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Part 0  
Thermalization (equilibration) of  isolated quantum systems   

• We say that a local operator of an isolated quantum many-body system 
thermalizes or equilibrates (Cf. M. Rigol et al., (2007, 2008) when the 
expectation value at time t approaches a constant value as t goes to infinity: 

 
               <A(t)>      <A(∞)>   （t >> 1 ） 
 
      (i)  For non-integrable systems, it is conjectured that the asymptotic value 

follow  the average of the Gibbs distribution 
  
     (ii) For integrable systems, it is conjectured that the asymptotic value follow 

the average of the generalized Gibbs ensembles (GGE) 
 

      
     Here Ij   (j=1, 2, …, N) denote quasi-local conserved quantities. 
     N is the degrees of freedom, the number of sites or particles.   
  
• We recall that the quantum state does no change at all in time.   
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A fundamental inequality of Typicality  
A. Sugita (2007);  P. Reimann, PRL (2007)) 

 

       E [ (Δ<A>)2 ]  ≤ |𝐴𝐴|𝑜𝑜𝑜𝑜
2

𝑑𝑑+1
 

 
(1) E[ B ]:  ensemble average of B over states in a energy shell [E- ΔE, E]  

 
(2) |A|op   : the largest eigenvalue of   operator A   (operator norm);  
 
(3)  <A> =  <ψ| A |ψ> :  expectation value of A ;  
 
(4) d: the number of all energy levels in energy shell [E- ΔE, E];  
 
(5) Δ<A> = <A> -<A>eq :  deviations from the equilibrium value  



Assumption in the derivation 

 
The inequality is shown by assuming the isotropic Haar 
measure for the probability distribution on the unit  sphere  
(A. Sugita (2007) ):  
 
For a given quantum state  
        |ψ> = Σj cj |Ej > ,  for  Ej in energy shell [E- ΔE, E],   
we assume the probability of having {cj} as  
         P({cj}) = C δ(1- Σj |cj |

2 )  .  
 

 



Part 1: A brief introduction to  
Algebraic Bethe ansatz  

  
   
  
 

(1) 1D Bose gas; 
(2) the XXZ chain 

 
 
 
 
 
 
 



(1)  The one-dimensional  Bose gas:  
Particles ineteract each other through repulsive delta-function 

potentials     

• Lieb-Liniger Hamiltonian 
 
 
 
 

• L:  system size, N: the number of bosons   
• P. B. C. (Periodic Boundary Conditions): φ(x)= φ(x+L)  
  
• Physical background: In 1dimension, the s-wave is enough to describe the 

scattering effect.   
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(2)  Spin-1/2 XXZ  spin chain)  



Scheme of the Algebraic Bethe ansatz   
• R-matrix:  (the Boltzmann weights of the 6-verstex model (E.H. Lieb, 1966))  
 the solution of the Yang-Baxter equations of the 6-vertex model:  
                        Anti-Ferroelectric model on the square lattice    
 
•  Product of R-matrices  ->  Monodromy matrix   
                                --> global operators: A(k),  B(k),  C(k),  D(k)   
whose  commutation relations are given by the Yang-Baxter equations  

 
• Transfer matrix for the XXZ spin chain (that of the 6-vertex model)  
      t(k) = A(k) + D(k)   
 
• B(k) : generators of Bethe states   
      C(k) : conjugate of B(k)  
 
  Theorem     
     B(k1) ・・・ B(kN) | 0 >  is an eigenstate  of XXZ Hamiltonian ,  
  if  kj satisfy  the Bethe-ansatz equations  
 



Determinant formula  of the scalar product 
in the Bethe ansatz   (N. Slavnov, 1989) 

``Scalar product”:    <0| C(q1) ・・・ C(qN) B(k1) ・・・ B(kN) |0 >  
  
                   is expressed in terms of the determinant 
                  if qj or kj satisfy the Bethe-ansatz equations.  
 
          <0| C(q1) ・・・ C(qN) B(k1) ・・・ B(kN) |0 > 
  =  (some factors  of qj  and  kj )   x   det H ({qj}, {kj}) ,    
 
Matrix H is called Slavnov’s matrix.  
 
 
     



Practical merits of determinant expressions of form 
factors  (and scalar products)  

• <A | O | B>: the  computation time becomes  N 3  or less 
if it is expressed as a determinant.  

   
 If one calculate the  inner product directly,  
     it will cost an exponential time:  2 N  time  

 

• Numerically stable if it is expressed as a Fredholm 
determinant in the large N limit.    
 
 



Another technique for the XXZ chain:  
Quantum Inverse Scattering Problem  
(Kitanine, Maillet and Terras (1999)   

 
• Any local operator is expressed in terms of the 

global operators of algebraic BA:  
             A(k), B(k), C(k), D(k)  

 
     ->  Matrix elements  (form factors)  of any 
local operator can be evaluated through Slavnov 
determinant   

 
 



Part 2:  Exact dynamics of 1D Bose gas 
 
  

Relaxation for large systems:  N=1000;   
Animations produced by Jun Sato  

 
J. Sato, R. Kanamoto, E. Kaminishi and T.D.,  

PRL vol. 108, 110401 (2012)  
 
 
 
 
 



Energy -Momentum Spectrum of 1D Bose Gas (c=100) 
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For the 1D Bose gas (the LL model), the Bethe-ansatz  
eigenstates are complete.  

• Bethe eigenstates of N particles |k1, k2, ・・・ kN > 
 
  Ψ(x1, ・・・, xN) = Σp ∊ S(N)  AP exp( i Σj=1

N kPj xj )  
 
• Pseudo-momenta ka‘s satisfy  the Bethe-ansatz eqs:    
   exp(L i ka) = Πb≠a (ka -kb + ic)/ (ka -kb  - ic)    
                                                       (a =1, ・・・ , N) 
 
       Energy eigenvalue   E = Σｊ kj

2 

       
 The Bethe eigenstates are complete.   
(Cf.  T.C. Dorlas, CMP(1993))  



Time evolution of the density profile of 1D Bose gas  

• The density operator  
• The density profile at time t  is calculated with 

the form factor expansion:  
 
 
 
 

where   
<p | ρ(0) | p’> can  be calculated by a determinant. 
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Construction of the quantum state of a ``dark 
soliton’’ (J. Sato et al., arXiv:1204.3960)   

• We take superposition of excited states with on 
hole:   (q=0, 1,…,N-1) 

 
    |X, N> = ∑p=0 

N-1 exp(2π i pq) |p>   

     

Here |p> denotes the Bethe eigenstate with one 
hole corresponding to momentum 2π p/L,  

and q=0, 1,…,N-1.   
 
``Delta function’’ becomes a ``dark soliton’’ 
 



Observation of relaxation processes 

 



Relaxation for N = 1000;  ρ(x,t)  density profile 
J. Sato, R. Kanamoto, E. Kaminishi and T.D.,  PRL (2012)   

c = 100 



N = 1000 

c = 1 



N = 1000 

c = 0.01 



The width of dipped region at the initial profile is proportional to healing 
length  lc=1/(cn)1/2  ,  n=N/L. 

 



Important observations 

• Dipped dark soliton-like profile  relaxes  to a flat profile   
 

• The life-time of the ``quantum dark soliton’’ becomes longer 
as the coupling constant becomes smaller.   
 

• However, the correlation among bosons becomes stronger 
as system size increases if particle density N/L and coupling 
constant c are kept constant.  

 
 Ref.    J. Sato, E. Kaminishi, and T. Deguchi, arXiv:1303.2775  
Finite-size scaling behavior of Bose-Einstein condensation in 
the 1D Bose Gas   



Part 3:  Relaxation dynamics in XXX chain   
 

How does a local quantity equilibrate in time ?  
  

(1) Time evolution of fidelity  
(2) Time evolution of local magnetization <σz

m > 
 

T. Deguchi, P.R. Giri and R. Hatakeyama 
arXiv: 1507.07470  

 
 
 
 
 



A motivation: Statistical behavior in fully interacting 
quantum systems   

• R.V. Jensen and R. Shanker, PRL 54, 1879 (1879)  
   Statistical Behavior in Deterministic Quantum Systems with Few 
Degrees of Freedom  
 
• K. Satio, S. Takesue and S. Miyashita,  
  J. Phys. Soc. Jpn 65, 1243 (1996)   
  System-Size Dependence of Statistical Behavior in Quantum System  



  Spin-1/2 XXX chain  (Δ=1)  





(1) Time evolution of fidelity for real and complex solutions 
of BAE for  the spin-1/2 XXX chain  (M=N/2-1)    

M: the number of down spins    
• Spinons;  kinks, lowest excitations of  spin-½ XXX chain  (N2 states)  
• We consider quantum states with the sum of   
   (i) all spinons with equal weight: all-spinon state    
   (ii) n-string solutions (bound states)   (n>1) 

 



Time evolution of the fidelity for spinons of the spin-1/2 XXX chain: 
N=1000 and M=N/2-1=499.  ΔＥ＝0.01,  0.05, 0.1  

It is fitted by Monnai’ s approximate formula of fidelity (T. Monnai, J. 
Phys. Soc. Jpn.  83, 064001(2014) Lorentzian + oscillation 

Cf. E.J. Torres-Herrera and L.F. Santos, Phys. Rev. A 90, 033623 (2014)   
 



Relaxation time of fidelity versus energy width△E for real 
BAE solutions （by Ryoko Hatakeyama）：  

It is  given by the Boltzmann time , consistent with rigorous  study for 
relaxation of generic systems:   S. Goldstein, T. Hara, and H. Tasaki, New 

J. Phys. 17 (2015) 045002 ： TR≅  h/△E 
 



Fidelity of N=10 XXX chain: (M=N/2-1) all solutions (purple);  
only real solutions (yellow); all string solutions in the same 
range as real ones (red) (Ryoko Hatakeyama:  BAE  solutions 
confirmed by P.R. Giri;  Cf. R. Hagemans and J.-S. Caux (2007) ) 

    





Histogram of real  and complex solutions for N=20 
XXX chain: real & real + 2-string (pink); real & real + 
2-string & real + 3-string & real + 2 x 2-string (green) 

(M=N/2-1=9)  (R. Hatakeyama)  



(2) Time evolution of local magnetization 
<σz

m >  
• We evaluate  the time evolution of the expectation value of 

σz
m  by the form-factor expansion  

• For a given quantum state  |φ>   we have     
 <φ|σz

m (t)|φ > = Σ n, n’ <φ|n’> <n’|σz
m  |n> <n|φ> 

                                                x exp(- i (E n’-En)t) 
 
  We make use of  the completeness:     I = Σn |n> <n| 

 
• Recently,  quasi-soliton scattering of XXZ chain is studied by  
    R. Vlijm, M. Ganahl, D. Fioretto, M. Brockmann, M. Haque, 
H.G. Everz, and J.-S. Caux,   arXiv:1507.08624 

 
• Cf.  Form factor expansion is also used for the 1D Bose gas: 
      J. Sato et al, PRL 108,110401 (2012)   





A technique in Time evolution of local 
magnetization <σz

m >  
We factor out the Cauchy determinant from the form factor 

of σz
m  (in the XXZ spin chain)  

• <μ| σz
m |λ>  

     =  “Cauchy  det  (μ- λ) ’’ * det( I + U )   
 
Here |μ> and |λ> are Bethe eigenstates of the XXZ spin 

chain.   
The above formula holds for real and complex solutions in the 

XXX limit, or if zeta is enough smaller than π  for the XXZ 
chain.   

 
 The det ( I + U ) leads to a  Fredholm determinant  in the 

large N limit .  
 
 



Initial states: all-spinon state  and partial 
sums over spinon states  

• All real spinon-state with equal weight  
   (or random weight, in a Energy shell) 
 
Local density is localized at one site at initial time.  
 
 
• Cf.  For 1D Bose gas,   `quantum soliton state’ was 

constructed  in   
      J. Sato et al, PRL 108,110401 (2012)   
 
 



<σz
m> with m=1 (N=50) for the all-spinon state 
(Local magnetizaion of all spinon state ) 



Relaxation of local magnetization:  <σz
m> with m=1 (N=50) for the 

all-spinon state:  ⊿<σz
m>  of  the order of 1/N remains after long 

time  (by Ryoko Hatakeyama)        T=500 



All spinon state is localized initially, propagates and 
collapses in time. (N=50) ) (by Ryoko Hatakeyama) 



Fidelity versus local magnetization for the all-spinon state:  
<σz

m> for m=2 (N=50, T=500) (by Ryoko Hatakeyama) 
Relaxation time of <σz

m> is much longer than that of fidelity.   

















In the all-spinon state for N=30, square deviations of local 
magnetizations decay almost as an inverse of time initially, then as an 

inverse power of time with smaller exponent   
Σ|Δσｚ|2= Σm=1

N (<σz
m>－Σｊ＝１

Ｎ <σz
ｊ>/N )2 /N  



All-spinon state for N=50. 
Σ|Δσｚ|2= Σm=1

N (<σz
m>－Σｊ＝１

Ｎ <σz
ｊ>/N )2 /N 



Partial sum of spinon states for N=50, E= -33.5 with⊿Ｅ＝１. 
Σ|Δσｚ|2= Σm=1

N (<σz
m>－Σｊ＝１

Ｎ <σz
ｊ>/N )2 /N 



Histogram of spinon energy spectrum for 
N=50  



Sum over Yrast states for N=50. 
Σ|Δσｚ|2= Σm=1

N (<σz
m>－Σｊ＝１

Ｎ <σz
ｊ>/N )2 /N 



How to define relaxation time of 
<σz

m> ?  
• Two viewpoints:  
(1) Power-law decay suggests  
           there is  no definite relaxation time  

 
(2)   Traveling time of localized wave  suggests   
          TR = system size/spinon velocity   ->  O(N) 
    (Cf. Lieb-Robinson bound)  



Conclusions (part 3)  
 
(1) Power law relaxation for local magnetization <σz

m>  in the XXX chain:  
 
   The square deviations of the local magnetization decay as a  power of time.  
 
 Local magnetization <σz

m>   oscillates in time;  
typically, the fluctuations decay to O(1/N2)  or O(1/M).   
(M  is the  number of eigenstates in the sum ) 
 
    The power law decay may be universal  for expectation values of local 
quantities.  (We can perform exact dynamics also for other quantities.) 
 
(2) Power law decay  suggests  no  definite relaxation time in the dynamics  
    
       Equilibration of <σz

m>   is very much slower than that of the fidelity.   
 
      Slow due to integrability ?             
 



Conclusions of the talk 
 
• 1D Bose gas  (Part 2)  
      Exact relaxation dynamics of an initially localized state (density profile)   

 
• XXX chain (Part 3)   
   Power law relaxation of local magnetization in the quantum Heisenberg 
chain (the XXX chain)  for several initial states such as particular sums of 
spinon states.  
 
Relaxation is much slower  than that  of fidelity  
 
It  shows how an atypical local operator should equilibrate in time.   
 
We suggest that other local operators such as the local energy operator 
should equilibrate in time similarly as the local magnetizations.  
 
Power law relaxation  behavior may be universal  for equilibration of local 
quantities in the XXX chain .   
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