Improved mean-field approximations for inferring marginals and model parameters

Federico Ricci-Tersenghi (Sapienza University)

YITP, Kyoto, July 2015

Outline of the talk

- Two different derivations of mean-field approximations
 - Plefka expansion
 - Cluster Variational Method
- How good these approximations are?
- How one can try to improve it in order to overcome the limitations due to:
 - Loops
 - Ergodicity breaking

Physics & Machine Learning

- This is a Physics talk!
- But useful for Machine Learning (I hope ;-)
- Common problem: compute <u>quickly</u> and <u>accurately</u> the free-energy

$$F(\boldsymbol{J}, \boldsymbol{h}) = \log Z(\boldsymbol{J}, \boldsymbol{h}) = \log \sum_{\{s_i\}} \exp\left(\sum J_{ij} s_i s_j + \sum_i h_i s_i\right)$$

and the marginals

$$m_i = \langle s_i \rangle$$
 $C_{ij} = \langle s_i s_j \rangle - m_i m_j$

Simplifications for this talk

- Ising variables $s_i=\pm 1$...can be extended to Potts
- Pairwise interactions

$$H(\boldsymbol{s}) = -\sum_{(ij)} J_{ij} s_i s_j - \sum_i h_i s_i$$

... can be extended to more general graphical models

• The measure is $P(\boldsymbol{s}) = \frac{1}{Z(\boldsymbol{J},\boldsymbol{h})} \exp\left[\beta \sum_{(ij)} J_{ij} s_i s_j + \beta \sum_i h_i s_i\right]$

Often $\beta = 1$

• No hidden variables

Inferring marginals is useful for machine learning

• Willing to maximize the log-likelihood

$$L(\boldsymbol{J},\boldsymbol{h}) = \sum_{i} h_i \langle s_i \rangle_{\text{data}} + \sum_{ij} J_{ij} \langle s_i s_j \rangle_{\text{data}} - \log Z(\boldsymbol{J},\boldsymbol{h})$$

with respect to J and h one gets

$$\langle s_i \rangle_{\text{data}} = \partial_{h_i} F(\boldsymbol{J}, \boldsymbol{h}) = m_i(\boldsymbol{J}, \boldsymbol{h})$$

 $\langle s_i s_j \rangle_{\text{data}} = \partial_{J_{ij}} F(\boldsymbol{J}, \boldsymbol{h}) = C_{ij}(\boldsymbol{J}, \boldsymbol{h}) + m_i m_j$

 Most likely model parameters can be found matching empirical marginals with model marginals

Boltzmann machine learning

 Matching between empirical and model marginals is achieved via a learning

$$\delta h_i = \eta \left(\langle s_i \rangle_{\text{data}} - m_i \right)$$
$$\delta J_{ij} = \eta \left(\langle s_i s_j \rangle_{\text{data}} - (C_{ij} + m_i m_j) \right)$$

- Marginals can be computed by:
 - Monte Carlo -> exact but slow...
 - Mean-field approximations
 -> faster
 - -> no learning, if analytic expressions for $m_i({m J},{m h}), C_{ij}({m J},{m h})$ can be inverted

Alternatively...

- Directly maximize an easy-to-compute approximation to L(J, h) (e.g. the pseudo-likelihood)
 -> see next talk by Aurelien Decelle
- If input data are not configurations but average values for the marginals $\langle s_i \rangle_{data}, \langle s_i s_j \rangle_{data}$ then:
 - No pseudo-likelihood maximization
 - Matching empirical and model marginals
 - The maximum entropy probability distribution has only fields and pairwise couplings

Free-energy mean-field expansions

- How to generalize most common mean-field approx?
- <u>Plefka</u> derives an expansion in the couplings intensity for the Gibbs free-energy with given magnetizations
- <u>Cluster Variational Method</u> (Kikuchi, Morita, An) is an expansion of the entropy in terms of correlations up to a given distance (maximal region size)
- Both expansions have the naive mean-field approximation as the first-order approximation
- Beyond naive MF and Bethe approximations the relation among the 2 expansions in not trivial (Yasuda Tanaka)

Plefka's expansion

NaiveMF and TAP approximations

$$F_{\rm nMF} = \sum_{i} \left[H\left(\frac{1+m_i}{2}\right) + H\left(\frac{1-m_i}{2}\right) \right] + \sum_{i} h_i m_i + \sum_{i \neq j} J_{ij} m_i m_j \qquad H(x) \equiv -x \ln(x)$$

$$\frac{\partial F_{\rm nMF}}{\partial m_i} = \sum_j J_{ij}m_j + h_i - \operatorname{atanh}(m_i) = 0 \quad \Rightarrow \quad m_i = \operatorname{tanh}\left[h_i + \sum_j J_{ij}m_j\right]$$

$$F_{\text{TAP}} = \sum_{i} \left[H\left(\frac{1+m_i}{2}\right) + H\left(\frac{1-m_i}{2}\right) \right] + \sum_{i} h_i m_i + \sum_{i \neq j} \left(J_{ij} m_i m_j + \frac{1}{2} J_{ij}^2 (1-m_i^2) (1-m_j^2) \right)$$

$$m_{i} = \tanh \left[h_{i} + \sum_{j} J_{ij}(m_{j} - \underline{J_{ij}(1 - m_{j}^{2})m_{i}}) \right]$$

Onsager reaction term

Bethe approximation

• On a tree

- Not easy to write the explicit expression for the Bethe approximation
- Very hard to go beyond the Bethe approximation...

Cluster Variational Method (CVM)

$$F = -\ln Z = \min_{p} \mathcal{F}(p) = \min_{p} \sum_{s} [p(s)H(s) + p(s)\ln p(s)] \qquad \sum_{s} p(s) = 1$$
Pelizzola
review
entropy (hard) -> approximate by
truncating the expansion in cumulants
$$F_{\text{CVM}}(b, J, h) = E(b, J, h) - \frac{1}{\beta}S(b)$$

$$E(b, J, h) = -\sum_{(ij)} J_{ij}\text{Tr}[s_is_jb_{ij}] - \sum_{i} h_i\text{Tr}[s_ib_i]$$

$$Iocal$$

$$S(b) = -\sum_{r \in R} c_r\text{Tr}[b_r \log b_r]$$

$$b_r = b_r(s_r)$$
beliefs
$$s_r = \{r_i : i \in r\}$$
sum over regions
counting numbers (Machine coeff)

counting numbers (Moebius coeff.)

Cluster Variational Method (CVM)

• Beliefs must be normalized and locally consistent

$$\sum_{s_r} b_r(s_r) = 1 \qquad \sum_{s_{r\setminus t}} b_r(s_r) = b_t(s_t)$$

- Local consistency is not global consistency!
- Beliefs are approximations to true marginals
- Beliefs can be parametrized by magnetizations and connected correlations, e.g.

$$b_i(s_i) = \frac{1 + m_i s_i}{2} \qquad b_{ij}(s_i, s_j) = \frac{1 + m_i s_i + m_j s_j + (c_{ij} + m_i m_j) s_i s_j}{4}$$

Cluster Variational Method (CVM)

Exact on trees

How to choose the regions

- <u>Original CVM</u>: all maximal regions and all their intersections (recursively until single site regions)
- <u>Region-based free energy approximation</u> (Yedidia et al.): choose regions at your will as long as each site (variable node) and interaction (factor node) has coefficient c=1
- More is better, but computationally ineffective
- Try to include all relevant correlations $diam(r_{max}) \approx \xi$
- Easy to derive Bethe and clear how to go beyond Bethe

How to find the beliefs

• Introduce Lagrange multipliers (called messages) enforcing the consistency constraint for each pair of regions $m_{r \rightarrow t}(s_t) \quad \forall r, t \in R : t \subset r$

These are generalized cavity probability distributions

Solve equations for messages iteratively -> Belief
 Propagation (BP), Generalized Belief Propagation (GBP)

How to find the beliefs

• After converging to the fixed point of the message passing algorithm, compute beliefs from the messages

 N.B. several equivalent MPA and each may have several equivalent fixed point (gauge invariance).

Plefka's expansion vs. CVM

- Plefka's expansion has N parameters (the magnetizations) nMF, TAP, 3rd order, 4th order,...,Bethe.
- CVM may have much more parameters to optimize over E.g. on the 2D square lattice:
 - nMF -> N magnetizations
 - Bethe -> N magnetizations + 2N nn correlations
 - Plaquette -> N magnetizations + 2N nn correlations +
 2N nnn correlations + 4N 3-spin corr. + N 4-spin corr.
- CVM much richer description, but hard to get analytical expressions to estimate model parameters

Bethe approximation

Independent pair approx.

• The two derivations are equivalent: correlations only depends on magnetizations at the fixed point

$$\frac{\partial F_{\text{Bethe}}}{\partial C_{ij}} = 0 \implies J_{ij} = \frac{1}{4} \ln \left(\frac{((1+m_i)(1+m_j)+c_{ij})((1-m_i)(1-m_j)+c_{ij})}{((1+m_i)(1-m_j)-c_{ij})((1-m_i)(1+m_j)-c_{ij})} \right)$$

$$c_{ij}(m_i, m_j, t_{ij}) = \frac{1}{2t_{ij}} \left(1 + t_{ij}^2 - \sqrt{(1 - t_{ij}^2)^2 - 4t_{ij}(m_i - t_{ij}m_j)(m_j - t_{ij}m_i)} \right) - m_i m_j$$

$$f(m_1, m_2, t) = \frac{1 - t^2 - \sqrt{(1 - t^2)^2 - 4t(m_1 - m_2 t)(m_2 - m_1 t)}}{2t(m_2 - m_1 t)}$$

$$m_i = \tanh\left[h_i + \sum_j \operatorname{atanh}\left(t_{ij}f(m_j, m_i, t_{ij})\right)\right]$$

Small couplings expansion leads to nMF, TAP, ...

Computing correlations by linear response

- Connected correlations are always null in nMF, TAP Even in Bethe between non-neighbours spins
- Non trivial (and better) correlations can be obtained via linear response (Kappen Rodriguez, 1998) ∂m_i

$$\begin{aligned} &\chi_{ij} = \frac{\delta_{ij}}{1 - m_i^2} - J_{ij} , \\ &(\chi_{\text{TAP}}^{-1})_{ij} = \left[\frac{1}{1 - m_i^2} + \sum_k J_{ik}^2 (1 - m_k^2) \right] \delta_{ij} - (J_{ij} + 2J_{ij}^2 m_i m_j) \\ &(\chi_{\text{TAP}}^{-1})_{ij} = \left[\frac{1}{1 - m_i^2} - \sum_k \frac{t_{ik} f_2(m_k, m_i, t_{ik})}{1 - t_{ik}^2 f(m_k, m_i, t_{ik})^2} \right] \delta_{ij} - \frac{t_{ij} f_1(m_j, m_i, t_{ij})}{1 - t_{ij}^2 f(m_j, m_i, t_{ij})^2} \end{aligned}$$

 $f_1(m_1, m_2, t) \equiv \partial f(m_1, m_2, t) / \partial m_1$ $f_2(m_1, m_2, t) \equiv \partial f(m_1, m_2, t) / \partial m_2$

Estimating model parameters via MFA

- Assume $\chi = C$!
- Estimate couplings from matching only off-diagonal elements of $~\chi^{-1}$ and $~C_{\rm data}^{-1}$

$$J_{ij}^{nMF} = -(C^{-1})_{ij} \qquad J_{ij}^{TAP} = \frac{\sqrt{1 - 8m_i m_j (C^{-1})_{ij}} - 1}{4m_i m_j}$$
$$J_{ij}^{BA} = -\operatorname{atanh} \left[\frac{1}{2(C^{-1})_{ij}} \sqrt{1 + 4(1 - m_i^2)(1 - m_j^2)(C^{-1})_{ij}^2} - m_i m_j - \frac{1}{2(C^{-1})_{ij}} \sqrt{\left(\sqrt{1 + 4(1 - m_i^2)(1 - m_j^2)(C^{-1})_{ij}^2} - 2m_i m_j (C^{-1})_{ij}\right)^2 - 4(C^{-1})_{ij}^2} - \frac{1}{2(C^{-1})_{ij}} \sqrt{\left(\sqrt{1 + 4(1 - m_i^2)(1 - m_j^2)(C^{-1})_{ij}^2} - 2m_i m_j (C^{-1})_{ij}\right)^2 - 4(C^{-1})_{ij}^2} - \frac{1}{2(C^{-1})_{ij}} \sqrt{\left(\sqrt{1 + 4(1 - m_i^2)(1 - m_j^2)(C^{-1})_{ij}^2} - 2m_i m_j (C^{-1})_{ij}\right)^2 - 4(C^{-1})_{ij}^2}} - \frac{1}{2(C^{-1})_{ij}} \sqrt{\left(\sqrt{1 + 4(1 - m_i^2)(1 - m_j^2)(C^{-1})_{ij}^2} - 2m_i m_j (C^{-1})_{ij}\right)^2 - 4(C^{-1})_{ij}^2}} - \frac{1}{2(C^{-1})_{ij}} \sqrt{\left(\sqrt{1 + 4(1 - m_i^2)(1 - m_j^2)(C^{-1})_{ij}^2} - 2m_i m_j (C^{-1})_{ij}\right)^2 - 4(C^{-1})_{ij}^2}} - \frac{1}{2(C^{-1})_{ij}} \sqrt{\left(\sqrt{1 + 4(1 - m_i^2)(1 - m_j^2)(C^{-1})_{ij}^2} - 2m_i m_j (C^{-1})_{ij}\right)^2 - 4(C^{-1})_{ij}^2}} - \frac{1}{2(C^{-1})_{ij}} \sqrt{\left(\sqrt{1 + 4(1 - m_i^2)(1 - m_j^2)(C^{-1})_{ij}^2} - 2m_i m_j (C^{-1})_{ij}}\right)^2 - 4(C^{-1})_{ij}^2}} - \frac{1}{2(C^{-1})_{ij}} \sqrt{\left(\sqrt{1 + 4(1 - m_i^2)(1 - m_j^2)(C^{-1})_{ij}^2} - 2m_i m_j (C^{-1})_{ij}}\right)^2 - 4(C^{-1})_{ij}^2}} - \frac{1}{2(C^{-1})_{ij}} \sqrt{\left(\sqrt{1 + 4(1 - m_i^2)(1 - m_j^2)(C^{-1})_{ij}^2} - 2m_i m_j (C^{-1})_{ij}}\right)^2 - 4(C^{-1})_{ij}^2}} - \frac{1}{2(C^{-1})_{ij}}} \sqrt{\left(\sqrt{1 + 4(1 - m_i^2)(1 - m_j^2)(C^{-1})_{ij}^2} - 2m_i m_j (C^{-1})_{ij}}\right)^2 - 4(C^{-1})_{ij}^2}} - \frac{1}{2(C^{-1})_{ij}}} \sqrt{\left(\sqrt{1 + 4(1 - m_i^2)(1 - m_j^2)(C^{-1})_{ij}^2} - 2m_i m_j (C^{-1})_{ij}}\right)^2 - 4(C^{-1})_{ij}^2}} - \frac{1}{2(C^{-1})_{ij}}} \sqrt{\left(\sqrt{1 + 4(1 - m_i^2)(1 - m_j^2)(C^{-1})_{ij}^2} - 2m_i m_j (C^{-1})_{ij}}\right)^2 - 4(C^{-1})_{ij}^2}} - \frac{1}{2(C^{-1})_{ij}}} \sqrt{\left(\sqrt{1 + 4(1 - m_i^2)(1 - m_j^2)(C^{-1})_{ij}^2} - 2m_i m_j (C^{-1})_{ij}}\right)^2 - 4(C^{-1})_{ij}^2}} - \frac{1}{2(C^{-1})_{ij}}} \sqrt{\left(\sqrt{1 + 4(1 - m_i^2)(1 - m_j^2)(C^{-1})_{ij}^2} - 2m_i m_j (C^{-1})_{ij}}\right)^2 - 4(C^{-1})_{ij}^2}} - \frac{1}{2(C^{-1})_{ij}}} \sqrt{\left(\sqrt{1 + 4(1 - m_i^2)(1 - m_j^2)(C^{-1})_{ij}^2} - 2m_i m_j (C^{-1})_{ij}^2}\right)^2 - \frac{1}$$

• Easier than computing marginals: no need to run MPA!

Estimating model parameters via MFA

• Independent Pair (IP) approximation

$$J_{ij}^{\rm IP} = \frac{1}{4} \ln \left(\frac{\left((1+m_i)(1+m_j) + C_{ij} \right) \left((1-m_i)(1-m_j) + C_{ij} \right)}{\left((1+m_i)(1-m_j) - C_{ij} \right) \left((1-m_i)(1+m_j) - C_{ij} \right)} \right)$$

• Sessak-Monasson (SK) small correlation expansion

$$J_{ij}^{\rm SM} = -(C^{-1})_{ij} + J_{ij}^{\rm IP} - \frac{C_{ij}}{(1-m_i^2)(1-m_j^2) - (C_{ij})^2}$$

• Fields estimates from self-consistency equation E.g. for nMF

$$m_i = \tanh[\beta(h_i + \sum_j J_{ij}m_j)] \implies h_i = \frac{\operatorname{atanh}(m_i)}{\beta} - \sum_j J_{ij}^{\operatorname{nMF}}m_j$$

• Estimating model parameters

• Problems with strongly frustrated models in a field

Due to negative discriminants in coupling estimates

$$\left(\begin{array}{cccc}1&&&C_{ij}\\&\ddots&\\C_{ij}&&&1\end{array}\right)\stackrel{?}{=}\left(\begin{array}{cccc}\chi_{11}&&&\chi_{ij}\\&\ddots&\\\chi_{ij}&&&\chi_{NN}\end{array}\right)$$

- The linear response correlation matrix (the only we can compute in MFA) has "wrong" element on the diagonal.
- It is different from the true correlation matrix.
- In the Bethe approximation the 2 estimates of nearest neighbor correlations (χ_{ij} and C_{ij}) are different. And linear response estimate is generally better.
- This is due to loops ignored in the MFA

Limitations of MFA

- Ergodicity breaking
 - MFA assume that a single state exists, and that correlations decay fast with distance
 - If many states exist correlations no longer decay, and MF estimates become poor
- Presence of loops
 - Even in presence of a single state, the loops may change a lot the correlations with respect to Susceptibility Propagation estimate, obtained assuming a loopless graph

MFA fail because of loops

- E.g. Bethe approximation in the high temperature phase
- Since m=0, at the CVM free-energy minimum

$$\langle \sigma_i \sigma_j \rangle_c^{\mathrm{BA}} = c_{ij}^* = \tanh(\beta J_{ij}) < \langle \sigma_i \sigma_j \rangle_c^{\mathrm{exact}}$$

• Linear response (Susceptibility Propagation)

$$\chi_{ii} = 1 + \sum_{j \in \partial i} u_{j \to i, i} \neq 1$$

• So in general for a ferromagnet in the high T phase holds

 $C_{ij} < C_{ij}^{\rm true} < \chi_{ij}$

Adding loops to Bethe ?

- Several attempts
 - Loop calculus (Chertkov Chernyak)
 - BP + correlations between neighbors (Montanari Rizzo, Mooij Kappen, Rizzo Wammenhove Kappen, Ohzeki)
- All require in some sense the convergence of BP, but loops make BP stop converging...
- None is able to make predictions in a frustrated model with many loops at low enough temperatures

Make MFA & LR consistent

• Choose your preferred MFA free-energy

$$F_{\text{MFA}}(\{m_i\}, \{C_{ij}\}, \ldots)$$

• Enforce consistency with linear response estimates

General framework for MFA + LR

Other proposals for fixing χ_{ii}

- Kappen Rodriguez (1998) MF + self-couplings J_{ii}
- Opper Winter (2001) Adaptive TAP = TAP + λ_i
- FRT (2012)

Bethe with normalized correlations $\widehat{\chi}_{ij} \equiv \frac{\chi_{ij}}{\sqrt{\chi_{ii}\chi_{jj}}}$ useful for the inverse ph useful for the inverse pb.

 Yasuda Tanaka (2013) I-SuscP = Bethe + λ_i

Bethe + linear response

• Ising model on a 2D square lattice

MFA + LR: estimating marginals

MFA + LR: estimating model param.

Inferring the couplings of a 2D triangular diluted antiferromagnet 0.001 from correlations 0.0001 (infinite statistics) Bethe (λ =0) Bethe ···· ()···· Plaquette 1e-05 -0.8 -0.2 -1.2 -0.6 -0.4 -1 0 $\Delta_J = \sqrt{\frac{\sum_{i < j} (J'_{ij} - J_{ij})^2}{\sum_{i < j} J_{ij}^2}}$ β $\dot{N}MF/TAP (\lambda=0)$ Bethe $(\lambda=0)$ Bethe (λ =0) [KR] Bethe 0.01 Plaquette Inferring the couplings of a 2D diluted Ising model (finite stat.) 0.001 0.4 0.45 0.15 0.2 0.25 0.3 0.35 0.5 0.55 β

MFA + LR: disordered models

• 2D spin glass in a random field $J_{ij} \in [-1, 1], h_i \in [-0.25, 0.25]$

MFA + LR: disordered models

• 2D spin glass in a random field $J_{ij} \in [-1, 1], h_i \in [-0.25, 0.25]$

- Estimate model parameters in a phase with many states
 - Pseudo-likelihood based methods are rather insensitive to ergodicity breaking (see Aurelien's talk)
 - However also MFA can be used if data are properly clustered
 - Each cluster of data returns comparable estimates for couplings and fields

Curie-Weiss model N=100

Hopfield model P=3 (6 minima)

- The problem of estimating marginals is much harder in presence of ergodicity breaking
- What happens when we use MFA in a disordered model with many states? (relevant for <u>multimodal models</u>)
- On random graphs: replica symmetry breaking (RSB) and Survey Propagation with Parisi parameter m a.k.a. SP(m) is ok to describe 1RSB solutions With a little effort one can obtain 2RSB solutions...
- On finite dimensional lattices our understanding is still very limited :-(

CVM on finite dimensional spin glasses

- Edwards-Anderson (EA) model in d=2 with symmetric \bullet couplings ($J_{ij} = \pm 1$) is the most difficult situation
- For d=2 the EA model has no phase transition (in the thermodynamical limit!) but low temperature physics is still dominated by many different local minima in the free-energy
- Algorithms to optimize CVM free-energy:
 - BP
 - plaquette GBP (parent-to-child), HAK (2-ways) $\int_{L}^{U} = \int_{L}^{U}$

- Double loop
- MPA on the dual lattice (m=0)

MPA convergence on 2d spin glasses

- Double loop, HAK and MPA on the dual converge at any temperature
- BP and GBP only for high enough temperatures

Tricks for making GBP converge

BP critical point on RRG of degree 4 is $\operatorname{atanh}(1/\sqrt{3}) \simeq 0.658$

BP on the dual lattice

Multiple minima of CVM free-energy

- 2 samples
- 4 algorithms
- convergence time
- free-energy
- order parameter

 $q_{\rm EA} = \frac{1}{N} \sum m_i^2$

Multiple minima of CVM free-energy

 Running GBP on samples of the 2d EA model the general scenario is the following

Multiple minima of CVM free-energy

CVM vs Monte Carlo

- Do have the many CVM free-energy minima a physical meaning and role?
- Comparison with Monte Carlo dynamics
- Time spent close to a CVM free-energy minimum is equal to the <u>CVM approximated weight of such a state</u>

CVM vs Monte Carlo

Approximating the overlap distribution from CVM states (free-energy minima) $P(q) = \sum w_{\alpha} w_{\beta} P_{\alpha\beta}(q)$ α,β $q_{\alpha\beta} = \left\langle \frac{1}{N} \sum_{i} s_{i}^{\alpha} s_{i}^{\beta} \right\rangle = \frac{1}{N} \sum_{i} m_{i}^{\alpha} m_{i}^{\beta}$ mean $\sigma_{\alpha\beta}^2 = \frac{1}{N^2} \sum_{ij} \left(C_{ij}^{\alpha} C_{ij}^{\beta} + m_i^{\alpha} m_j^{\alpha} C_{ij}^{\beta} + m_i^{\beta} m_j^{\beta} C_{ij}^{\alpha} \right)$ var q12 real q12 from GBP 1 estimation of 0.8 would require 0.6 generalized 0.4 SuscProp... 0.2 0 -0.5 0 0.5

-1

Summary & open problems

- General framework for making MFA consistent with linear response
 - Recover several previous approximation (apparently unrelated): e.g. adaptive-TAP and SM approx.
 - Improves inference, but has some limitations (to be overcome...)
- GBP can converge to many non-trivial fixed point with physical relevance
 - Still missing a broad-purpose region-based algorithm that can deal with the many free-energy minima...

Figures in this talk are from

- Inference algorithm for finite-dimensional spin glasses: Belief Propagation on the dual lattice A. Lage-Castellanos, R. Mulet, F. Ricci-Tersenghi and T. Rizzo Phys. Rev. E 84, 046706 (2011)
- Characterizing and Improving Generalized Belief Propagation Algorithms on the 2D Edwards-Anderson Model
 - E. Dominguez, A. Lage-Castellanos, R. Mulet, F. Ricci-Tersenghi and T. Rizzo
 - J. Stat. Mech. P12007 (2011)
- The Bethe approximation for solving the inverse Ising problem: a comparison with other inference methods
 - F. Ricci-Tersenghi
 - J. Stat. Mech. P08015 (2012)
- Mean-field method with correlations determined by linear response
 - J. Raymond and F. Ricci-Tersenghi
 - Phys. Rev. E 87, 052111 (2013)
- Message passing and Monte Carlo algorithms: Connecting fixed points with metastable states, A. Lage-Castellanos, R. Mulet and F. Ricci-Tersenghi, Europhys. Lett. 107, 57011 (2014)
- Solving the inverse Ising problem by mean-field methods in a clustered phase space with many states Aurélien Decelle, Federico Ricci-Tersenghi, arxiv:1501.03034 (2015)
- Correction of variational methods with pairwise linear response identities
 J. Raymond and F. Ricci-Tersenghi, in preparation (2015)