Thermal pure quantum state

Sho Sugiura (杉浦祥) Institute for Solid State Physics, Univ. Tokyo Collaborator: Akira Shimizu (Univ. Tokyo)

SS and A.Shimizu, PRL 108, 240401 (2012)

SS and A.Shimizu, PRL 111, 010401 (2013)

SS and A.Shimizu, arXiv:1312.5145

M.Hyuga, SS, K.Sakai, and A.Shimizu, PRB 90, 121110(R) (2014)

Table of Contents

- 1. Introduction
- 2. Canonical TPQ State
- 3. Microcanonical TPQ State and Its Relation to Canonical TPQ State
- 4. Equilibrium State and Entanglement

Table of Contents

- 1. Introduction
- 2. Canonical TPQ State
- 3. Microcanonical TPQ State and Its Relation to Canonical TPQ State
- 4. Equilibrium State and Entanglement

Foundation of Statistical mechanics

Principle of Equal Weight:

When all the microstates emerge in the same probability, the average value gives the equilibrium value.

Microscopic View All the microstates that have energy E

There are a huge number of states

How can we justify the principle of equal weight?

Explanation using the Typicality

All the microstates that have energy E

Almost all the microstate at energy E are macroscopically indistinguishable!

The typicality seems to be more fundamental than the principle of equal weight.

But... does the typicality really hold?

Setup (1) -System

System:

- Isolated quantum system with finite volume V.
- Energy spectrum is discrete.
- The dimension of the Hilbert space can be ∞ .

Hamiltonian \hat{H} Energy Eigenstates $\hat{H}|n\rangle = E_n|n\rangle$

- The ensemble formulation gives correct results, which are consistent with thermodynamics in $V \to \infty$ (We don't consider some exceptional models, e.g., system which have long range interactions.

Setup (2) -Macroscopic Variables

In statistical mechanics, we have two types of macroscopic variables, mechanical variables and genuine thermodynamic variables.

Mechanical Variables

Ex) Magnetization, Spin-spin correlation function

Low-degree polynomials of local operators

(i.e. their degree $\leq m = O(1)$)

- Assume every mechanical variable \hat{A} is normalized as $\langle \hat{A}^2 \rangle_{\beta,V}^{\text{ens}} \leq KV^{2m}$ (To exclude foolish operators (ex. $V^V \hat{H}$) K: Constant independent of \hat{A} and V.)

Setup (2) -Macroscopic Variables

In statistical mechanics, we have two types of macroscopic variables, mechanical variables and genuine thermodynamic variables.

Genuine Thermodynamic Variables Ex) Temperature T, Entropy S

- Cannot be represented as mechanical variables
- All genuine thermodynamic variables can be derived from entropy $S. \label{eq:stables}$

Typicality on Pure Quantum State

P. Bocchieri and A. Loinger (1959), A.Sugita (2007), P.Reiman (2007)

Take a random vector in the specified energy shell :

$$|\psi_E\rangle \equiv \sum_n c_n |n\rangle$$

 $\begin{cases} |n\rangle \}_n : \text{ an arbitrary orthonormal basis} \\ \text{spanning enegy shell } [E - \Delta, E] \\ \{c_n\}_n : \text{ a set of random complex numbers} \\ \text{with } \sum_n |c_n|^2 = 1 \end{cases}$

As far as we look at the mechanical variables, all of their expectation values are very close to their microcanonical ensemble averages.

For
$$orall \epsilon > 0$$
, we can prove

$$\mathbf{P}\left(\left|\langle\psi_{E}|\hat{A}|\psi_{E}\rangle-\langle\hat{A}\rangle_{E,V}^{\mathrm{ens}}\right|\leq\epsilon \quad \text{for }\forall\hat{A}\right)\geq1-\frac{1}{\epsilon^{2}}\frac{N_{\mathrm{M}}\max_{\hat{A}}\langle\hat{A}^{2}\rangle_{E,V}^{\mathrm{ens}}}{d}$$

 N_{M} : The number of the independent mechanical variables. $\max_{\hat{A}} \langle \hat{A}^2 \rangle_{E,V}^{\mathrm{ens}}$: Maximum value of $\langle \hat{A}^2 \rangle_{E,V}^{\mathrm{ens}}$. d: Dimension of the Hilbert space of the energy shell $[E - \Delta, E]$.

Typicality on Pure Quantum State

P. Bocchieri and A. Loinger (1959), A.Sugita (2007), P.Reiman (2007)

$$\begin{split} & \mathbf{P}\left(\text{for } \forall \hat{A}, \ \left| \langle \psi_{E} | \hat{A} | \psi_{E} \rangle - \langle \hat{A} \rangle_{E,V}^{\text{ens}} \right| \leq \epsilon \right) \geq 1 - \frac{1}{\epsilon^{2}} \frac{N_{\mathrm{M}} \max_{\hat{A}} \langle \hat{A}^{2} \rangle_{E,V}^{\text{ens}}}{d} \\ & \left(\begin{array}{c} N_{\mathrm{M}} \text{ : The number of the independent mechanical variables.} \\ \max_{\hat{A}} \langle \hat{A}^{2} \rangle_{E,V}^{\text{ens}} \text{ : Maximum value of } \langle \hat{A}^{2} \rangle_{E,V}^{\text{ens}} \\ d \text{ : Dimension of the Hilbert space of the energy shell } [E - \Delta, E] \end{array} \right) \\ & \left(\begin{array}{c} We \text{ have} \\ N_{\mathrm{M}} = O(V^{m}) \\ \max_{\hat{A}} \langle \hat{A}^{2} \rangle_{E,V}^{\text{ens}} \leq K^{2} V^{2m} \\ \{K: \text{ some constant }\} \\ d = \exp[O(V)] \end{array} \right) \\ & \left(\begin{array}{c} \mathrm{Thus, we get} \\ \frac{N_{\mathrm{M}} \max_{\hat{A}} ||\hat{A}||^{2}}{d} \leq \frac{O(V^{3m})}{\exp[O(V)]} \\ \mathrm{That is, when } \epsilon = O(1), \\ (\mathrm{RHS}) \geq 1 - \exp[-O(V)] \end{array} \right) \end{split}$$

 $|\psi_E\rangle$ gives correct equilibrium values for all mechanical variables simultaneously.

Direction of Our Work

We saw

Typical states represent an equilibrium state.

----- We call such states "thermal pure quantum (TPQ) states".

However ...

 \checkmark How can we realize such $|\psi_E\rangle$?

Possible if we know all energy eigenstates $\{|n\rangle\}_n$, but it's as hard as the ensemble average...

Can we obtain the genuine thermodynamic variables from a single pure state?

Can we obtain such pure states corresponding to (grand)canonical ensemble?

We will solve these points and

Establish the formulation of statistical mechanics based on the **thermal pure quantum state**.

Table of Contents

1. Introduction

2. Canonical Thermal Pure Quantum State

3. Microcanonical TPQ State and Its Relation to Canonical TPQ State

4. Equilibrium State and Entanglement

Canonical Thermal Pure Quantum States PRL 111, 010401 (2013)

The canonical thermal pure quantum (TPQ) state at temperature $1/\beta$ is defined by

We don't have any resevoir.

/ It's not the "purification" of the Gibbs state $Z(\beta, V)^{-1} \exp[-\beta \hat{H}]$.

Properties of Canonical TPQ State

We will show a single realization of $|\beta, V\rangle$ gives thermodynamic predictions correctly.

Genuine Thermodynamic Variables

Free energy $F(\beta, V) = -\frac{1}{\beta} \ln Z(\beta, V)$ is obtained from the norm of $|\beta, V\rangle$!

$$F(\beta, V) \simeq -\frac{1}{\beta} \ln \langle \beta, V | \beta, V \rangle \left(= -\frac{1}{\beta} \ln \sum_{i,j} z_i^* z_j \langle i | \exp[-\beta \hat{H}] | j \rangle \right)$$

Mechanical Variables For $\forall \hat{A} \in Mechanical Variables}$, $\langle \hat{A} \rangle_{\beta,V}^{\text{ens}} \simeq \langle \hat{A} \rangle_{\beta,V}^{\text{TPQ}} \equiv \frac{\langle \beta, V | \hat{A} | \beta, V \rangle}{\langle \beta, V | \beta, V \rangle}$ $\left(\simeq Z(\beta, V)^{-1} \sum_{i,j} z_i^* z_j \langle i | \exp[-\frac{1}{2}\beta \hat{H}] \hat{A} \exp[-\frac{1}{2}\beta \hat{H}] | j \rangle \right)$ $\left\{ \begin{array}{l} |\beta, V\rangle \equiv \sum_{i} z_{i} \exp\left[-\frac{1}{2}\beta \hat{H}\right] |i\rangle \\ Z(\beta, V) : \text{Partition function} \end{array} \right\}$ Moreover, \simeq means they are exponentially close!

Error Estimate for Canonical TPQ State V Free energy For $\forall \epsilon > 0$, $P\left(\left|\frac{\langle\beta,V|\beta,V\rangle}{Z(\beta,V)} - 1\right| \le \epsilon\right) \ge 1 - \frac{1}{\epsilon^2} \frac{1}{\exp[2V\beta\{f(2\beta;V) - f(\beta;V)\}]}$ $\geq 1 - \frac{1}{\epsilon^2} \frac{1}{\exp[O(V)]}$ $Z(\beta, V)$: Partition function $f(\beta; V) \equiv \frac{F(\beta, V)}{V}$: Free energy density Mechanical Variables For $\forall \epsilon > 0$, $$\begin{split} & \operatorname{For} \, {}^{\forall} \epsilon > 0 , \\ & \operatorname{P} \left(\left| \langle \hat{A} \rangle_{\beta,V}^{\mathrm{TPQ}} - \langle \hat{A} \rangle_{\beta,V}^{\mathrm{ens}} \right| \le \epsilon \text{ for } {}^{\forall} \hat{A} \right) \\ & \geq 1 - \frac{N_{\mathrm{m}}}{\epsilon^2} \frac{\langle (\Delta \hat{A})^2 \rangle_{2\beta,V}^{\mathrm{ens}} + \left(\langle A \rangle_{2\beta,V}^{\mathrm{ens}} - \langle A \rangle_{\beta,V}^{\mathrm{ens}} \right)^2}{\exp[2V\beta\{f(2\beta;V) - f(\beta;V)\}]} \end{split}$$ $\geq 1 - \frac{1}{\epsilon^2} \frac{V^{3m}}{\exp[O(V)]}$ $N_{\rm m}$: The number of the independent mechanical variables. $\langle (\Delta \hat{A})^2 \rangle_{\beta,N}^{\mathrm{ens}}$:Variance of \hat{A} A single realization of the TPQ state gives equilibrium values of all macrocscopic quantities.

Table of Contents

- 1. Introduction
- 2. Canonical TPQ State
- 3. Equilibrium State and Entanglement
- 4. Numerics

Different Representations of the Same Equilibrium State

Conventional Formulation

$$\hat{\rho}_{\text{can}} \left(\equiv \frac{1}{Z(\beta,V)} \exp(-\beta \hat{H}) \right)$$

TPQ States Formulation $|\beta, V\rangle$

These formulations give the same thermodynamic predictions

Time invarianceP. Bocchieri and A. Loinger (1959),
P.Reiman (2007)Conventional Formulation

$$e^{-\frac{i}{\hbar}\hat{H}t}\rho_{\mathrm{can}}e^{\frac{i}{\hbar}\hat{H}t} = \rho_{\mathrm{can}} \qquad \left(\rho_{\mathrm{can}} \equiv \frac{\exp(-\beta\hat{H})}{Z(\beta,V)}\right)$$

Rigorously time invariant

TPQ States Formulation $e^{-\frac{i}{\hbar}\hat{H}t}|\beta,V\rangle = \sum_{n} e^{-\frac{i}{\hbar}E_{n}t}z_{n} \exp[-\beta\hat{H}]|n\rangle$ $\neq |\beta,V\rangle$ Time invarianceP. Bocchieri and A. Loinger (1959),
P.Reiman (2007)Conventional Formulation

$$e^{-\frac{i}{\hbar}\hat{H}t}\rho_{\mathrm{can}}e^{\frac{i}{\hbar}\hat{H}t} = \rho_{\mathrm{can}} \qquad \left(\rho_{\mathrm{can}} \equiv \frac{\exp(-\beta\hat{H})}{Z(\beta,V)}\right)$$

Rigorously time invariant

TPQ States Formulation $e^{-\frac{i}{\hbar}\hat{H}t}|\beta,V\rangle = \sum_{n} e^{-\frac{i}{\hbar}E_{n}t} z_{n} \exp[-\beta\hat{H}]|n\rangle$ $=\sum_{n} z'_{n} \exp[-\beta \hat{H}] |n\rangle$ $\left[z'_n \equiv e^{-\frac{i}{\hbar}E_n t} z_n \right]$ $\longrightarrow \{z'_n\}_n$ is another realization of $\{z_n\}_n$ Macroscopically time invariant

Response FunctionCf) P.Reiman (2007)
C.Bartsch and J.Gemmer (2009)
T Monnai, A Sugita (2014)When we apply an external field $-\hat{A}F(t)$ to system;
 $\hat{H}_{total}(t) = \hat{H}_0 - \hat{A}F(t)$,
the response of a mechanical variable \hat{B} is obtained by Green–Kubo

$$\Delta B \ \left(\equiv \operatorname{Tr}(\hat{\rho}_{\text{total}}(t)\hat{B}) - \operatorname{Tr}(\hat{\rho}_{0}\hat{B}) \right) \\ = \frac{1}{i} \int_{-\infty}^{t} \operatorname{Tr}([\hat{A}, \hat{B}(t)]\hat{\rho}_{0})$$

 $\begin{pmatrix} \hat{\rho}_{\rm total}(t) : {\rm Density\ matrix\ of\ the\ system} \\ \hat{\rho}_0 \equiv Z(\beta, V)^{-1} \exp[-\beta \hat{H}_0], \qquad \hat{B}(t) \equiv e^{i\hat{H}_0 t} \hat{B} e^{-i\hat{H}_0 t} \end{pmatrix}$ Therefore, we need to evaluate $\langle \hat{A} e^{i\hat{H}t} \hat{B} e^{-i\hat{H}t} \rangle_{\beta,V}^{\rm ens}$ to know the response.

→ Using the TPQ state, this is evaluated by $\frac{\langle \beta, V | \hat{A} e^{i\hat{H}t} \hat{B} e^{-i\hat{H}t} | \beta, V \rangle}{\langle \beta, V | \beta, V \rangle}$.

relations,

 $\begin{array}{ll} & \text{Error of time correlation} \\ & \text{Error of } \hat{C} \equiv \hat{A} e^{i\hat{H}t} \hat{B} e^{-i\hat{H}t} \text{ using the canonical TPQ state is evaluated as} \\ & \text{P}\left(\left|\langle \hat{C} \rangle_{\beta,N}^{\text{TPQ}} - \langle \hat{C} \rangle_{\beta,N}^{\text{ens}}\right| \geq \epsilon\right) \leq \frac{1}{\epsilon^2} \frac{\langle (\Delta \hat{C})^2 \rangle_{2\beta,V}^{\text{ens}} + (\langle C \rangle_{2\beta,V}^{\text{ens}} - \langle C \rangle_{\beta,V}^{\text{ens}})^2}{\exp[2V\beta\{f(2\beta;V) - f(\beta;V)\}]} \\ & \leq \frac{1}{\epsilon^2} \frac{V^{4m}}{\exp[O(V)]} \end{array}$

Even when we replace the mechanical variable with the dynamical quantities e.g. $\hat{C} \equiv \hat{A}e^{i\hat{H}t}\hat{B}e^{-i\hat{H}t}$, the error is still exponentially small, because $\|e^{i\hat{H}t}\hat{A}e^{-i\hat{H}t}\hat{B}\| = \|e^{i\hat{H}t}\|\|\hat{A}\|\|\|e^{-i\hat{H}t}\|\|\|\hat{B}\| \leq O(V^{4m})$

However, after waiting for exponentially long time, there can be a small period when $\left| \langle \hat{C} \rangle_{\beta,N}^{\text{TPQ}} - \langle \hat{C} \rangle_{\beta,N}^{\text{ens}} \right| \ge O(1).$

We can evaluate $\langle \hat{C} \rangle_{\beta,N}^{\text{ens}}$ correctly at most time t.

Fluctuation of Mixed state

In quantum statistical mechanics, fluctuation is the sum of "quantum fluctuation" and "thermal fluctuation"???

For an arbitrary mixed state $\hat{\rho}$, fluctuation may be decomposed into two parts.

$$\begin{split} & \operatorname{Tr}[\hat{A}^{2}\hat{\rho}] - \operatorname{Tr}[\hat{A}\hat{\rho}]^{2} = \sum_{i} w_{i} \left\{ \langle i|\hat{A}^{2}|i\rangle - \langle i|\hat{A}|i\rangle^{2} \right\} \\ & \quad \text{Fluctuation} \\ & \quad \hat{\rho} = \sum_{i} w_{i}|i\rangle\langle i| \\ & \quad \hat{\rho} = \sum_{i} w_{i}|i\rangle\langle i| \\ \end{split}$$

However, since the basis $\{|i\rangle\}_i$ is not unique for mixed states $\hat{\rho}$, the decomposition of the fluctuation is not uniquely determined either.

→ We can't distinguish quantum and thermal fluctuations.

Fluctuation of TPQ state Cf) Energy Eigenstate Themalization Hypothesis M.Rigol, V.Dunjko & M.Olshanii (2008)

$$\begin{split} & \operatorname{Tr}[\hat{A}^{2}\hat{\rho}] - \operatorname{Tr}[\hat{A}\hat{\rho}]^{2} = \sum_{i} w_{i} \left\{ \langle i|\hat{A}^{2}|i\rangle - \langle i|\hat{A}|i\rangle^{2} \right\} \\ & \quad \text{Fluctuation} \\ & \quad \text{Fluctuation} \\ & \quad + \sum_{i} w_{i} \left\{ \langle i|\hat{A}|i\rangle - \operatorname{Tr}[\hat{A}\hat{\rho}] \right\}^{2} \\ & \hat{\rho} = \sum_{i} w_{i}|i\rangle\langle i| \\ & \quad \text{``Thermal fluctuation''} \end{split}$$

By contrast, since $\hat{\rho}$ is a pure quantum state in TPQ formulation, the representation of $\hat{\rho}$ is unique, i.e., $\hat{\rho} = |\psi\rangle\langle\psi|$.

Therefore, in TPQ formulation, quantum and thermal fluctuations are well defined.

"Thermal fluctuation" = 0

"Quantum fluctuation" = $\langle (\Delta \hat{A})^2 \rangle^{\rm ens}$

All fluctuation in ensemble formulation is squeezed into quantum fluctuation in TPQ formulation.

TPQ states are almost maximally entangled

Bipartite entanglement entropy

Conventional Formulation

$$\hat{\rho}_{\text{can}} \left(\equiv \frac{1}{Z(\beta,V)} \exp(-\beta \hat{H}) \right)$$

TPQ States Formulation

→TPQ states have almost maximum entanglement.

Microscopically completely different states represent the same equilibrium state.

Table of Contents

- 1. Introduction
- 2. Canonical TPQ State
- 3. Equilibrium State and Entanglement
- 4. Numerics

Application to Numerics (1) PRL 111, 010401 (2013) We replace $\exp(-\beta \hat{H})/Z \longrightarrow |\beta, N\rangle \equiv \exp[-N\beta \hat{h}/2]|\psi_0\rangle$ It is advantageous in practical applications.

S=1/2 kagome-lattice Heisenberg antiferromagnet $\hat{H} = \sum_{(i,j)} \vec{S}_i \vec{S}_j$

Second peak vanishes as $V \to \infty$?

Application to Numerics (2) PRB 90, 121110(R) (2014) 1D Hubbard Model $\hat{H} = -t \sum_{i,\sigma} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{i+1,\sigma} + \text{h.c.} + U \sum_{i} (\hat{n}_{i,\uparrow} - \frac{1}{2}) (\hat{n}_{i+1,\downarrow} - \frac{1}{2})$ We use grandcanonical TPQ state : $\sum_{i} z_i \exp \left| -\frac{1}{2} \beta(\hat{H} - \nu \sum_{i} \hat{n}_i) \right|$ $|i\rangle$ **Number Density Correlation Function** 1.7 1.081 exact $(L = \infty)$ $L = 14, U = 8, \mu = 0$ (half-filled) **TPO** (L = 15)0.81.6 1.06 0.6 Number Density n 1.5 1.040.4r = 1.0 -1.4 0.2 ϕ_{+} 1.02 Φ. 1.3 Ω $U = 8, \mu = 3$ 1 -0.2 1.2 -0.4 0.98 1.1 $U=8, \mu=2$ $U = 1, \mu = 0.5$ -0.6 0.96 1 2 0 3 5 6 7 0.5 1.5 2.5 0 2 3 Temperature T Distance i

Agree with exact results

Correlation function can also be calculated

Application to Numerics (2) PRB 90, 121110(R) (2014) Hubbard Model

$$H = -t \sum_{i,\sigma} \hat{c}_{i,\sigma}^{\dagger} \hat{c}_{i+1,\sigma} + \text{h.c.} + U \sum_{i} (\hat{n}_{i,\uparrow} - \frac{1}{2}) (\hat{n}_{i+1,\downarrow} - \frac{1}{2})$$

Although equivalence of ensembles holds in $V \to \infty$, grandcanonical ensemble is more accurate than canonical one in finite V.

Numerical Procedure

Canonical TPQ states are represented by superposition of equilibrium states $|k\rangle$.

Numerical Procedure

Canonical TPQ states are represented by superposition of equilibrium states $|k\rangle$

Practical Formula

Moreover, we don't need to construct $|\beta, V\rangle$'s for different temperatures one by one.

$$\begin{split} \langle \beta, V | \hat{A} | \beta, V \rangle &= e^{-V\beta l} \sum_{k,k'} \frac{1}{k!k'!} \left(\frac{V\beta}{2} \right)^{k+k'} \langle k | \hat{A} | k' \rangle \\ &= \sum_{k=0}^{\infty} \frac{(V\beta)^{2k}}{(2k)!} \left[\langle k | \hat{A} | k \rangle \right] \\ &+ \sum_{k=0}^{\infty} \frac{(V\beta)^{2k+1}}{(2k+1)!} \left[\langle k | \hat{A} | k+1 \rangle \right] \\ &+ \text{(Exponentially Small Error)} \\ \begin{split} \left\{ | k \rangle &= \sum_{k=0}^{\infty} z_{k} (l - \hat{h})^{k} | i \rangle \right\} \end{split}$$

Equilibrium values are obtained only from $\langle k|\hat{A}|k\rangle$'s and $\langle k|\hat{A}|k+1\rangle$'s

Advantages for Numerical Method $\exp(-\beta \hat{H})/Z \longrightarrow |\beta, N\rangle \equiv \exp[-N\beta \hat{h}/2]|\psi_0\rangle$

Many Advantages :

Free from spatial dimension and structure of Hamiltonian.
 Applicable to 2D Frustrated/Fermion Systems

(Kagome) (Hubbard model)

Almost Self-validating formulation

$$\begin{split} \mathbf{P}\left(\left|\langle \hat{A} \rangle_{\beta,V}^{\mathrm{TPQ}} - \langle \hat{A} \rangle_{\beta,V}^{\mathrm{ens}}\right| &\leq \epsilon \text{ for } {}^{\forall} \hat{A}\right) \\ &\geq 1 - \left|\frac{N_{\mathrm{m}}}{\epsilon^{2}} \frac{\langle (\Delta \hat{A})^{2} \rangle_{2\beta,V}^{\mathrm{ens}} + \left(\langle A \rangle_{2\beta,V}^{\mathrm{ens}} - \langle A \rangle_{\beta,V}^{\mathrm{ens}}\right)^{2}}{\exp[2V\beta\{f(2\beta;V) - f(\beta;V)\}]} \end{split}$$

- Finite temperature.
- Less amount of calculation than a diagonalization of Hamiltonian.
- Only 2 vectors (i.e. Computer Memory) are needed

Summary

SS and A.Shimizu, PRL 108, 240401 (2012)

SS and A.Shimizu, PRL 111, 010401 (2013)

SS and A.Shimizu, arXiv:1312.5145

M.Hyuga, SS, K.Sakai, and A.Shimizu, PRB 90, 121110(R) (2014)

Thermal equilibrium state

$$\frac{1}{\exp[-\beta\hat{H}]} \quad |\beta,N\rangle \equiv \sum_{i} c_{i} \exp\left[-\frac{1}{2}\beta\hat{H}\right] |i\rangle$$

Genuine thermodynamic variables $F(\beta, V) \simeq -\frac{1}{\beta} \ln \langle \beta, V | \beta, V \rangle$ Mechanical variables $\langle \hat{A} \rangle_{\beta,N}^{\text{TPQ}} \equiv \frac{\langle \beta, N | \hat{A} | \beta, N \rangle}{\langle \beta, N | \beta, N \rangle} \simeq \langle \hat{A} \rangle_{\beta,N}^{\text{ens}}$

Errors are exponentially small!

TPQ states reproduce many aspects of statistical mechanics

- TPQ states are time invariant.
- Time correlation can be caluculated
- All fluctuation is squeezed into quantum fluctuation

TPQ states have large entanglement

Advantageous to numerical applications