Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Jascha Sohl-Dickstein¹, Eric Weiss², Niru Maheswaranathan¹, Surya Ganguli¹

¹ Stanford University, ² University of California at Berkeley

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results

Jascha Sohl-Dickstein

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results

Jascha Sohl-Dickstein

• Unknown features/labels

- Unknown features/labels
 - Novel modalities

- Unknown features/labels
 - Novel modalities

[Trans Biomed Eng, 2015]

Jascha Sohl-Dickstein

- Unknown features/labels
 - Novel modalities

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis

7 exemplar multiunits responding to 40 repeated trials of natural video in cat V1

[PLoS Comp Bio 2014] [Neuron 2013]

Jascha Sohl-Dickstein

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis
- Expensive labels

Jascha Sohl-Dickstein

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis
- Expensive labels

[SPIE 2009] [Med Phys 2014]

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis
- Expensive labels

Jascha Sohl-Dickstein

- Unknown features/labels
 - Novel modalities
 - Exploratory data analysis
- Expensive labels
- Unpredictable tasks / one shot learning

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results

Jascha Sohl-Dickstein

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
 - Destroy structure in data
 - Carefully characterize the destruction
 - Learn how to **reverse fime**
- Diffusion probabilistic model: Derivation and experimental results

Jascha Sohl-Dickstein

 Dye density represents probability density

- Dye density represents probability density
- Goal: Learn structure of probability density

- Dye density represents probability density
- Goal: Learn structure of probability density
- Observation: Diffusion destroys
 structure

- Dye density represents probability density
- Goal: Learn structure of probability density
- Observation: Diffusion destroys
 structure

- Dye density represents probability density
- Goal: Learn structure of probability density
- Observation: Diffusion destroys
 structure

Data distribution

Jascha Sohl-Dickstein

Uniform distribution

• What if we could reverse time?

Jascha Sohl-Dickstein

• What if we could reverse time?

Jascha Sohl-Dickstein

• What if we could reverse time?

Data distribution

Uniform distribution

Jascha Sohl-Dickstein

- What if we could reverse time?
- Recover data distribution by starting from uniform distribution and running dynamics backwards

Data distribution

Uniform distribution

Jascha Sohl-Dickstein

- What if we could reverse time?
- Recover data distribution by starting from uniform distribution and running dynamics backwards

Data distribution

Uniform distribution

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

© Rutger Saly

- Microscopic view
- Brownian motion

Jascha Sohl-Dickstein

© Rutger Saly

- Microscopic view
- Brownian motion

Jascha Sohl-Dickstein

© Rutger Saly

- Microscopic view
- Brownian motion

Jascha Sohl-Dickstein

© Rutger Saly

- Microscopic view
- Brownian motion

Jascha Sohl-Dickstein

© Rutger Saly

- Microscopic view
- Brownian motion
- Position updates are small Gaussians

Jascha Sohl-Dickstein

© Rutger Saly

- Microscopic view
- Brownian motion
- Position updates are small Gaussians

Jascha Sohl-Dickstein

© Rutger Saly

- Microscopic view
- Brownian motion
- Position updates are small Gaussians

Jascha Sohl-Dickstein
Observation 2: Microscopic Diffusion is Time Reversible

© Rutger Saly

- Microscopic view
- Brownian motion
- Position updates are small Gaussians
 - Both forwards and backwards in time

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Destroy all structure in data distribution using diffusion process

- Destroy all structure in data distribution using diffusion process
- Learn reversal of diffusion process
 - Estimate function for mean and covariance of each step in the reverse diffusion process (binomial rate for binary data)

- Destroy all structure in data distribution using diffusion process
- Learn reversal of diffusion process
 - Estimate function for mean and covariance of each step in the reverse diffusion process (binomial rate for binary data)
- Reverse diffusion process is the model of the data

Jascha Sohl-Dickstein

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
 - Algorithm
 - Deep convolutional network: Universal function
 approximator
 - Multiplying distributions: Inputation, denoising, computing posteriors

Jascha Sohl-Dickstein

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
 - Algorithm
 - Deep convolutional network: Universal function
 approximator
 - Multiplying distributions: Inputation, denoising, computing posteriors

Jascha Sohl-Dickstein

Data distribution

$$q\left(\mathbf{x}^{(0)}\right)$$

Jascha Sohl-Dickstein

Data distribution

Forward diffusion

$$q\left(\mathbf{x}^{(0)}\right)$$

$$q\left(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)}\right) = \mathcal{N}\left(\mathbf{x}^{(t)};\mathbf{x}^{(t-1)}\sqrt{1-\beta_t},\mathbf{I}\beta_t\right)$$

Jascha Sohl-Dickstein

Data distribution

Forward diffusion

$$q\left(\mathbf{x}^{(0)}\right)$$

$$q\left(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)}\right) = \mathcal{N}\left(\mathbf{x}^{(t)};\mathbf{x}^{(t-1)}\sqrt{1-\beta_t},\mathbf{I}\beta_t\right)$$

Decay towards origin

Jascha Sohl-Dickstein

Data distribution

Forward diffusion

$$q\left(\mathbf{x}^{(0)}\right)$$

$$q\left(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)}\right) = \mathcal{N}\left(\mathbf{x}^{(t)}; \mathbf{x}^{(t-1)}\sqrt{1-\beta_t}, \mathbf{I}\beta_t\right)$$

Decay towards origin

Add small noise

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Forward Diffusion Process on Swiss Roll

- Start at data
- Run Gaussian diffusion until samples become Gaussian blob

Jascha Sohl-Dickstein

Forward Diffusion Process on Swiss Roll

- Start at data
- Run Gaussian diffusion until samples become Gaussian blob

Jascha Sohl-Dickstein

Noise distribution

$$p\left(\mathbf{x}^{(T)}\right) = \mathcal{N}\left(\mathbf{x}^{(T)}; 0, \mathbf{I}\right)$$

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Learned Reverse Diffusion Process on Swiss Roll

- Start at Gaussian blob
- Run Gaussian diffusion until samples become data distribution

Jascha Sohl-Dickstein

Learned Reverse Diffusion Process on Swiss Roll

- Start at Gaussian blob
- Run Gaussian diffusion until samples become data distribution

Jascha Sohl-Dickstein

Summary of Forward and Reverse Diffusion on Swiss Roll

Jascha Sohl-Dickstein

Summary of Forward and Reverse Diffusion on Swiss Roll

Jascha Sohl-Dickstein

Summary of Forward and Reverse Diffusion on Swiss Roll

Jascha Sohl-Dickstein

Training the Reverse Diffusion Process

Model probability

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} p\left(\mathbf{x}^{(0\cdots T)}\right)$$

Training the Reverse Diffusion Process

Model probability

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} p\left(\mathbf{x}^{(0\cdots T)}\right)$$

Annealed importance sampling / Jarzynski equality

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right)}$$

Training the Reverse Diffusion Process

Model probability

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} p\left(\mathbf{x}^{(0\cdots T)}\right)$$

Annealed importance sampling / Jarzynski equality

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right)}$$

Log Likelihood

$$L = \int d\mathbf{x}^{(0)} q\left(\mathbf{x}^{(0)}\right) \log\left[\int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)}\right)}\right]$$

Model probability

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} p\left(\mathbf{x}^{(0\cdots T)}\right)$$

Annealed importance sampling / Jarzynski equality

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right)}$$

Log Likelihood

$$L = \int d\mathbf{x}^{(0)} q\left(\mathbf{x}^{(0)}\right) \log\left[\int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)}\right)}\right]$$

Jensen's inequality

$$L \ge \int d\mathbf{x}^{(0\cdots T)} q\left(\mathbf{x}^{(0\cdots T)}\right) \log \left[\frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right)}\right]$$

$$p\left(\mathbf{x}^{(0)}\right) = \int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right)}$$

Log Likelihood

$$L = \int d\mathbf{x}^{(0)} q\left(\mathbf{x}^{(0)}\right) \log\left[\int d\mathbf{x}^{(1\cdots T)} q\left(\mathbf{x}^{(1\cdots T)}\right) \frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)}\right)}\right]$$

Jensen's inequality

$$L \ge \int d\mathbf{x}^{(0\cdots T)} q\left(\mathbf{x}^{(0\cdots T)}\right) \log \left[\frac{p\left(\mathbf{x}^{(0\cdots T)}\right)}{q\left(\mathbf{x}^{(1\cdots T)} | \mathbf{x}^{(0)}\right)}\right]$$

... algebra ...

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL} \left(q\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| \left| p\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}\right) \right. \right. \\ \left. + \operatorname{const} \right.$$

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL}\left(q\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| \left| p\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}\right)\right)$$

 $+ \operatorname{const}$

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL} \left(q\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| \left| p\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}\right) \right\rangle + \text{const}$$

$$\mathsf{Gaussian}$$

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL} \left(q\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| \left| p\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}\right) \right) + \text{const}$$

$$+ \text{const}$$
Gaussian

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL} \left(q\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| \left| p\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}\right) \right) + \text{const}$$

$$p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right) = \mathcal{N}\left(\mathbf{x}^{(t-1)}; f_{\mu}\left(\mathbf{x}^{(t)}, t\right), f_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$$

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL} \left(q\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| \left| p\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}\right) \right) + \text{const}$$

$$p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right) = \mathcal{N}\left(\mathbf{x}^{(t-1)}; f_{\mu}\left(\mathbf{x}^{(t)}, t\right), f_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$$

Training

$$\underset{f_{\mu}(\mathbf{x}^{(t)},t),f_{\Sigma}(\mathbf{x}^{(t)},t)}{\operatorname{argmin}} \mathbb{E}\left[D_{KL}\left(q\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)},\mathbf{x}^{(0)}\right)\Big|\Big|p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right)\right)\right]$$

$$L \ge -\sum_{t=2}^{T} \int d\mathbf{x}^{(0)} d\mathbf{x}^{(t)} q\left(\mathbf{x}^{(0)}, \mathbf{x}^{(t)}\right) D_{KL} \left(q\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}, \mathbf{x}^{(0)}\right) \middle| \left| p\left(\mathbf{x}^{(t-1)} | \mathbf{x}^{(t)}\right) \right) + \text{const}$$

$$p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right) = \mathcal{N}\left(\mathbf{x}^{(t-1)}; f_{\mu}\left(\mathbf{x}^{(t)}, t\right), f_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$$

Training

$$\underset{f_{\mu}(\mathbf{x}^{(t)},t),f_{\Sigma}(\mathbf{x}^{(t)},t)}{\operatorname{argmin}} \mathbb{E}\left[D_{KL}\left(q\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)},\mathbf{x}^{(0)}\right)\Big|\Big|p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right)\right)\right]$$

Use Deep Network as Function Approximator for Images

Jascha Sohl-Dickstein

Use Deep Network as Function Approximator for Images

Jascha Sohl-Dickstein
Use Deep Network as Function Approximator for Images

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Diffusion Probabilistic Model Applied to MNLST

Model	Log likelihood estimate*
Stacked CAE	121 ± 1.6 bits
DBN	138 ± 2 bits
Deep GSN	214 ± 1.1 bits
Diffusion	220 ± 1.9 bits
Adversarial net	225 ± 2 bits

* via Parzen window code from [Goodfellow *et al*, 2014] Jascha Sohl-Dickstein

Training Data

Jascha Sohl-Dickstein

Training Data

Jascha Sohl-Dickstein

Samples from Generative Adverserial [Goodfellow *et al*, 2014]

Training Data

Jascha Sohl-Dickstein

Samples from diffusion model

Diffusion Probabilistic Models

Samples from Generative Adverserial [Goodfellow *et al*, 2014]

Samples from diffusion model

Diffusion Probabilistic Models

Samples from DRAW [Gregor *et al*, 2015] Jascha Sohl-Dickstein

Samples from Generative Adverserial [Goodfellow et al, 2014]

Training Data

Jascha Sohl-Dickstein

Training Data

Sample from [Theis *et al*, 2012]

Jascha Sohl-Dickstein

Training Data

Sample from [Theis *et al*, 2012]

Jascha Sohl-Dickstein

Training Data

Sample from [Theis *et al*, 2012]

Sample from diffusion model

Training Data

Sample from [Theis *et al*, 2012]

Sample from diffusion model

Jascha Sohl-Dickstein

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
 - Algorithm
 - Deep convolutional network: Universal function approximator
 - Multiplying distributions: Inputation, denoising, computing posteriors

Jascha Sohl-Dickstein

• Extremely flexible, parametric, function approximation

- Extremely flexible, parametric, function approximation
- **Single layer:** linear transformation, pointwise nonlinearity

- Extremely flexible, parametric, function approximation
- **Single layer:** linear transformation, pointwise nonlinearity

$$\mathbf{y}^{l} = \sigma \left(\mathbf{W}^{l} \mathbf{y}^{l-1} \right)$$

- Extremely flexible, parametric, function approximation
- **Single layer:** linear transformation, pointwise nonlinearity

$$\mathbf{y}^{l} = \sigma\left(\mathbf{W}^{l}\mathbf{y}^{l-1}\right)$$

Jascha Sohl-Dickstein

- Extremely flexible, parametric, function approximation
- **Single layer:** linear transformation, pointwise nonlinearity

$$\mathbf{y}^{l} = \sigma \left(\mathbf{W}^{l} \mathbf{y}^{l-1} \right)$$

$$\sigma(u) \equiv \text{leaky ReLU}$$
$$= \begin{cases} u & u \ge 0\\ 0.05u & u < 0 \end{cases}$$

Jascha Sohl-Dickstein

- Extremely flexible, parametric, function approximation
- **Single layer:** linear transformation, pointwise nonlinearity

- Extremely flexible, parametric, function approximation
- **Single layer:** linear transformation, pointwise nonlinearity
- **Deep network:** stack single layers

- Extremely flexible, parametric, function approximation
- **Single layer:** linear transformation, pointwise nonlinearity
- Deep network: stack single layers

Jascha Sohl-Dickstein

- Extremely flexible, parametric, function approximation
- **Single layer:** linear transformation, pointwise nonlinearity
- Deep network: stack single layers

$$\mathbf{y}^{L} = \sigma \left(\mathbf{W}^{L} \sigma \left(\mathbf{W}^{L-1} \cdots \sigma \left(\mathbf{W}^{1} \mathbf{y}^{0} \right) \right) \right)$$

Diffusion Probabilistic Models

Jascha Sohl-Dickstein

Convolutional Neural Network

- Single convolutional layer:
 - Same linear transform for every pixel
 - Pointwise nonlinearity

Convolutional Neural Network

- Single convolutional layer:
 - Same linear transform for every pixel
 - Pointwise nonlinearity

Jascha Sohl-Dickstein

Multiscale Convolution

• Single multi-scale convolutional layer:

Jascha Sohl-Dickstein

Deep Network Architecture for Diffusion

Jascha Sohl-Dickstein

Deep Network Architecture for Diffusion

Jascha Sohl-Dickstein

Diffusion Probabilistic Models

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

Outline

- Motivation: The promise of deep unsupervised learning
- Physical intuition: Diffusion processes and time reversal
- Diffusion probabilistic model: Derivation and experimental results
 - Algorithm
 - Deep convolutional network: Universal function
 approximator
 - Multiplying distributions: Inputation, denoising, computing posteriors

Jascha Sohl-Dickstein

Multiplying Distributions is Straightforward

Interested in $\tilde{p}(\mathbf{x}^{(0)}) \propto p(\mathbf{x}^{(0)}) r(\mathbf{x}^{(0)})$

- Required to compute posterior distributions
 - Missing data (inpainting)
 - Corrupted data (denoising)

Multiplying Distributions is Straightforward

Interested in $\tilde{p}(\mathbf{x}^{(0)}) \propto p(\mathbf{x}^{(0)}) r(\mathbf{x}^{(0)})$

- Required to compute posterior distributions
 - Missing data (inpainting)
 - Corrupted data (denoising)
- Difficult and expensive using competing techniques
 - e.g. variational autoencoders, GSNs, NADEs, most graphical models

Jascha Sohl-Dickstein
Multiplying Distributions is Straightforward

Interested in $\tilde{p}(\mathbf{x}^{(0)}) \propto p(\mathbf{x}^{(0)}) r(\mathbf{x}^{(0)})$

Multiplying Distributions is Straightforward

Interested in $\tilde{p}(\mathbf{x}^{(0)}) \propto p(\mathbf{x}^{(0)}) r(\mathbf{x}^{(0)})$

Multiplying Distributions is Straightforward

Interested in $\tilde{p}(\mathbf{x}^{(0)}) \propto p(\mathbf{x}^{(0)}) r(\mathbf{x}^{(0)})$

Acts as small perturbation to diffusion process

Jascha Sohl-Dickstein

Multiplying Distributions is Straightforward Interested in $\tilde{p}(\mathbf{x}^{(0)}) \propto p(\mathbf{x}^{(0)}) r(\mathbf{x}^{(0)})$ Acts as small perturbation to diffusion process $p\left(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}\right) = \mathcal{N}\left(\mathbf{x}^{(t-1)}; f_{\mu}\left(\mathbf{x}^{(t)}, t\right), f_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$ $\tilde{p}\left(\mathbf{x}^{(t-1)} \mid \mathbf{x}^{(t)}\right) \approx \mathcal{N}\left(x^{(t-1)}; \mathbf{f}_{\mu}\left(\mathbf{x}^{(t)}, t\right) + \mathbf{f}_{\Sigma}\left(\mathbf{x}^{(t)}, t\right) \frac{\partial \log r\left(\mathbf{x}^{(t-1)'}\right)}{\partial \mathbf{x}^{(t-1)'}} \bigg|_{\mathbf{x}^{(t-1)'} = f_{\mu}\left(\mathbf{x}^{(t)}, t\right)}, \mathbf{f}_{\Sigma}\left(\mathbf{x}^{(t)}, t\right)\right)$

Jascha Sohl-Dickstein

Image Denoising by Sampling from Posterior

Holdout Data

Jascha Sohl-Dickstein

Image Denoising by Sampling from Posterior

Holdout Data

Corrupted (SNR = 1)

Jascha Sohl-Dickstein

Image Denoising by Sampling from Posterior

Denoised

Holdout Data

 $\begin{array}{l} \text{Corrupted} \\ (\text{SNR} = 1) \end{array}$

Jascha Sohl-Dickstein

Image Inpainting by Sampling from Posterior

• Training data [Lazebnik et al, 2005]

Jascha Sohl-Dickstein

Image Inpainting by Sampling from Posterior

Inpainted image

True image

Jascha Sohl-Dickstein

Image Inpainting by Sampling from Posterior

Inpainted image

True image

Jascha Sohl-Dickstein

Jascha Sohl-Dickstein

• Binomial diffusion to neural spike trains

- Binomial diffusion to neural spike trains
- Full resolution color natural images

- Binomial diffusion to neural spike trains
- Full resolution color natural images
- Continuous time formulation

- Binomial diffusion to neural spike trains
- Full resolution color natural images
- Continuous time formulation
- Perturbation around energy based model

Jascha Sohl-Dickstein

Toy Binary Sequence Learning

Jascha Sohl-Dickstein

• Flexible: Diffusion process for any (smooth) distribution

- Flexible: Diffusion process for any (smooth) distribution
 - Binary or continuous state space

- Flexible: Diffusion process for any (smooth) distribution
 - Binary or continuous state space
- Tractable: Training, exact sampling, inference, evaluation

- Flexible: Diffusion process for any (smooth) distribution
 - Binary or continuous state space
- Tractable: Training, exact sampling, inference, evaluation
- Deep networks with thousands of layers (/ time steps)

- Flexible: Diffusion process for any (smooth) distribution
 - Binary or continuous state space
- Tractable: Training, exact sampling, inference, evaluation
- Deep networks with thousands of layers (/ time steps)
- Easy to multiply distributions (e.g. for posterior)

Jascha Sohl-Dickstein

- Flexible: Diffusion process for any (smooth) distribution
 - Binary or continuous state space
- Tractable: Training, exact sampling, inference, evaluation
- Deep networks with thousands of layers (/ time steps)
- Easy to multiply distributions (e.g. for posterior)
- Bounds on entropy production

Jascha Sohl-Dickstein

Thanks! Collaborators

Eric Weiss

Niru Maheswaranathan

Surya Ganguli

Endless discussion

- The Ganguli Gang
- The Redwood
 Center for
 Theoretical
 Neuroscience

Jascha Sohl-Dickstein

Setting Diffusion Rate

Erase constant fraction of stimulus variance each step

$$\beta_t = \frac{1}{T - t + 1}$$

• Can also train β_t

Jascha Sohl-Dickstein