## Quantum Dissipation of Heavy Quarks in the Quark-Gluon Plasma

Yukinao Akamatsu (Osaka) with Masayuki Asakawa, Shiori Kajimoto (Osaka), Alexander Rothkopf (Stavanger)

> June 6, 2018 at YITP, Kyoto New Frontiers in QCD 2018

References: Akamatsu-Asakawa-Kajimoto-Rothkopf 1805.00167, Kajimoto-Akamatsu-Asakawa-Rothkopf (18), Akamatsu (15,13), Akamatsu-Rothkopf (12)

### Motivation and Outline



- 1. Basics of Open Quantum System
- 2. Application to Quarkonium in QGP
- 3. Quantum State Diffusion Simulation for a Heavy Quark

What do we learn from heavy-ion data? Can we understand the data in terms of in-medium QCD forces at high T?

# **Basics of Open Quantum System**

### Open quantum systems

1. Total system consists of system (S) and environment (E)

$$\mathcal{H}_{tot} = \mathcal{H}_S \otimes \mathcal{H}_E$$

2. Hamiltonian

$$H_{\text{tot}} = H_S \otimes 1 + 1 \otimes H_E + H_I, \quad H_I = \sum H_I^{(S)} \otimes H_I^{(E)}$$

3. Reduced density matrix & Master equation

$$\rho_{S}(t) \equiv \mathrm{Tr}_{E}\rho_{\mathrm{tot}}(t), \quad i\frac{d}{dt}\rho_{\mathrm{tot}} = [H_{\mathrm{tot}},\rho_{\mathrm{tot}}] \quad \rightarrow \quad \underbrace{i\frac{d}{dt}\rho_{S} = ?}_{\mathrm{Markovian \, limit}}$$

#### 4. Theoretical methods

- Influence functional path integral representation for the master equation
- Schwinger-Dyson equation time evolution equation for the density matrix

### Time scale hierarchies

### Three basic time scales

- Environment correlation time  $\tau_E$
- System intrinsic time scale  $\tau_S$
- System relaxation time  $\tau_R$



### Time scale hierarchies

Quantum Brownian motion

 $\underbrace{\tau_E \ll \tau_R}_{\text{Markov approx.}}, \quad \underbrace{\tau_E \ll \tau_S}_{\text{derivative expansion}} \rightarrow \text{good description in phase space}$ 

Quantum optical system

 $\underbrace{\tau_E \ll \tau_R}_{\text{Markov approx.}}, \quad \underbrace{\tau_S \ll \tau_R}_{\text{rotating wave approx.}} \to \text{good description in eigenbasis}$ 

It is very important to estimate the relevant time scales We adopt QBM-type approximation scheme to study quarkonium

### Time scales of a quarkonium quantum Brownian motion in QGP

#### • Environment (QGP) correlation time $\tau_E$

1. Time scales of QGP

| Particle collision intervals | soft $\sim 1/g^2 T$ , hard $\sim 1/g^4 T$             |
|------------------------------|-------------------------------------------------------|
| Field correlation times      | electric $\sim 1/gT$ , magnetic $\sim 1/g^4T\ln(1/g)$ |

2. Heavy quarks mostly couple to electric field

$$\tau_E \sim \frac{1}{gT}$$

• System (Quarkonium) intrinsic time scale  $\tau_S$ 

 $\label{eq:orbital} \text{Orbital period} = \text{inverse energy gap} = \text{formation time}$ 



#### • System relaxation time $\tau_R$

Kinetic equilibration / color relaxation (for a single HQ / longer for a quarkonium)

$$\tau_R^{\rm kin} \sim \frac{M}{T} \frac{1}{g^4 T \ln(1/g)}, \quad \tau_R^{\rm color} \sim \frac{1}{g^2 T}$$

 $\Rightarrow$ Time scale hierarchy for quarkonium quantum Brownian motion

$$\tau_E \ll \tau_R, \quad \tau_E \ll \tau_S \to g \underbrace{\ll}_{\text{color}} 1, \quad g^3 \ln(1/g) \underbrace{\ll}_{\text{kinetic}} \frac{M}{T} \underbrace{\ll}_{\text{potential}} \frac{g}{\alpha^2} \sim \frac{100}{g^3}$$

Scale hierarchy satisfied/challenged at weak/strong coupling

#### Open quantum system by path integral

1. Path integral



2. Influence functional  $S_{\sf IF}$  for factorizable  $ho_{\sf tot}(0) = 
ho_S(0) \otimes 
ho_E^{\sf eq}$  [Feynman-Vernon (63)]

$$\begin{split} \rho_S(t,x,y) &= \underbrace{\int dX dY \delta(X-Y)}_{\text{trace out } E \ = \ \text{path closed at } t} \rho_{\text{tot}}(t,x,y,X,Y) \\ &= \int dx_0 dy_0 \rho_S(0,x_0,y_0) \underbrace{\int_{x_0,y_0}^{x,y} \mathcal{D}[\bar{x},\bar{y}] e^{iS_S[\bar{x}] - iS_S[\bar{y}] + iS_{\text{IF}}[\bar{x},\bar{y}]}}_{X_0,y_0} \end{split}$$

interaction btw forward and backward paths

Influence functional contains all the information of the open system

### Coarse graining for quantum Brownian motion

1. Influence functional up to quadratic order

$$iS_{\rm IF}[x,y] = -\frac{1}{2} \underbrace{\int_0^t dt_1 dt_2}_{\text{double time integral}} (x,y)_{(t_1)} \underbrace{\begin{pmatrix} G_{11} & -G_{12} \\ -G_{21} & G_{22} \end{pmatrix}_{(t_1,t_2)}}_{\text{correlation function of }E} \begin{pmatrix} x \\ y \end{pmatrix}_{(t_2)}$$

2. Choice of time after coarse graining

$$t^{>} = \max(t_1, t_2), \quad s = |t_1 - t_2|$$

3. Derivative expansion in s when  $\tau_S \gg \tau_E$ 

$$iS_{\rm IF}[x,y] = 2\gamma mT \int_0^t dt^>(x,y) \begin{pmatrix} -1 & 1\\ 1 & -1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}$$

momentum diffusion (fluctuation)

$$+\underbrace{i\gamma m \int_{0}^{t} dt^{>}(x,y) \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}}_{\text{drag force (dissipation)}} + \cdots$$

Influence functional is single time integral after coarse graining

### Caldeira-Leggett master equation

1. From path integral to differential equation

$$\begin{split} \rho_{S}(t,x,y) &= \int dx_{0} dy_{0} \rho_{S}(0,x_{0},y_{0}) \int_{x_{0},y_{0}}^{x,y} \mathcal{D}[\bar{x},\bar{y}] e^{iS_{S}[\bar{x}]-iS_{S}[\bar{y}]+iS_{\mathsf{IF}}[\bar{x},\bar{y}]} \\ &\to i \frac{\partial}{\partial t} \rho_{S}(t,x,y) = H(x) \rho_{S}(t,x,y) - H(y) \rho_{S}(t,x,y) \\ &\quad - i\gamma \Big[ \underbrace{2mT(x-y)^{2}}_{\mathsf{fluctuation}} + \underbrace{(x-y)(\partial_{x}-\partial_{y})}_{\mathsf{dissipation}} \Big] \rho_{S}(t,x,y) \end{split}$$

Equivalent to Fokker-Planck equation through Wigner transform

2. Ehrenfest equations

$$\frac{d}{dt}\langle p\rangle = -2\gamma\langle p\rangle, \quad \frac{d}{dt}\langle H\rangle = -4\gamma\left(\langle H\rangle - \frac{T}{2}\right)$$

Quantum mechanical description for Brownian motion

Caldeira-Leggett master equation is NOT Lindblad

1. Positivity of the density matrix

$$\forall |\alpha\rangle \to \langle \alpha |\rho_S |\alpha\rangle \ge 0$$

2. Any Markovian positive map is written by the Lindblad equation [Lindblad (76)]

$$\frac{d}{dt}\rho_S(t) = -i[H,\rho_S] + \sum_{i=1}^N \gamma_i \left( L_i \rho_S L_i^{\dagger} - \frac{1}{2} L_i^{\dagger} L_i \rho_S - \frac{1}{2} \rho_S L_i^{\dagger} L_i \right)$$

3. Lindblad form is obtained when higher order expansion is included [Diosi (93)]

$$S_{\mathsf{IF}} = \underbrace{S_{\mathsf{fluct}}}_{\substack{\alpha \ xx}} + \underbrace{S_{\mathsf{diss}}}_{\substack{\alpha \ x\dot{x}}} + \underbrace{S_{(2)}}_{\substack{\alpha \ \dot{x}\dot{x}}}$$

If  $L \sim x + \dot{x}$ , then  $L^{\dagger}L \ni \dot{x}\dot{x}$ 

Lindblad equation is not a must, but theoretically more complete

# Application to Quarkonium in QGP

#### Influence functional for heavy quarks

1. Heavy quarks in the non relativistic limit

$$\mathcal{L}_I = -gA_0^a \rho^a = -gA_0^a \left[ Q^{\dagger} t^a Q + Q_c t^a Q_c^{\dagger} \right]$$

2. Influence functional:  $-gA_0^a\rho^a$  is a source term for QGP

$$e^{iS_{\mathsf{IF}}[\rho]} \simeq \int \mathcal{D}[A,q] \rho_{\mathsf{QGP}}^{\mathsf{eq}}[A,q] \exp\left[i \int_{x \in \mathsf{CTP}} \left\{ \mathcal{L}_{\mathsf{QGP}}(A,q) - gA_0^a \rho^a \right\} \right]$$

- 3. Perturbative expansion in terms of gluon correlators in QGP
  - Choose  $t^> = \max(t_1, t_2)$  as a single time variable in  $S_{\mathsf{IF}}$

$$iS_{\rm IF} = -g^2 \int_{t^>} \int_{xy} \left(\rho_1^a, \ \rho_2^a\right)_{(t^>, x)} \int_{s>0} \left[ \begin{array}{cc} G^F & -G^< \\ -G^> & G^{\tilde{F}} \end{array} \right]_{(s, x-y)} \left( \begin{array}{c} \rho_1^a \\ \rho_2^a \end{array} \right)_{(t^> - s, y)}$$

- 4. Derivative expansion based on hierarchy of time scales between G and  $\rho$ 
  - Expand in s

$$S_{\mathsf{IF}} = \underbrace{S_{\mathsf{pot}} + S_{\mathsf{fluct}}}_{\propto \rho\rho} + \underbrace{S_{\mathsf{diss}}}_{\propto \rho\dot{\rho}} + \underbrace{S_{(2)}}_{\propto \dot{\rho}\dot{\rho}} + \cdots$$

#### More on influence functional for heavy quarks

1. Gluon correlators at low frequencies

$$V(r) = g^2 G_R(\omega = 0, r), \quad D(r) = g^2 T \frac{\partial}{\partial \omega} \underbrace{\sigma(\omega = 0, r)}_{\text{spectral function}}$$

2. Using the *ra*-basis:  $\rho_r = (\rho_1 + \rho_2)/2$ ,  $\rho_a = \rho_1 - \rho_2$ 

potenital

$$S_{\text{pot}} = \int_t \int_{\boldsymbol{xy}} V(\boldsymbol{x} - \boldsymbol{y}) \rho_a(x) \rho_r(y)$$

fluctuation

$$S_{\text{fluct}} = \frac{i}{2} \int_{t} \int_{\boldsymbol{x}\boldsymbol{y}} D(\boldsymbol{x} - \boldsymbol{y}) \rho_{a}(\boldsymbol{x}) \rho_{a}(\boldsymbol{y}) \Leftrightarrow S_{\text{fluct}}^{CL} = 2i\gamma m T x_{a}^{2}$$

dissipation

$$S_{\text{diss}} = -\frac{1}{2T} \int_t \int_{\boldsymbol{x}\boldsymbol{y}} D(\boldsymbol{x} - \boldsymbol{y}) \rho_a(\boldsymbol{x}) \dot{\rho}_r(\boldsymbol{y}) \Leftrightarrow S_{\text{diss}}^{CL} = -2\gamma m x_a \dot{x}_r$$

2nd order

$$S_{(2)} \simeq \frac{i}{4} \int_t \int_{\boldsymbol{xy}} \frac{D(\boldsymbol{x} - \boldsymbol{y})}{8T^2} \dot{\rho}_a(\boldsymbol{x}) \dot{\rho}_a(\boldsymbol{y})$$

Fluctuation-dissipation theorem in QGP sector relates  $S_{\text{fluct}}$  and  $S_{\text{diss}}$ 

### Master equation (for particles) from influence functional (for fields)

### THIS IS THE MOST DIRTY PART

#### 1. From path integral to functional differential equation

Analogous to deriving Schrödinger equation from path integral

$$\underbrace{\rho_{S}[t,Q_{1}^{\text{fin}},Q_{2}^{\text{fin}}]}_{\text{"wave function" at }t} = \int dQ_{1,2}^{\text{ini}} \underbrace{\rho_{S}[0,Q_{1}^{\text{ini}},Q_{2}^{\text{ini}}]}_{\text{initial "wave function"}} \int_{Q_{1,2}^{\text{ini}}}^{Q_{1,2}^{\text{fin}}} \mathcal{D}[Q_{1,2}] e^{iS_{S}[Q_{1}]-iS_{S}[Q_{2}]+iS_{\mathsf{IF}}[Q_{1},Q_{2}]} \\ \to \frac{\partial}{\partial t} \rho_{S}[t,Q_{1},Q_{2}] = \mathcal{L}[Q_{1},Q_{2}]\rho_{S}[t,Q_{1},Q_{2}]$$

#### 2. From functional density matrix to density matrix

(i) Recall that the basis of the functional space is the coherent state

$$|Q\rangle \sim e^{-\int_{\boldsymbol{x}} Q(\boldsymbol{x})\hat{Q}^{\dagger}(\boldsymbol{x})} |\Omega\rangle$$

(ii) Introduce a heavy quark by functional differentiation

$$\rho_Q(t, \boldsymbol{x}, \boldsymbol{y}) \sim \frac{\delta}{\delta Q_1(\boldsymbol{x})} \frac{\delta}{\delta Q_2(\boldsymbol{y})} \rho_S[t, Q_1, Q_2]|_{Q=0}$$

There must be several ways to derive the master equation from  $S_{\mathsf{IF}}$ 

### Lindblad equation for a quarkonium in QGP

$$\begin{split} \frac{d}{dt}\rho_{Q\bar{Q}}(t) &= -i[H,\rho_{Q\bar{Q}}] + \sum_{k} \left( L_{k}\rho_{Q\bar{Q}}L_{k}^{\dagger} - \frac{1}{2}L_{k}^{\dagger}L_{k}\rho_{Q\bar{Q}} - \frac{1}{2}\rho_{Q\bar{Q}}L_{k}^{\dagger}L_{k} \right) \\ L_{k} &= \sqrt{D(k)}e^{ikx/2} \Big[ 1 + \underbrace{\frac{ik \cdot \nabla_{x}}{4MT}}_{\Delta x_{Q} \sim k/MT} \Big] e^{ikx/2} \quad + \text{heavy antiquark} \end{split}$$

- $\blacktriangleright$  Scattering  $Qg \rightarrow Qg$  with momentum transfer k with rate D(k)
- Momentum transfer without recoil = stochastic potential (no dissipation)

$$L_k = \underbrace{\sqrt{D(k)}e^{ikx}}_{\Delta p_Q = k} + ext{heavy antiquark}$$

- Quantum dissipation from heavy quark recoil during a collision
- Coefficient 1/4MT fixed by fluctuation-dissipation theorem for QGP correlators

Quantum State Diffusion Simulation for a Heavy Quark

### Quantum State Diffusion simulation for Lindblad equation

1. Lindblad equation

$$\frac{d}{dt}\rho_S(t) = -i[H,\rho_S] + \sum_{i=1}^N \gamma_i \left( L_i \rho_S L_i^{\dagger} - \frac{1}{2} L_i^{\dagger} L_i \rho_S - \frac{1}{2} \rho_S L_i^{\dagger} L_i \right)$$

- 2. Stochastic unravelling
  - Equivalent to a nonlinear stochastic Schrödinger equation [Gisin-Percival (92)]

$$\begin{split} \rho_{S}(t) &= \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \frac{|\phi_{i}(t)\rangle \langle \phi_{i}(t)|}{||\phi_{i}(t)||^{2}} = \mathsf{M}\left[\frac{|\phi(t)\rangle \langle \phi(t)|}{||\phi(t)||^{2}}\right], \\ |d\phi\rangle &= -iH|\phi(t)\rangle dt + \sum_{n} \left(\underbrace{2\langle L_{n}^{\dagger}\rangle_{\phi}L_{n}}_{\text{nonlinear in }\phi} - L_{n}^{\dagger}L_{n}\right)|\phi(t)\rangle dt + \sum_{n} L_{n}|\phi(t)\rangle d\xi_{n}, \\ \underbrace{\langle d\xi_{n}d\xi_{m}^{*}\rangle}_{\text{complex noise}} &= 2\delta_{nm}dt \end{split}$$

### Apply this technique to heavy quark Lindblad equation

Nonlinear stochastic Schrödinger equation for a heavy quark

Nonlinear stochastic Schrödnger equation

$$\begin{split} d\phi(x,t) &= \phi(x,t+dt) - \phi(x,t) \\ &\simeq \left(i\frac{\nabla^2}{2M} - \frac{1}{2}D(0)\right)\phi(x)dt + d\xi(x)\phi(x) \\ &+ \frac{dt}{||\phi(t)||^2}\int d^3y D(x-y)\phi^*(y)\phi(y)\phi(x) + \mathcal{O}(T/M) \end{split}$$

Correlation of complex noise field

$$\langle d\xi(x)d\xi^*(y)\rangle = D(x-y)dt, \quad \langle d\xi(x)d\xi(y)\rangle = \langle d\xi^*(x)d\xi^*(y)\rangle = 0$$

Density matrix for a heavy quark

$$\rho_Q(x, y, t) = \mathsf{M}\left[\frac{\phi(x, t)\phi^*(y, t)}{||\phi(t)||^2}\right]$$

What is the equilibrium solution of the Lindblad equation? How does a heavy quark approach equilibrium?

### QSD simulation for a single heavy quark in an external potential

Numerical setups

$$\begin{split} V_{\text{ext}}(x) &= 0, \quad \frac{1}{2}M\omega^2 x^2, \quad -\frac{\alpha}{\sqrt{x^2 + r_c^2}}\\ D(x) &= \gamma \exp\left[-x^2/l_{\text{corr}}^2\right] \end{split}$$

| $\Delta x$ | $\Delta t$         | $N_x$    | Т    | $\gamma$ | $l_{corr}$ | ω     | $\alpha$ | $r_c$ |
|------------|--------------------|----------|------|----------|------------|-------|----------|-------|
| 1/M        | $0.1M(\Delta x)^2$ | 128, 127 | 0.1M | $T/\pi$  | 1/T        | 0.04M | 0.3      | 1/M   |

$$\Delta x = \frac{1}{M} \ll l_{\rm corr} = \frac{10}{M} \ll N_x \Delta x = \frac{128}{M}$$

Do the density matrix approach  $\propto \exp(-H/T)$ ?

### Solitonic wave function in one sampling



Wave function is localized because of the nonlinear evolution equation

Equilibration of a heavy quark:  $V_{\text{ext}} = 0$ 

Time evolution of momentum distribution

• Relaxation time of corresponding classical system  $M \tau_{\rm relax} \sim 300$ 



#### Equilibrium momentum distribution is the Boltzmann distribution!

Equilibration of a heavy quark:  $V_{\text{ext}} = V_{\text{HO/Coulomb}}$ 

Time evolution of eigenstate occupation (lowest 3 levels)

Harmonic potential (left), regularized Coulomb potential (right)



Eigenstate occupation relaxes to a static state Relaxation time depends on the initial state and rate equation is inapplicable

Equilibrium distribution of a heavy quark:  $V_{\text{ext}} = V_{\text{HO/Coulomb}}$ 

Equilibrium distribution of eigenstates (lowest 10 levels)

Harmonic potential (top), regularized Coulomb potential (bottom)



We also checked that off-diagonal part is 0 within statistical fluctuation

Eigenstate distribution in the external potential is also the Boltzmann distribution

### QSD simulation without quantum dissipation (= stochastic potential)

Heavy quark is overheated because energy increases without dissipation

▶ Neglect  $\mathcal{O}(T/M)$  terms in the nonlinear stochastic Schrödinger equation



#### Dissipation is more important for smaller bound state because decoherence is ineffective

## Summary and outlook

#### Influence functional approach to derive Lindblad equation

- Second order in gradient expansion prescription by Diosi
- Dissipative effect originates from heavy quark recoil during a collision

#### Quantum State Diffusion simulation for Lindblad equation

- Equivalent to nonlinear stochastic Schrödinger equation (integro-differential equation)
- Numerically confirm the equilibration of a heavy quark  $\rightarrow$  Can be shown analytically?

#### Possible application

- Quarkonium evolution in heavy-ion collisions [Akamatsu et al, in progress]
- Dark matter bound state in early universe? [Kim-Laine (17)]
- Cold atomic gases? [Braaten-Hammer-Lepage (16)]

# Back Up

## Explicit form of gluon correlators in HTL approximation

$$G_{R}(\omega = 0, r) = -\frac{e^{-m_{D}r}}{4\pi r},$$
  
$$\frac{\partial}{\partial \omega}\sigma_{ab,00}(0, \vec{r}) = \int \frac{d^{3}k}{(2\pi)^{3}} \frac{\pi m_{D}^{2} e^{i\vec{k}\cdot\vec{r}}}{k(k^{2} + m_{D}^{2})^{2}},$$
  
$$m_{D}^{2} = \frac{g^{2}T^{2}}{3} \left(N_{c} + \frac{N_{f}}{2}\right)$$

### Example 1 – Quantum optical master equation



A two-level atom in a photon gas

$$\frac{d}{dt}\rho_{A} = \gamma \underbrace{(N(\omega_{0})+1)}_{\text{emission}} \left[ \sigma_{-}\rho_{A}\sigma_{+} - \frac{1}{2}\sigma_{+}\sigma_{-}\rho_{A} - \frac{1}{2}\rho_{A}\sigma_{+}\sigma_{-} \right] \\ + \gamma \underbrace{N(\omega_{0})}_{\text{absorption}} \left[ \sigma_{+}\rho_{A}\sigma_{-} - \frac{1}{2}\sigma_{-}\sigma_{+}\rho_{A} - \frac{1}{2}\rho_{A}\sigma_{-}\sigma_{+} \right]$$

Approximations

$$\underbrace{\rho_{\text{tot}}(t) \simeq \rho_A(t) \otimes \rho_B^{\text{eq}}}_{\text{Born approx. (weak coupling)}}, \underbrace{\tau_B \ll \tau_R \equiv 1/\gamma}_{\text{Markov approx.}}, \underbrace{\tau_A \equiv 1/\omega_0 \ll \tau_R}_{\text{rotating wave approx.}}$$

- Environment correlation time \(\tau\_B\)
- ▶ System intrinsic time scale  $\tau_A$ , system relaxation time  $\tau_R$

Master equation is an effective description at  $\tau_R \gg \tau_B$  for  $\tau_A \ll \tau_R$ 

### Example 2 – Quantum Brownian motion



Caldeira-Leggett model [Caldeira-Leggett (83)]

Brownian particle linearly coupled to harmonic oscillators

$$i\frac{d}{dt}\rho_{A} = [H_{A},\rho_{A}] + \underbrace{\gamma[x,\{p,\rho_{A}\}]}_{\text{drag force}} - \underbrace{2i\gamma mT[x,[x,\rho_{A}]]}_{\text{momentum diffusion}}$$

Approximations

$$\underbrace{\rho_{\rm tot}(t)\simeq\rho_A(t)\otimes\rho_B^{\rm eq}}_{\rm Born \ approx. \ (weak \ coupling)}, \quad \underbrace{\tau_B\ll\tau_R\equiv 1/\gamma}_{\rm Markov \ approx.}, \quad \underbrace{\tau_B\ll\tau_A}_{\rm derivative \ expansion}$$

- Environment correlation time \(\tau\_B\)
- ▶ System intrinsic time scale  $\tau_A$ , system relaxation time  $\tau_R$

Master equation is an effective description at  $\tau_R \gg \tau_B$  for  $\tau_A \gg \tau_B$