COLOR and NOISE

New Frontiers in QCD 2018 YITP, Kyoto

May 30, 2018

Dynamics of heavy quarks and their bound states in a quark-gluon plasma

WORK IN PROGRESS!

Results presented are based on
A. Beraudo,JPB, C. Ratti, NPA 806 (2008) 312 [arxív: 0712.4394]
A. Beraudo, JPB, P. Faccioli and G. Garberoglio, Nucl.Phys. A846 (2010) 104-142 [arXív: 1005.1245] JPB, D. de Boni, P. Faccioli and G. Garberoglio, Nucl.Phys. A946 (2016) 49-88 [arxiv: 15003.03857]

JPB, M. Escobedo-Espinosa, arxiv:1711.10812, 1803.07996
similar effort by Y. Akamatsu and collaborators (cf. Akamatsu's talk next week)

Outline

Basic concepts
influence functional, density matrix, complex potential, etc, (QED)

Extension to QCD why it is not "trivial"

Basic hamiltonian

(Ignore color here)

$$
H=H_{Q}+H_{1}+H_{\mathrm{pl}}
$$

For a heavy quark-antiquark pair

$$
H_{Q}=\frac{\boldsymbol{p}_{1}^{2}}{2 M}+\frac{\boldsymbol{p}_{2}^{2}}{2 M}+V\left(\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right)
$$

Linear coupling to plasma gauge field

$$
H_{1}=g \int_{\boldsymbol{r}} n(\boldsymbol{r}) A_{0}(\boldsymbol{r})
$$

simple setting

Initial density matrix

$$
\begin{aligned}
\mathcal{D}\left(t_{0}\right)=\mathcal{D}_{Q}\left(t_{0}\right) \otimes & \mathcal{D}_{\mathrm{pl}}\left(t_{0}\right) \\
& \mathcal{D}_{\mathrm{pl}}\left(t_{0}\right)=\frac{1}{Z_{\mathrm{pl}}} \sum_{m} \mathrm{e}^{-\beta E_{m}}
\end{aligned}
$$

Reduced density matrix

$$
\mathcal{D}_{Q}=\operatorname{Tr}_{\mathrm{pl}} \mathcal{D}
$$

Basic question

$$
P\left(\boldsymbol{X}_{f}, t_{f} \mid \boldsymbol{X}_{i}, t_{i}\right)=\left|\left\langle\boldsymbol{X}_{f}, t_{f} \mid \boldsymbol{X}_{i}, t_{i}\right\rangle\right|^{2}=\left\langle\boldsymbol{X}_{f}\right| \mathcal{D}_{Q}\left(t_{f}\right)\left|\boldsymbol{X}_{f}\right\rangle
$$

Path integral formulation

$$
\begin{aligned}
& \left(Q_{f}, t_{f} \mid Q_{i} t_{i}\right)=\int_{x\left(t_{i}\right)=Q_{i}}^{x\left(t_{f}\right)=Q_{f}}[\mathcal{D} x(t)] \exp \left[i \int_{t_{i}}^{t_{f}} d t\left(\frac{1}{2} M \dot{x}^{2}-V(x)\right)\right] \\
& P\left(\boldsymbol{Q}_{f}, t_{f} \mid \boldsymbol{Q}_{i}, t_{i}\right)=\left|\left(\boldsymbol{Q}_{f}, t_{f} \mid \boldsymbol{Q}_{i}, t_{i}\right)\right|^{2} \\
& P\left(Q_{f}, t_{f} \mid Q_{i} t_{i}\right)=\int_{C}[\mathcal{D} x(t)] \exp \left[i \int_{C} d t_{C}\left(\frac{1}{2} M \dot{x}^{2}-V(x)\right)\right] \\
& V(x)=g A_{0}(x)
\end{aligned}
$$

Path integral and influence functional

$$
\begin{aligned}
P\left(Q_{f}, t_{f} \mid Q_{i}, t_{i}\right)= & \int_{C} D Q \mathrm{e}^{i S_{0}[Q]} \mathrm{e}^{i \Phi[Q]} \\
& \mathrm{e}^{\mathrm{i} \Phi[Q]}=\int D A_{0} \mathrm{e}^{-\mathrm{i} \int_{\mathrm{C}^{4}}{ }^{4} x \rho \rho(x) A_{0}(x)} \mathrm{e}^{\mathrm{iS} S_{2}\left[A_{0}\right]}
\end{aligned}
$$

'Integrate out' the plasma particles and keep the quadratic part of the resulting action (HTL approximation)

$$
\begin{aligned}
& S_{2}\left[A_{0}\right]=-\frac{1}{2} \int_{\mathcal{C}} \mathrm{d} x\left(A_{0}(x) \nabla^{2} A_{0}(x)\right)-\mathrm{i} \operatorname{Tr} \ln \left[\mathrm{i} \gamma^{\mu} \partial_{\mu}-m-e \gamma^{0} A_{0}(x)\right] \\
& \text { non = mn+momn+ }
\end{aligned}
$$

Gaussian integration yields

$$
\begin{aligned}
& \Phi[\boldsymbol{Q}]=\frac{g^{2}}{2} \iint_{\mathcal{C}} \mathrm{d}^{4} x \mathrm{~d}^{4} y \rho(x) \Delta_{\mathcal{C}}(x-y) \rho(y) \\
& \Delta(x-y) \equiv i\left\langle T_{\mathcal{C}}\left[A_{0}(x) A_{0}(y)\right]\right\rangle
\end{aligned}
$$

$$
G^{>}\left(t, \boldsymbol{r}_{1} ; t, \boldsymbol{r}_{2} \mid 0, \boldsymbol{r}_{1}^{\prime} ; 0, \boldsymbol{r}_{2}^{\prime}\right)=\frac{1}{Z} \operatorname{Tr}\left\{\mathrm{e}^{-\beta H} J_{Q}\left(t ; \boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) J_{Q}^{\dagger}\left(0 ; \boldsymbol{r}_{1}^{\prime}, \boldsymbol{r}_{2}^{\prime}\right)\right\}
$$

Large time behaviour $\left(t m_{D} \gg 1\right)$ and large mass limit:

$$
\begin{gathered}
\bar{G}\left(t, r_{1}-r_{2}\right) \underset{t \rightarrow \infty}{\sim} \exp \left[-i V_{\mathrm{eff}}\left(r_{1}-r_{2}\right) t\right] \\
V_{\mathrm{eff}}(\boldsymbol{r})=V(\boldsymbol{r})+i W(\boldsymbol{r}) \\
V_{\mathrm{eff}}\left(r_{1}-r_{2}\right) \equiv g^{2} \int \frac{d q}{(2 \pi)^{3}}\left(1-e^{i q \cdot\left(r_{1}-r_{2}\right)}\right) D_{00}(\omega=0, q) \\
= \\
g^{2} \int \frac{d q}{(2 \pi)^{3}}\left(1-e^{i q \cdot\left(r_{1}-r_{2}\right)}\right)\left[\frac{1}{q^{2}+m_{D}^{2}}-i \frac{\pi m_{D}^{2} T}{|q|\left(q^{2}+m_{D}^{2}\right)^{2}}\right] \\
=
\end{gathered}
$$

(*first obtained by M. Laine et al hep-ph/ 0611300)

The imaginary part of the effective potential

$$
\Gamma(\boldsymbol{r})=W(\boldsymbol{r})-W(0)=2 \phi\left(m_{D} r\right)
$$

At short distance, interference produces cancellation: a small dipole does not "see" the electric field fluctuations.

At large distance the imaginary part is twice the 'damping rate' of the heavy quark

For one heavy quark $\partial_{t}\langle\boldsymbol{r}| \mathcal{D}_{Q}\left|\boldsymbol{r}^{\prime}\right\rangle=\cdots-\Gamma\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)\langle\boldsymbol{r}| \mathcal{D}_{Q}\left|\boldsymbol{r}^{\prime}\right\rangle$

Approximations:

Low frequency response of the plasma

semi-classical expansion

Langevin equation

$$
\begin{aligned}
\frac{M}{2} \ddot{\boldsymbol{r}}^{i}=-\gamma_{i j} \boldsymbol{v}^{j}-\boldsymbol{\nabla}^{i} V(\boldsymbol{r})+\xi^{i}(\boldsymbol{r}, t) \\
\gamma_{i j}(\boldsymbol{r})=\frac{1}{2 T} \eta_{i j}(\boldsymbol{r}) \quad\left\langle\xi^{i}(\boldsymbol{r}, t) \xi^{i}\left(\boldsymbol{r}, t^{\prime}\right)\right\rangle=\eta_{i j}(\boldsymbol{r}) \delta\left(t-t^{\prime}\right) \\
\text { Non trivial noise }
\end{aligned}
$$

Isotropic plasma

$$
\eta_{i j}(\boldsymbol{r})=\delta_{i j} \eta(\boldsymbol{r}) \quad \eta(\boldsymbol{r})=\frac{1}{6}\left(\nabla^{2} W(0)+\nabla^{2} W(\boldsymbol{r})\right)
$$

sequential suppression

:

Extension to QCD

Hamiltonian for a quark-antiquark pair

$$
\begin{gathered}
H=H_{Q}+H_{1}+H_{\mathrm{pl}} \\
H_{Q}=H_{\mathrm{s}, \mathrm{o}}=-\frac{\Delta_{r}}{M}-\frac{\Delta_{R}}{4 M}+V_{\mathrm{s}, \mathrm{o}}(\boldsymbol{r}) \\
V_{\mathrm{s}}(\boldsymbol{r})=-\frac{C_{F} \alpha_{s}}{r} \quad \begin{array}{l}
\text { (single) } \\
V_{0}(\boldsymbol{r})=\frac{\alpha_{s}}{2 N_{c} r} \\
\text { (octele) }^{H_{1}=-g \int_{\boldsymbol{x}} a_{0}^{A}(\boldsymbol{x}) n^{A}(\boldsymbol{x})} \\
n^{A}(\boldsymbol{x})=\delta(\boldsymbol{x}-\hat{\boldsymbol{r}}) T^{A} \otimes \mathbb{I}-\mathbb{I} \otimes \delta(\boldsymbol{x}-\hat{\boldsymbol{r}}) \tilde{T}^{A}
\end{array}
\end{gathered}
$$

Equation of motion for the pair density matrix within the same approximations as in QED

$$
\begin{aligned}
& \frac{\mathrm{d} \mathcal{D}_{Q}}{\mathrm{~d} t}+i\left[H_{Q}, \mathcal{D}_{Q}(t)\right] \approx-\frac{i}{2} \int_{x_{x^{\prime}}} V\left(x-x^{\prime}\right)\left[n_{x}^{a} n_{x^{\prime}}^{a}, \mathcal{D}_{Q}\right] \\
& +\frac{1}{2} \int_{x_{x^{\prime}}} W\left(x-x^{\prime}\right)\left(\left\{n_{x}^{a} n_{x^{\prime}}^{a}, \mathcal{D}_{Q}\right\}-2 n_{x}^{a} \mathcal{D}_{Q} n_{x^{\prime}}^{a}\right) \\
& +\frac{i}{4 T} \int_{x^{\prime}} W\left(x-x^{\prime}\right)\left(\left[n_{x}^{a}, \dot{n}_{x^{\prime}}^{a} \mathcal{D}_{Q}\right]+\left[n_{x}^{a}, \mathcal{D}_{Q} n_{x^{\prime}}^{a}\right]\right)
\end{aligned}
$$

Quark-antiquark pair in the large mass limit
singlet-octet representation

$$
\begin{aligned}
& \mathcal{D}_{Q}(t)=D_{\mathrm{s}}(t)|\mathrm{s}\rangle\langle\mathrm{s}|+\mathrm{D}_{\mathrm{o}}(\mathrm{t}) \sum_{\mathrm{C}}\left|\mathrm{o}^{\mathrm{C}}\right\rangle\left\langle\mathrm{o}^{\mathrm{C}}\right| \\
& \frac{\mathrm{d} D_{\mathrm{s}}}{\mathrm{~d} t}=-2 C_{F} \Gamma(\boldsymbol{r})\left(D_{\mathrm{s}}-D_{\mathrm{o}}\right) \\
& \frac{\mathrm{d} D_{\mathrm{o}}}{\mathrm{~d} t}=-\frac{1}{N_{c}} \Gamma(\boldsymbol{r})\left(D_{\mathrm{o}}-D_{\mathrm{s}}\right)
\end{aligned}
$$

Alternative representation

$$
D_{0}=\frac{1}{N_{c}^{2}}\left(D_{s}+\left(N_{c}^{2}-1\right) D_{o}\right)
$$

$$
D_{8}=\frac{2}{N_{c}}\left(D_{s}-D_{o}\right)
$$

$$
\begin{aligned}
\frac{\partial D_{0}}{\partial t} & =0 \\
\frac{\partial D_{8}}{\partial t} & =-N_{c} \Gamma(\boldsymbol{r}) D_{8}
\end{aligned}
$$

Langevin equation with a random color force

$$
\begin{aligned}
& \partial_{t} D_{0}^{\prime}+\frac{2 \mathbf{p} \cdot \nabla}{M} D_{0}^{\prime}-\frac{C_{F}}{4} \mathcal{H}_{i j}(0) \Delta_{p}^{i j} D_{0}^{\prime}-\frac{2 C_{F} F^{i}(\mathbf{r}) F^{j}(\mathbf{r})}{N_{C}^{2} \Gamma(\mathbf{r})} \Delta_{p}^{i j} D_{0}^{\prime} \\
& -\frac{C_{F}}{2 M T} \mathcal{H}_{i j}(0) \nabla_{p}^{i}\left(p^{j} D_{0}^{\prime}\right)=0
\end{aligned}
$$

New random color force

$$
\mathcal{H}_{i j}(\boldsymbol{y}) \equiv \frac{\partial^{2} W(\boldsymbol{y})}{\partial y_{i} \partial y_{j}}
$$

Heavy quarkonium Histogram of distances
[1711.10812]

The color random force can produce unphysical kicks

Simulating 50 pairs

(after tuning parameters to avoid unphysical kicks)

A fair fraction of the pairs remain "bound" after $t=5 \mathrm{fm} / \mathrm{c}$ (recombination)

Alternative option

$$
\begin{aligned}
& {\left[\partial_{t}+\frac{2 \mathbf{p} \cdot \nabla_{\mathbf{r}}}{M}+C_{F} \mathbf{F}(\mathbf{r}) \cdot \nabla_{\mathbf{p}}\right] P_{s}=-2 C_{F} \Gamma(\mathbf{r})\left(P_{s}-\frac{P_{o}}{N_{c}^{2}-1}\right) } P_{o}=\left(N_{c}^{2}-1\right) D_{o} \\
& {\left[\partial_{t}+\frac{2 \mathbf{p} \cdot \nabla_{\mathbf{r}}}{M}-\frac{1}{2 N_{c}} \mathbf{F}(\mathbf{r}) \cdot \nabla_{\mathbf{p}}\right] P_{o}=-\frac{1}{N_{c}} \Gamma(\mathbf{r})\left(P_{o}-\left(N_{c}^{2}-1\right) P_{s}\right) }
\end{aligned}
$$

Treat the right hand side as a collision term in a Boltzmann eq.

something missing....

A more precise evolution equation for the density matrix [1803.07996]

$$
\begin{array}{ll}
\frac{\mathrm{d} \mathcal{D}}{\mathrm{~d} t}+i\left[H_{Q}, \mathcal{D}_{Q}(t)\right]= \\
-\int_{\mathbf{x x}^{\prime}} \int_{0}^{t-t_{0}} \mathrm{~d} \tau\left[n_{\mathbf{x}}^{A}, U_{Q}(\tau) n_{\mathbf{x}^{\prime}}^{A} \mathcal{D}_{Q}(t-t=\tau)\right. \\
\left.-\int_{\mathbf{x x}^{\prime}} \int_{0}^{t-t_{0}} \mathrm{~d} \tau\left[U_{Q}(\tau) \mathcal{D}_{Q}(t)\right] \Delta^{>}\left(\tau ; \mathbf{x}-\mathbf{x}^{\prime}\right)\right) \\
\left.n_{\mathbf{x}^{\prime}}^{A} U_{Q}^{\dagger}(\tau), n_{\mathbf{x}}^{A}\right] \Delta^{<}\left(\tau ; \mathbf{x}-\mathbf{x}^{\prime}\right),
\end{array}
$$

Before, we assumed

$$
U_{Q}(\tau) \simeq 1-i H_{Q} \tau
$$

combination of rate equation and Langevin equation

- There is no gap in the octet-octet transitions, so these can be treated with a Langevin equation (as in QED)
- Singlet to octet transitions can be treated with a rate equation

Illustration. Toy model with a single (singlet) bound state.

$$
\left.\frac{\mathrm{d} p^{\mathrm{s}}}{\mathrm{~d} t}=g^{2} C_{F} \int_{\mathbf{p}}\left(p_{\mathbf{p}}^{\mathrm{o}}-p^{\mathrm{s}} \mathrm{e}^{-\frac{\mathrm{E}_{\mathbf{p}}^{\mathrm{o}}-E^{\mathrm{s}}}{T}}\right) \int_{\mathbf{q}} \Delta^{>}\left(\omega_{\mathbf{p}}^{\mathrm{o}}-E^{\mathrm{s}}, \mathbf{q}\right)\left|\langle\mathrm{s}| \mathcal{S}_{\mathbf{q} \cdot \hat{\mathbf{r}}}\right| \mathrm{o}, \mathbf{p}\right\rangle\left.\right|^{2}
$$

$$
\begin{aligned}
& \frac{\partial p_{\mathbf{p}}^{\mathrm{o}}}{\partial t}-\gamma \nabla\left(\mathbf{p} p_{\mathbf{p}}^{\mathrm{o}}\right)-\frac{T \gamma M}{2} \Delta^{2} p_{\mathbf{p}}^{\mathrm{o}}= \\
& \left.-\frac{g^{2}}{2 N_{c}} \frac{1}{\Omega}\left(p_{\mathbf{p}}^{\mathrm{o}}-p^{\mathrm{s}} \mathrm{e}^{-\frac{E_{\mathbf{p}}^{\mathrm{o}}-E^{\mathrm{s}}}{T}}\right) \int_{\mathbf{q}} \Delta^{>}\left(\omega_{\mathbf{p}}^{\mathrm{o}}-E^{\mathrm{s}}, \mathbf{q}\right)\left|\langle\mathrm{s}| \mathcal{S}_{\mathbf{q} \cdot \hat{\mathbf{r}}}\right| 0, \mathbf{p}\right\rangle\left.\right|^{2}
\end{aligned}
$$

	$\Omega=1 \mathrm{fm}^{3}$			$\Omega=100 \mathrm{fm}^{3}$		
	$5 \mathrm{fm} / \mathrm{c}$	$100 \mathrm{fm} / \mathrm{c}$	eq.	$5 \mathrm{fm} / \mathrm{c}$	$100 \mathrm{fm} / \mathrm{c}$	eq.
$T=200 \mathrm{MeV}$	0.86	0.136	0.0814	0.85	0.0438	0.00089
$T=400 \mathrm{MeV}$	0.39	0.0515	0.0175	0.36	0.0002	0.00018

summary

- In QED, semi-classical approximation and low frequency response of plasma provide a consistent framework
- In QCD, singlet-octet transitions complicate the story (color dynamics cannot be treated semi-classically).
- Still a consistent approach can be obtained, mixing Langevin (classical dynamics) and rate equations (the imaginary potential is energy dependent).
- Note that screening and collision rates are NOT independent.

