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MOTIVATIONS

Why inverse problems ?

 In Machine Learning → online recognition tasks

 In Physics → understanding a physical system from observations

 In social science → getting insight of latent properties



HOW HARD ?

Direct problems are already hard : understanding equilibrium properties
can be (very) challenging (e.g. spin glasses)

Inverse problems can be harder : ideally maximizing the likelihood would involve
to compute the partition function many times

In particular, serious problems can appear because if
 Overfitting
 Non-convex functions
 Slow convergence in the direct problem



HOW HARD ?

Depending on the system, different optimization scheme can be adopted



DEEP LEARNING



ICML STUFFS



WHY IT IS NEEDED TO GO BEYOND MF

MF is mapping the distribution of the data onto a particular form of probability distribution

min
𝜗
𝐾𝐿( 𝑝𝑑𝑎𝑡𝑎|| 𝑝𝑡𝑎𝑟𝑔𝑒𝑡(𝜗))

nMF 𝑝𝑛𝑀𝐹 𝜗 =  𝑖 𝑝𝑖(𝑠𝑖)

Bethe approx 𝑝𝐵𝐴 𝜗 =  𝑖𝑗
𝑝𝑖𝑗(𝑠𝑖,𝑠𝑗)

𝑝𝑖(𝑠𝑖)𝑝𝑗(𝑠𝑗)
 𝑖 𝑝𝑖(𝑠𝑖)



WHY IT IS NEEDED TO GO BEYOND MF

What about when the system can not be describe by this particular form of distribution ?

• Long-range correlations
• Very specific topology
• Presence of hidden nodes

⊕ how to put prior information ?



OTHER METHODS ?

Pseudo-Likelihood
• Trade off between complexity and the level of approximation
• Consistent for infinite sampling
• Can deal with priors
But overfit

Max likelihood
• Same as the two last points of above
But overfit and can be very slow



OTHER METHODS ?

Adaptive cluster exansion
• Avoid overfitting
• Consistently develop cluster of larger sizes
But it is hard to write it …

Contrastic divergence
• Very fast
• A trade off can be found between speed and exactness
Overfit, and can be bad if very slow convergence !

Minimum Probabilistic Flow
• Fast to converge
• Consistent 
But probably does not work well
for small sampling.



PSEUDO-LIKELIHOOD METHOD

Principle

Comparison with MF

Regularization

Decimation

Generalisation and extension



SETTINGS

We consider the following problem : 
A system of discrete variables 𝑠𝑖 = 1,… , 𝑞 (ok let’s say 𝑠𝑖 = ± 1 in the following)
- Interacting by pairs and having biases.

𝓗 =  

<𝑖,𝑗>

𝐽𝑖𝑗𝑠𝑖𝑠𝑗 +  

𝑖

ℎ𝑖𝑠𝑖 p( 𝑠) =
𝑒−𝛽𝓗(  𝑠)

𝑍

Then, a set of configuration is collected : {  𝑠 𝑎 }𝑎=1,..,𝑀
Using them, it is possible to compute the likelihood

Reconstruction error ε2 =
 (𝐽𝑖𝑗−𝐽𝑖𝑗

∗ )2

 𝐽𝑖𝑗
2



SETTINGS

The likelihood function

Proba of observing the configurations =  𝑎
𝑒−𝛽𝓗(𝑠

(𝑎))

𝑍

Define the log-likelihood ℒ =  𝑎(−𝛽𝓗( 𝑠
(𝑎)) − log(𝑍))

Problem of maximization … 
How to compute average values efficiently ?

𝜕ℒ

𝜕𝐽𝑖𝑗
∝< 𝑠𝑖𝑠𝑗 > 𝑑𝑎𝑡𝑎 −< 𝑠𝑖𝑠𝑗 > 𝑚𝑜𝑑𝑒𝑙



PSEUDO-LIKELIHOOD

Goal : find a function that can be maximize and would infer correctly the Js

𝑝  𝑠 = 𝑝 𝑠𝑖  𝑠𝑗\i)  

𝑠𝑖

𝑝  𝑠 = 𝑝 𝑠𝑖  𝑠𝑗\i)𝑝( 𝑠𝑗\i)

𝑝 𝑠𝑖  𝑠𝑗\i) =
𝑒
−𝛽𝑠𝑖( 𝑗 𝐽𝑖𝑗𝑠𝑗+ℎ𝑖)

2cosh(𝛽 ( 𝑗 𝐽𝑖𝑗𝑠𝑗+ℎ𝑖) )
can be minimized !

Ekeberg et al. : Protein foldings
??? : training RBM



PSEUDO-LIKELIHOOD

Can we have theoretical insight ? Yes, for gibbs infinite sampling, the maximum is correct !

Consider : 𝒫ℒ𝑖 =  𝑎 log(𝑝 𝑠𝑖  𝑠𝑗\i)) we replace the distribution over the data by Boltzmann

𝒫ℒ𝑖 = 

𝒞

𝑒−𝛽𝓗𝐺 (  𝑠
𝒞)

𝑍𝐺
log(𝑝 𝑠𝑖

𝒞  𝑠𝑗\i
𝒞 ))

The maximum is reached when the couplings from 𝓗𝐺 and 𝓗 of are equals



PSEUDO-LIKELIHOOD

When no hidden variables are present, the PL is convex !
Therefore only one maxima exists !

The PL can be minimized without too much trouble using for instance
• Newton method
• Gradient descent
And the complexity goes as O(N2M)

Let’s understand how this works and how it compares to MF



RECALL OF THE SETTING

A set of M equilibrium configurations  𝑠(𝑘) , 𝑘 = 1, . . , 𝑀
On one side we use the MF equations

𝐽𝑖𝑗 = −𝑐𝑖𝑗
−1

On the other side we maximize the Pseudo-Likelihood distributions

𝒫ℒ𝑖 =  𝑘 log(1 + 𝑒
−2𝛽𝑠𝑖

(𝑘)
 𝐽𝑖𝑗𝑠𝑗

(𝑘)

) ∀𝑖

𝑚𝑖 = tanh( 

𝑗

𝐽𝑖𝑗𝑚𝑗 + ℎ𝑗)



MEAN-FIELD AND PLM

Curie-Weiss 𝐽𝑖𝑗 = −1/𝑁 with N=100 spins Hopfield 𝐽𝑖𝑗 =  𝜉𝑖
𝑎𝜉𝑗
𝑎 with N=100 spins

and two states, M=100k



MEAN-FIELD AND PLM
SK model, N=64, with M=106, 107, 108 2D model, 𝐽𝑖𝑗 = −1, N=49, with M=104, 105, 106

E. Aurell and M. Ekeberg 2012



WHAT ABOUT THE STRUCTURE ?



WHAT ABOUT THE STRUCTURE ?

How does the L1-norm is included in PLM ?

𝒫ℒ𝑖 =  𝑘 log 1 + 𝑒
−2𝛽𝑠𝑖

𝑘  𝐽𝑖𝑗𝑠𝑗
𝑘

− 𝜆 𝑗 |𝐽𝑖𝑗| ∀𝑖

Leads to sparse solution … how to fix 𝜆 ?



WHAT ABOUT THE STRUCTURE ?



WHAT ABOUT THE STRUCTURE ?



VERY SIMPLE IDEA : DECIMATION

Progressively decimating parameters with a small absolute values
Not NEW :
• In optimization problem using BP (Montanari et al.)
• Brain damage (Lecun)



DECIMATION ALGORITHM

Given a set of equilibrium configurations and all unfixed paramaters

1. Maximize the Pseudo-Likelihood function over all non-fixed variables
2. Decimate the 𝜌(𝑡) smallest variables (in magnitude) and fixed them
3. If (criterion is reached) 

1. exit
4. Else

1. 𝑡 ← 𝑡 + 1
2. goto 1.

Join work with F. Ricci-Tersenghi



DECIMATION ALGORITHM

Given a set of equilibrium configurations and all unfixed paramaters

1. Maximize the Pseudo-Likelihood function over all non-fixed variables
2. Decimate the 𝜌(𝑡) smallest variables (in magnitude) and fixed them
3. If (criterion is reached) 

1. exit
4. Else

1. 𝑡 ← 𝑡 + 1
2. goto 1.

????



CAN YOU GUESS THE CRITERION ?

Random graph with 16 nodes



CAN YOU GUESS THE CRITERION ?

Random graph 
with 16 nodes

The difference increases

The difference
decreases



HOW DOES IT LOOK!

2D ferro model
M=4500
𝞫=0.8



COMPARISON WITH L1 : ROC
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My objective!



COMPARISON WITH L1 : ROC



SOME MORE COMPARISONS (IF TIME)



TO BE CONTINUED …

Can be adapted for the max-likelihood of the parallel dynamics (A.D and P. Zhang) 

p( 𝑠(𝑡 + 1)|  𝑠(𝑡)) = 

𝑖

𝑒−𝛽𝑠𝑖(𝑡+1)( 𝑗 𝐽𝑖𝑗𝑠𝑗(𝑡)+ℎ𝑖)

2cosh(𝛽( 𝑗 𝐽𝑖𝑗𝑠𝑗(𝑡) + ℎ𝑖) )

Has been applied to « detection of cheating by decimation algorithm »
Shogo Yamanaka, Masayuki Ohzeki, A.D.



EXTENSION ?

The PLM relies on the evaluation of the one-point marginal, why not use two-points or more ?
“Composite Likelihood Estimation for Restricted Boltzmann machines” by Yasuda et al.

Define 𝒫ℒ𝑘 =
1

#𝑘−𝑡𝑢𝑝𝑙𝑒𝑠
 𝑘−𝑢𝑝𝑙𝑒 𝑐 𝑑𝑎𝑡𝑎 𝑝( 𝑠𝑐

(𝑑𝑎𝑡𝑎)
|  𝑠  𝑐
(𝑑𝑎𝑡𝑎)
)

They show that

𝒫ℒ1 ≤ 𝒫ℒ2 ≤ ⋯ ≤ 𝒫ℒ𝑘 ≤ ⋯ ≤ 𝒫ℒ𝑁

True Likelihood !



EXTENSION : THREE-BODY INTERACTIONS

The maximum likelihood can be seen as a maximum entropy problem where we would
like to fit the 2-point correlations and local bias !

𝓗 = 

𝑖<𝑗

𝐽𝑖𝑗𝑠𝑖𝑠𝑗 +  

𝑖

ℎ𝑖𝑠𝑖

There are already a lot of parameters O(N2)
What if the system « could » have n-body interactions ?

𝓗 = 

𝑖<𝑗

𝐽𝑖𝑗𝑠𝑖𝑠𝑗 +  

𝑖

ℎ𝑖𝑠𝑖 +  

𝑖<𝑗<𝑘

𝐽𝑖𝑗𝑠𝑖𝑠𝑗𝑠𝑘 +⋯



EXTENSION : THREE-BODY INTERACTIONS

We need to find an indicator that there could be new interactions

Let’s consider the following experience
• Take a system S1, 2D ferro without field
• Take a system S2, 2D ferro without field but with some 3B interactions
• Make the inference on the two models with a pairwise model and a 

model with 3B interactions included



EXTENSION : THREE-BODY INTERACTIONS

LEFT : S1 (whatever model I use for inferences)
RIGHT : S2 when doing inference with the wrong model

Error on the correlation matrix



EXTENSION : THREE-BODY INTERACTIONS

Take the error on the 3points correlation
functions, plot them by decreasing order!

Can you guess how many three-body 
interactions there are ?



EXTENSION : THREE-BODY INTERACTIONS
- Wrong model –

Histogram of the error on the 3p-corr
- Correct model –

Histogram of the error on the 3p-corr



SUMMARY - CONCLUSION

• Beyond MF method : perform much better on non-trivial topology
(or strong coupling regime)

• Recovering exact or approximate structure (by Decimation)
(without the need of fixing parameters)

• Detection many-body interactions inside high order correlations
« Generalizing » max-ent

As seen : PLM can be extend to become better and better at the cost of complexity!


