).$$

Why do you use this dynamics?

Investigation of the probability distribution in the dynamics
 Simulation of the natural stochastic dynamics

The over-damped N-dimensional Langevin dynamics is given by

$$d\mathbf{x} = -\frac{\partial E(\mathbf{x})}{\partial \mathbf{x}} + \sqrt{2T}d\mathbf{W},$$

where T is the temperature and \mathbf{W} is the Wiener process.

Equilibrium distribution

The equilibrium state is

$$P_{\rm eq}(\mathbf{x}) = \frac{1}{Z} \exp\left(-\frac{E(\mathbf{x})}{T}\right).$$

Why do you use this dynamics?

Investigation of the probability distribution in the dynamics

Simulation of the natural stochastic dynamics

M. Ohzeki (KU)

Japan-France Joint Seminar

2015/08/11 4 / 20

The over-damped N-dimensional Langevin dynamics is given by

$$d\mathbf{x} = -\frac{\partial E(\mathbf{x})}{\partial \mathbf{x}} + \sqrt{2T}d\mathbf{W},$$

where T is the temperature and \mathbf{W} is the Wiener process.

Equilibrium distribution

The equilibrium state is

$$P_{\rm eq}(\mathbf{x}) = \frac{1}{Z} \exp\left(-\frac{E(\mathbf{x})}{T}\right).$$

Why do you use this dynamics?

Investigation of the probability distribution in the dynamics

Simulation of the natural stochastic dynamics

M. Ohzeki (KU)

Japan-France Joint Seminar

2015/08/11 4 / 20

The over-damped N-dimensional Langevin dynamics is given by

$$d\mathbf{x} = -\frac{\partial E(\mathbf{x})}{\partial \mathbf{x}} + \sqrt{2T} d\mathbf{W},$$

where T is the temperature and \mathbf{W} is the Wiener process.

Equilibrium distribution

The equilibrium state is

$$P_{\rm eq}(\mathbf{x}) = \frac{1}{Z} \exp\left(-\frac{E(\mathbf{x})}{T}\right).$$

Why do you use this dynamics?

Investigation of the probability distribution in the dynamics

• Simulation of the natural stochastic dynamics

M. Ohzeki (KU)

Japan-France Joint Seminar

2015/08/11 4 / 20

In order to evaluate the distribution quickly, we do not necessarily use the natural force

Let us find the accelerated Langevin dynamics with the simple form of

$$d\mathbf{x} = -\frac{\partial E(\mathbf{x})}{\partial \mathbf{x}} + \mathbf{F}(\mathbf{x}) + \sqrt{2T}d\mathbf{W},$$

where T is the temperature and $d\mathbf{W}$ is the Wiener process.

Condition

• The steady state has the Gibbs-Boltzmann distribution

$$P_{\rm ss}(\mathbf{x}) = \frac{1}{Z} \exp\left(-\frac{E(\mathbf{x})}{T}\right)$$

What force can hold the same steady state?

2015/08/11

Let us find the accelerated Langevin dynamics with the simple form of

$$d\mathbf{x} = -\frac{\partial E(\mathbf{x})}{\partial \mathbf{x}} + \mathbf{F}(\mathbf{x}) + \sqrt{2T}d\mathbf{W},$$

where T is the temperature and $d\mathbf{W}$ is the Wiener process.

Condition

• The steady state has the Gibbs-Boltzmann distribution

$$P_{\rm ss}(\mathbf{x}) = \frac{1}{Z} \exp\left(-\frac{E(\mathbf{x})}{T}\right)$$

What force can hold the same steady state?

M. Ohzeki (KU)

2015/08/11 6 / 20

Let us find the accelerated Langevin dynamics with the simple form of

$$d\mathbf{x} = -\frac{\partial E(\mathbf{x})}{\partial \mathbf{x}} + \mathbf{F}(\mathbf{x}) + \sqrt{2T}d\mathbf{W},$$

where T is the temperature and $d\mathbf{W}$ is the Wiener process.

Condition

• The steady state has the Gibbs-Boltzmann distribution

$$P_{\rm ss}(\mathbf{x}) = \frac{1}{Z} \exp\left(-\frac{E(\mathbf{x})}{T}\right)$$

What force can hold the same steady state?

M. Ohzeki (KU)

2015/08/11

Nontrivial force [M.Ohzeki and A. Ichiki (2015)]

Find solution of the Fokker-Planck equation

$$\frac{\partial P_t(\mathbf{x})}{\partial t} = -\frac{\partial}{\partial \mathbf{x}} \left(-\frac{\partial E(\mathbf{x})}{\partial \mathbf{x}} + \mathbf{F}(\mathbf{x}) - T\frac{\partial}{\partial \mathbf{x}} \right) P_t(\mathbf{x})$$

The condition is reduced to

$$D = -\frac{\partial}{\partial \mathbf{x}} \left(\mathbf{F}(\mathbf{x}) P_{\rm ss}(\mathbf{x}) \right)$$

- \bullet Equilibrium force $\mathbf{F}(\mathbf{x})=\mathbf{0}$
- Exponential force $\mathbf{F}(\mathbf{x}) \propto \boldsymbol{\gamma} \exp{(E(\mathbf{x})/T)}$
- Rotational force

$$[\mathbf{F}(\mathbf{x})]_{P(i)} = \gamma \left(\left[\frac{\partial E(\mathbf{x})}{\partial \mathbf{x}} \right]_{P(i-1)} - \left[\frac{\partial E(\mathbf{x})}{\partial \mathbf{x}} \right]_{P(i+1)} \right)$$

where P(i) is the permutation of indices.

M. Ohzeki (KU)

Japan-France Joint Seminar

2015/08/11 7 / 20

Nontrivial force [M.Ohzeki and A. Ichiki (2015)]

Find solution of the Fokker-Planck equation

$$\frac{\partial P_t(\mathbf{x})}{\partial t} = -\frac{\partial}{\partial \mathbf{x}} \left(-\frac{\partial E(\mathbf{x})}{\partial \mathbf{x}} + \mathbf{F}(\mathbf{x}) - T\frac{\partial}{\partial \mathbf{x}} \right) P_t(\mathbf{x})$$

The condition is reduced to

$$D = -\frac{\partial}{\partial \mathbf{x}} \left(\mathbf{F}(\mathbf{x}) P_{\rm ss}(\mathbf{x}) \right)$$

- $\bullet~\mbox{Equilibrium}$ force ${\bf F}({\bf x})={\bf 0}$
- Exponential force $\mathbf{F}(\mathbf{x}) \propto \boldsymbol{\gamma} \exp{(E(\mathbf{x})/T)}$

• Rotational force

$$[\mathbf{F}(\mathbf{x})]_{P(i)} = \gamma \left(\left[\frac{\partial E(\mathbf{x})}{\partial \mathbf{x}} \right]_{P(i-1)} - \left[\frac{\partial E(\mathbf{x})}{\partial \mathbf{x}} \right]_{P(i+1)} \right)$$

where P(i) is the permutation of indices.

M. Ohzeki (KU)

Japan-France Joint Seminar

2015/08/11 7 / 20

Nontrivial force [M.Ohzeki and A. Ichiki (2015)]

Find solution of the Fokker-Planck equation

$$\frac{\partial P_t(\mathbf{x})}{\partial t} = -\frac{\partial}{\partial \mathbf{x}} \left(-\frac{\partial E(\mathbf{x})}{\partial \mathbf{x}} + \mathbf{F}(\mathbf{x}) - T\frac{\partial}{\partial \mathbf{x}} \right) P_t(\mathbf{x})$$

The condition is reduced to

$$D = -\frac{\partial}{\partial \mathbf{x}} \left(\mathbf{F}(\mathbf{x}) P_{\rm ss}(\mathbf{x}) \right)$$

- Equilibrium force $\mathbf{F}(\mathbf{x})=\mathbf{0}$
- Exponential force $\mathbf{F}(\mathbf{x}) \propto \boldsymbol{\gamma} \exp{(E(\mathbf{x})/T)}$
- Rotational force

$$[\mathbf{F}(\mathbf{x})]_{P(i)} = \gamma \left(\left[\frac{\partial E(\mathbf{x})}{\partial \mathbf{x}} \right]_{P(i-1)} - \left[\frac{\partial E(\mathbf{x})}{\partial \mathbf{x}} \right]_{P(i+1)} \right)$$

where P(i) is the permutation of indices.

M. Ohzeki (KU)

2015/08/11 7 / 20

Nontrivial force in duplicate system [M.Ohzeki and A. Ichiki (2015)]

Find solution of the Fokker-Planck equation for a duplicate system

$$\frac{\partial P_t(\mathbf{x}_1, \mathbf{x}_2)}{\partial t} = -\frac{\partial}{\partial \mathbf{x}_1} \left(-\frac{\partial E(\mathbf{x}_1)}{\partial \mathbf{x}_1} + \mathbf{F}_1(\mathbf{x}_1, \mathbf{x}_2) - T\frac{\partial}{\partial \mathbf{x}_1} \right) P_t(\mathbf{x}_1, \mathbf{x}_2) -\frac{\partial}{\partial \mathbf{x}_2} \left(-\frac{\partial E(\mathbf{x}_2)}{\partial \mathbf{x}_2} + \mathbf{F}_2(\mathbf{x}_1, \mathbf{x}_2) - T\frac{\partial}{\partial \mathbf{x}_2} \right) P_t(\mathbf{x}_1, \mathbf{x}_2)$$

The condition is reduced to

$$0 = -\frac{\partial}{\partial \mathbf{x}_1} \left(\mathbf{F}_1(\mathbf{x}_1, \mathbf{x}_2) P_{\rm ss}(\mathbf{x}_1) P_{\rm ss}(\mathbf{x}_2) \right) - \frac{\partial}{\partial \mathbf{x}_2} \left(\mathbf{F}_1(\mathbf{x}_1, \mathbf{x}_2) P_{\rm ss}(\mathbf{x}_1) P_{\rm ss}(\mathbf{x}_2) \right)$$

Nontrivial force in the duplicate system

$$\begin{aligned} \mathbf{F}_1(\mathbf{x}_1, \mathbf{x}_2) &= \gamma \frac{\partial E(\mathbf{x}_2)}{\partial \mathbf{x}_2} \\ \mathbf{F}_2(\mathbf{x}_1, \mathbf{x}_2) &= -\gamma \frac{\partial E(\mathbf{x}_1)}{\partial \mathbf{x}_1}. \end{aligned}$$

What does the nontrivial force yield?

- Violation of the detailed balance condition ($\gamma \neq 0$)
- Convergence to nonequilibrium steady state
- Faster convergence than equilibrium system
 - in analytical way by matrix analysis [A. Ichiki and M. Ohzeki (2013)]

We set N = 1000 particles in a double-valley potential

$$E(x) = -\frac{1}{2}x^2 + \frac{1}{4}x^4$$

M. Ohzeki (KU)

2015/08/11 10 / 20

We set N = 1000 particles in a double-valley potential

$$E(x) = -\frac{1}{2}x^2 + \frac{1}{4}x^4$$

at t = 5 in T = 1. $\gamma = 0$ (red) vs $\gamma = 1$ (blue and purple).

2015/08/11 10 / 20

We set N = 1000 particles in a double-valley potential

$$E(x) = -\frac{1}{2}x^2 + \frac{1}{4}x^4$$

at t = 5 in T = 1. $\gamma = 0$ (red) vs $\gamma = 2$ (blue and purple).

2015/08/11 10 / 20

We set N = 1000 particles in a double-valley potential

$$E(x) = -\frac{1}{2}x^2 + \frac{1}{4}x^4$$

at t = 5 in T = 1. $\gamma = 0$ (red) vs $\gamma = 5$ (blue and purple).

2015/08/11 10 / 20

We set N = 1000 particles in a double-valley potential

$$E(x) = -\frac{1}{2}x^2 + \frac{1}{4}x^4$$

at t = 5 in T = 1. $\gamma = 0$ (red) vs $\gamma = 10$ (blue and purple).

2015/08/11 10 / 20

We set N = 1000 particles in a double-valley potential

$$E(x) = -\frac{1}{2}x^2 + \frac{1}{4}x^4$$

We confirm reduction of correlation time of x by $\tau = \sum_{t=1}^{\infty} \frac{\langle O_i O_{i+t} \rangle - \langle O_i \rangle^2}{\langle O_i^2 \rangle - \langle O_i \rangle^2}$

Example: XY model [M. Ohzeki and A. Ichiki (2015)]

We employ the XY model as an interacting many-body system

$$E(\mathbf{x}) = -\sum_{i=1}\sum_{j\in\partial i}\cos\left(x_i - x_j\right),\,$$

Note that x_i here denotes the spin direction such that $x_i \in [0, 2\pi)$.

We set $N = 10 \times 10$ spins of independent N = 1000 runs and $\gamma = 0$ (Red) and 10 (Blue and Purple) at T = 0.5 below $T_{\rm KT}$.

Other accelerated stochastic dynamics

- in MCMC by Suwa-Todo method (optimization of transition matrix) [H. Suwa and S. Todo (2010)]
- in MCMC by Skewed DBC (global flow in a duplicate system) [Y. Sakai and K. Hukushima (2013)]
- in analytical way by optimization of master equation (Brachistochrone)
 - [K. Takahashi and M. Ohzeki, to be submitted]

QUANTUM ANNEALING

$\begin{array}{c} \text{Our study} \\ \text{Nonequilibrium physics} \rightarrow \text{Machine learning} \end{array}$

What is Boltzmann machine learning

M. Ohzeki (KU)

Japan-France Joint Seminar

2015/08/11 14 / 2

Aim

• Clarify a generative model of the given high-dimensional data $\mathbf{x}^{(d)} \in \mathbb{R}^N (d = 1, 2, \cdots, D)$

Maximum Likelihood Estimation:

Learning model

$$P(\mathbf{x}|\boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \exp\left(-E(\mathbf{x}|\boldsymbol{\theta})\right)$$

Aim

• Clarify a generative model of the given high-dimensional data $\mathbf{x}^{(d)} \in \mathbb{R}^N (d=1,2,\cdots,D)$

Maximum Likelihood Estimation:

Learning model

$$P(\mathbf{x}|\boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \exp\left(-E(\mathbf{x}|\boldsymbol{\theta})\right)$$

How to perform the maximum likelihood estimation?

• Compute logarithm of likelihood function

$$L_D(\boldsymbol{\theta}) = \frac{1}{D} \sum_{d=1}^{D} \log P(\mathbf{x} = \mathbf{x}^{(d)} | \boldsymbol{\theta})$$

• Use gradient method

$$\frac{\partial L_D(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = -\frac{1}{D} \sum_{d=1}^{D} \frac{\partial E(\mathbf{x} = \mathbf{x}^{(d)} | \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} + \left\langle \frac{\partial E(\mathbf{x} | \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right\rangle_{\boldsymbol{\theta}}$$

- first term =empirical mean of data
- second term= thermal average of model $\langle \cdots \rangle_{\theta} = \sum_{\mathbf{x}} P(\mathbf{x}|\theta) \times$
- Iterative update to achieve the maximum

$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t + \eta \frac{\partial L_D(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

QUANTUM MACHINE

16 / 20

2015/08/11

How to perform the maximum likelihood estimation?

• Compute logarithm of likelihood function

$$L_D(\boldsymbol{\theta}) = \frac{1}{D} \sum_{d=1}^{D} \log P(\mathbf{x} = \mathbf{x}^{(d)} | \boldsymbol{\theta})$$

• Use gradient method

$$\frac{\partial L_D(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = -\frac{1}{D} \sum_{d=1}^{D} \frac{\partial E(\mathbf{x} = \mathbf{x}^{(d)} | \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} + \left\langle \frac{\partial E(\mathbf{x} | \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right\rangle_{\boldsymbol{\theta}}$$

- first term =empirical mean of data
- second term= thermal average of model $\langle\cdots\rangle_{\pmb{\theta}} = \sum_{\mathbf{x}} P(\mathbf{x}|\pmb{\theta}) \times$

Iterative update to achieve the maximum

$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t + \eta \frac{\partial L_D(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

M. Ohzeki (KU)

2015/08/11 16 / 20

QUANTUM ANNEALING How to perform the maximum likelihood estimation?

• Compute logarithm of likelihood function

$$L_D(\boldsymbol{\theta}) = \frac{1}{D} \sum_{d=1}^{D} \log P(\mathbf{x} = \mathbf{x}^{(d)} | \boldsymbol{\theta})$$

• Use gradient method

$$\frac{\partial L_D(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = -\frac{1}{D} \sum_{d=1}^{D} \frac{\partial E(\mathbf{x} = \mathbf{x}^{(d)} | \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} + \left\langle \frac{\partial E(\mathbf{x} | \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right\rangle_{\boldsymbol{\theta}}$$

- first term =empirical mean of data
- second term= thermal average of model $\langle\cdots\rangle_{\pmb{\theta}} = \sum_{\mathbf{x}} P(\mathbf{x}|\pmb{\theta}) \times$
- Iterative update to achieve the maximum

$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t + \eta \frac{\partial L_D(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$$

M. Ohzeki (KU)

2015/08/11 16 / 20

QUANTUM MACHINE

How to evaluate thermal average

Approximation or Monte-Carlo simulation

Markov-Chain Monte-Carlo method

Slow but asymptotically exact in $T\to\infty$

• Contrastive divergence

$$\mathbf{x}^{(d)} \xrightarrow{\mathrm{MCMC}} \mathbf{x}^{t=1} \xrightarrow{\mathrm{MCMC}} \cdots \xrightarrow{\mathrm{MCMC}} \mathbf{x}^{t=T}$$

Early stop! but good performance • Pseudo likelihood estimation, etc Asymptotically exact in $D \to \infty$, and less flexibility

2015/08/11

How to evaluate thermal average

Approximation or Monte-Carlo simulation

Markov-Chain Monte-Carlo method

$$\mathbf{x}^{t=0} \xrightarrow[\text{MCMC}]{} \mathbf{x}^{t=1} \xrightarrow[\text{MCMC}]{} \cdots \xrightarrow[\text{MCMC}]{} \mathbf{x}^{t=T}$$

Slow but asymptotically exact in $T \to \infty$

• Contrastive divergence

$$\mathbf{x}^{(d)} \xrightarrow[\text{MCMC}]{} \mathbf{x}^{t=1} \xrightarrow[\text{MCMC}]{} \cdots \xrightarrow[\text{MCMC}]{} \mathbf{x}^{t=T}$$

Early stop! but good performance

• Pseudo likelihood estimation, etc Asymptotically exact in $D \to \infty,$ and less flexibility

2015/08/11

How to evaluate thermal average

Approximation or Monte-Carlo simulation

• Markov-Chain Monte-Carlo method

$$\mathbf{x}^{t=0} \xrightarrow{\mathrm{MCMC}} \mathbf{x}^{t=1} \xrightarrow{\mathrm{MCMC}} \cdots \xrightarrow{\mathrm{MCMC}} \mathbf{x}^{t=T}$$

Slow but asymptotically exact in $T \to \infty$

• Contrastive divergence

$$\mathbf{x}^{(d)} \xrightarrow[\text{MCMC}]{} \mathbf{x}^{t=1} \xrightarrow[\text{MCMC}]{} \cdots \xrightarrow[\text{MCMC}]{} \mathbf{x}^{t=T}$$

Early stop! but good performance

• Pseudo likelihood estimation, etc Asymptotically exact in $D \to \infty$, and less flexibility

2015/08/11

Our present study

Let us implement the accelerated Langevin dynamics to

Contrastive divergence

The speedup of the contrastive divergence is essential in machine learning

Our present study

Let us implement the accelerated Langevin dynamics to

Contrastive divergence

The speedup of the contrastive divergence is essential in machine learning

18 / 20

2015/08/11

Preliminary result: Simple Gaussian distribution

We assume that the generative model is

$$P(\mathbf{x}|\boldsymbol{\theta}) \propto \exp\left(-rac{1}{2}\mathbf{x}^{\mathrm{T}}J\mathbf{x} - \mathbf{h}^{\mathrm{T}}\mathbf{x}
ight)$$

We have D = 1000 data points to infer the original J and h.

A test in extremely small system N = 1. We use $\gamma = 5$. CD-1 step is defined as the integration time t = 1 (dt = 0.01).

Preliminary result: Simple Gaussian distribution

We assume that the generative model is

$$P(\mathbf{x}|\boldsymbol{\theta}) \propto \exp\left(-\frac{1}{2}\mathbf{x}^{\mathrm{T}}J\mathbf{x} - \mathbf{h}^{\mathrm{T}}\mathbf{x}
ight)$$

We have D = 1000 data points to infer the original J and \mathbf{h} .

A test in extremely small system N = 1. We use $\gamma = 5$. CD-1 step is defined as the integration time t = 1 (dt = 0.01).

Summary of our present study

We implement the accelerated stochastic dynamics to

Contrastive divergence

- Utilization of violation of the detailed balance condition
- Confirm its efficiency in terms of the log-likelihood function

The speedup of the contrastive divergence is essential in machine learning

20 / 20

2015/08/11

Summary of our present study

We implement the accelerated stochastic dynamics to

Contrastive divergence

- Utilization of violation of the detailed balance condition
- Confirm its efficiency in terms of the log-likelihood function

The speedup of the contrastive divergence is essential in machine learning

20 / 20

2015/08/11