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Basic hamiltonian

For a heavy quark-antiquark pair

Linear coupling to plasma gauge field

or Langevin equations made in the abelian case needs to be reconsidered, which
we do in this paper. We shall see that the complete dynamics, including the
color degrees of freedom, can still be described by Fokker-Plack and Langevin
equations, but only in very specific circumstances.

This paper focusses on conceptual issues. It is organized as follows. In
Sect. 2 we derive the quantum master equation for the reduced density ma-
trix of a system of heavy quarks and antiquarks immersed in a quark-gluon
plasma, in thermal equilibrium. This equation, whose structure is close to that
of a Lindblad equation, is used as a starting point of all later developments.
In Sect. 3 we rederive from it the results that we had previously obtained for
the abelian plasma [24] using a path integral formalism. In particular we re-
cover, after performing a semi-classical approximation, the Fokker-Planck and
Langevin equations that describe the random walks of center of mass and rela-
tive coordinates of a quark-antiquark pair. This section on the abelian plasma
paves the way for the treatment of the non abelian case discussed in Sect. 4.
The equations that we present there, before we do the semi-classical approxi-
mation, are fully quantum equations. But they are di�cult to solve in general.
Thus, in Sect. 5 we look for additional approximations that allow us to obtain
solutions in some particular regimes, in order to start getting insight into the
general solution. In particular, we explore two ways of implementing the semi-
classical approximation. In the first case, we restrict the dynamics to stay close
to a maximum entropy color state, where the colors of the heavy quarks are
random. In this case the dynamics is described by a Langevin equation with a
new random color force. The method used in this case is easily extended to the
case of an arbitrary number of quark-antiquark pairs, and allows us to address
the question of recombination. However, it is based on a perturbative approach
that breaks down for some values of the parameters. Another strategy focuses
on the case of a single quark-antiquark pair. The transition between singlets
and octets are treated as “collisions” in a kinetic equation that we solve using
Monte Carlo techniques. The last section summarizes our main results, and
presents a brief outlook. Several appendices at the end gather various technical
material.

2. Equation for the density matrix of heavy quarks in a quark-gluon

plasma

Our description of the heavy quark dynamics in a quark-gluon plasma is
based on the assumption that the interaction between the heavy quarks and the
quark-gluon plasma is weak, and can be treated in perturbation theory (with
appropriate resummations). The generic hamiltonian for such a system reads

H = HQ +H1 +Hpl, (1)

where HQ describes the dynamics of the heavy quarks in the absence of the
plasma, Hpl is the hamiltonian of the plasma in the absence of the heavy quarks,
andH1 is the interaction between the heavy quarks and the plasma constituents.
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At this point we may use the formulae listed in Appendix F in order to
perform the small y expansion. We obtain
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This pair of equations forms a system that we can diagonalize perturba-
tively, following the procedure of Sect. 5.1. The relevant coe�cients that enter
Eq. (112) are easily identified on the equations above. We then find that the
evolution of the component of the density matrix that is close to the maximum
entropy configuration is given by
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Apart from keeping the dynamics of the center of mass explicit, this equation is
very similar to Eq. (113). Noting that this is the only di↵erence we can deduce
the formulas that we used in Sect. 5.2.
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(Ignore color here)
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Simple setting

Initial density matrix
We also assume that at time t0, the plasma is in a state of thermal equilibrium,
so that its density matrix D

I

pl(t0) = Dpl(t0) is a canonical density matrix,

Dpl(t0) =
1

Zpl

X

m

e��Em , (12)

where � = 1/T , with T the equilibrium temperature. This factorization of
the density matrix allows for a simple calculation of the trace over the plasma
degrees of freedom.

Let us then examine perturbation theory at second order in H1, with H1

given by Eq. (2). Performing the trace over the plasma degrees of freedom is
immediate, thanks to the specific structure of H1 and the factorization of the
density matrix at t = t0. One obtains
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where, in the last three lines, we have used the convention that t1, t01 run on the
upper part of the contour, while t2, t

0
2 run on the lower branch. Note that the

linear term vanishes since the plasma is color neutral (so that hA
a

0(x)i0 = 0).
Here the notation h· · · i0 stands for the average with the plasma equilibrium
density matrix, that is

h· · · i0 = Trpl


1

Zpl
e��Hpl · · ·

�
. (14)

Similarly the correlators of the gauge fields are diagonal in color, i.e. they are
proportional to �

ab. These correlators are the exact correlators in the plasma
(the fields are in the interaction representation, which corresponds to the Heisen-
berg representation when considering the plasma alone). They are written as
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The apparent inversion of the order of times in the last correlator results from
the relation TrplAb
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lows from the cyclic invariance of the trace.
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Reduced density matrix

The heavy quarks are treated as non relativistic particles, and the spin degree
of freedom is ignored: the state of a heavy quark is then entirely specified by
its position and color. As we have mentioned already, we shall consider H1

to be small and treat it as a perturbation. In Coulomb gauge, and neglecting
magnetic interactions, this interaction takes the form

H1 = �g

Z

r
A

a

0(r)n
a(r), (2)

where n
a denotes the color charge density of the heavy particles. For a quark-

antiquark pair, for instance, this is given by1

n
a(x) = �(x� r̂) ta ⌦ I� I⌦ �(x� r̂) t̃a, (3)

where we use the first quantization to describe the heavy quark and antiquark,
and the two components of the tensor product refer respectively to the Hilbert
spaces of the heavy quark (for the first component) and the heavy antiquark
(for the second component). In Eq. (3), ta is a color matrix in the fundamental
representation of SU(3) and describes the coupling between the heavy quark
and the gluon. The coupling of the heavy antiquark and the gluon is described
by �t̃

a, with t̃
a the transpose of ta.

We are looking for an e↵ective theory for the heavy quark dynamics, obtained
by eliminating the plasma degrees of freedom. In previous works, this was
achieved explicitly by constructing the Feynman-Vernon influence functional
[30], using the path integral formalism (see e.g. [24, 29]). In the present paper,
we shall proceed di↵erently, by writing directly the equations of motion for the
reduced density matrix of the heavy quarks. Although the derivations presented
here are self-contained, we emphasize that the main approximations that are
implemented in the present section are quite common in various fields, and
belong to what is commonly referred to as the theory of open quantum systems
(see e.g. [20]).

We assume that the system contains a fixed number, NQ, of heavy quarks
(and, in general, an equal number of antiquarks). We call D the density matrix
of the full system, and DQ the reduced density matrix for the heavy quarks. The
latter is defined as the partial trace of the full density matrix over the plasma
degrees of freedom, that is

DQ = TrplD. (4)

In order to make contact with the work of Ref. [24], we recall that a typical
question addressed there was the following: Given a set of heavy quarks at
position Xi at time ti, where X denotes collectively the set of coordinates of
the quarks and antiquarks (temporarily ignoring color), what is the probability

1
We denote here the position operator by r̂, but most often the symbol ˆ will be omitted,

the context being enough to recognize the operators.

4

P (Xf , tf |Xi, ti) to find them as position Xf at time tf? This probability is
given by

P (Xf , tf |Xi, ti) = |hXf , tf |Xi, tii|
2 = hXf |DQ(tf )|Xf i, (5)

that is, it can be obtained as a specific element of the reduced density matrix.
In [24] a representation of this quantity was obtained in terms of a path integral
which is remains di�cult to evaluate in general.2 However, in the regime where a
semi-classical approximation is valid, the dynamics that it describes is equivalent
to that of a Fokker-Planck equation which can be easily solved numerically, in
particular by solving the associated Langevin equation. Two approximations
are involved in the construction of the influence functional such as presented in
[24, 29]. The first one is the weak coupling approximation for the interaction
of the heavy quarks with the plasma, the second assumes that the response of
the plasma to the perturbation caused by the heavy quarks is fast compared
to the characteristic time scales of the heavy quark motion. An additional
approximation, to which we refer to as a semi-classical approximation, leads, as
we have just mentioned, to Fokker Planck and Langevin equations.

The last two approximations exploit the fact that the mass of the heavy
quark is large, i.e., M � T . Thus, when the heavy quark is not too far from
thermal equilibrium, its thermal wavelength �th ⇠ 1/

p
MT is small compared

to the typical microscopic length scale ⇠ 1/T . Under such condition, the den-
sity matrix can be considered as nearly diagonal (in position space), motivat-
ing a semi-classical approximation: indeed the o↵-diagonal matrix elements
hX|DQ|X 0

i die o↵ when |X�X 0
| & �th. The typical heavy quark velocity is of

the order of the thermal velocity ⇠

p
T/M ⌧ 1, and the dynamics of the heavy

fermions is much slower than that of the plasma. The typical frequency for
the plasma dynamics is the plasma frequency which, for ultra-relativistic plas-
mas, is of the order of the Debye screening mass mD. During a time t ⇠ m

�1
D

,
the heavy quark moves a distance which is small compared to the size of the
screening cloud, ⇠ m

�1
D

. Thus, over a time scale characteristic of the plasma
collective dynamics, the heavy quark positions are almost frozen (they are com-
pletely frozen in the limit M ! 1). One can also recognize that the collisions
of the heavy particles with the light constituents of the plasma involve the ex-
change of soft gluons, with typical momenta q . mD ⌧ M . The corresponding
energy transfer ⇠ q

2
/M ⇠ m

2
D
/M is small on the scale of the plasma frequency,

m
2
D
/M ⌧ mD.

2.1. Equation for the density matrix
The density matrix obeys the general equation of motion

i
dD

dt
= [H,D]. (6)

2
The analogous path integral for a single heavy quark in an abelian plasma has been

evaluated in [31]. However, this evaluation was performed in Euclidean space. An analytic

continuation is needed to recover the real time information, and procedures to do so numeri-

cally are not without ambiguities.

5

Basic question

where a
A

0 denotes the (color) Coulomb field created by the plasma particles,
while nA denotes the color charge density of the heavy particles, with A a color
index. For a quark-antiquark pair, the color charge density is given by

n
A(x) = �(x� r̂)TA ⌦ I� I⌦ �(x� r̂) T̃A

, (5)

where r̂ denotes the position operator3, and the two components of the tensor
product refer respectively to the Hilbert space of the heavy quark (for the first
component) and the heavy antiquark (for the second component). In Eq. (5),
T

A is a color matrix in the fundamental representation of SU(3) and describes
the coupling between the heavy quark and the gluon. The coupling of the heavy
antiquark and the gluon is described by �T̃

A, with T̃
A the transpose of TA.

2.1. The reduced density matrix and its color structure

Consider now the density matrix D of the whole system. We assume that
initially, at time t0, this density matrix factorizes

D(t0) = DQ(t0)⌦Dpl(t0), (6)

where the plasma density matrix Dpl(t0) is an equilibrium density matrix at
temperature T = 1/�:

Dpl(t0) =
e��H

Zpl
, Zpl = Tre��Hpl . (7)

The reduced density matrix, DQ, the objet that we are mostly concerned with,
is defined by taking the trace over the plasma degrees of freedom

DQ(t) = Trpl(D(t)). (8)

The state of a heavy quark can be characterized by a position, a color, and
a spin. We ignore here the spin degree of freedom. Then the reduced density
matrix DQ has matrix elements of the form

hr1a, r̄1ā|DQ|r2b, r̄2b̄i, (9)

where a, b and ā, b̄ are color indices in the fundamental representation and its
conjugate, respectively, while ri and r̄i (i = 1, 2) denote respectively the coor-
dinates of the quark and the antiquark. Factorizing the color structure, one can
write DQ as follows (see [13] for more details on the color structure of DQ).

DQ(t) =

 
�aā�bb̄

Nc

Ds(t) +
T

A

aā
T

A

b̄b

TF

Do(t)

!
|a, āihb, b̄|

= Ds(t)|sihs|+Do(t)
X

C

|oCihoC| (10)

3
We occasionally put a hat on operators whenever confusion may arise from not doint so.
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(Qf , t f |Qiti) =
Z x(t f )=Q f

x(ti)=Qi

[Dx(t)] exp
"
i
Z t f

ti
dt

 
1
2

Mẋ2 � V(x)
!#

Because of high virtuality, the first process is limited to very short time and distance
(⇠ 1/M), but we are interested in the long time dynamics of the probes, which is
expected to be much longer than that of the dynamics of the plasma particles.
The second process is suppressed by a probability of the order of e�2M/T , where 2M
is the energy required to create two heavy fermions at rest. Having said that, our
model consists of a QED plasma made only of light fermions in which 2N heavy
fermions (N particles and N antiparticles) propagate. We consider only Coulomb
interactions between all fermions in the system. Magnetic interactions between the
slow heavy particles can be neglected in first approximation, therefore the rules of our
model consist in just not considering the magnetic interactions between the plasma
particles and between the heavy and light particles.

In the Colomb gauge r ·A = 0, the Hamiltonian of the system reads

H =
1

2M

NX

j=1

�
p2
j + p̄2

j

�
+

Z
dx  †(x)

✓
↵ ·r

i
+m�0

◆
 (x) +

+
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Z Z
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where ↵i = �0�i is a Dirac matrix, and ⇢tot = ⇢
Q
+⇢

Q̄
+⇢q is the total charge density,

with

⇢
Q
(x) = g

NX

j=1

�(x� qj) , ⇢
Q̄
(x) = �g

NX

j=1

�(x� q̄j) , (2.2)

for the heavy quarks (Q) and antiquarks (Q̄), respectively, and

⇢q(x) = g  †(x) (x) (2.3)

for the plasma particles. We call qj and q̄j, with j = 1, · · · , N , the coordinates
of, respectively, the heavy quarks and antiquarks, and pj, p̄j the corresponding
momenta. We shall denote collectively the coordinates by a 2N dimensional vector
Q = (q1, · · · , qN , q̄1, · · · , q̄N) .

2.1. Conditional probability

We are interested in the probability for a collection of pairs of heavy quarks to
be found at location Qf at time tf , given that they are at location Qi at time ti. We
denote this probability by

P (Qf , tf |Qi, ti) =
��(Qf , tf |Qi, ti)

��2 . (2.4)

2

P(Qf , t f |Qiti) =
Z

C
[Dx(t)] exp
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i
Z

C
dtC
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Im t

Figure 1: The Keldysh contour C is the limit for & ! 0 of the more general complex-time contour
C(&). That is, C = lim&!0 C(&) = C1 [ C2 [ C3.

where x ⌘ (t,x), and K(x� y) represents the (instantaneous) Coulomb interaction:

K(x� y) = �(tx � ty)K(x� y), K(x� y) =
1

4⇡|x� y|
.. (2.11)

We have also extended the definition of the density of heavy quarks, e.g, ⇢Q(t,x) =
g
PN

j=1 �(x� qj(t)). Note that

�r2
xK(x� y) = �(x� y). (2.12)

It is important to stress that the heavy particles do not take part in the thermal
average, and consequently they do not propagate along the imaginary time sector of
the Keldysh contour.

The next step consists in eliminating the light fermion field in favor of Coulombic
field A0, satisfying the imaginary time (KMS) periodic boundary condition A0(0,x) =
A0(�i �,x). We follow closely here what was done in Ref. [4]. To this end, we use
the identity:

exp


�
i

2

Z Z

C
d4x d4y ⇢tot(x)K(x� y)⇢tot(y)

�
=

= N

Z
DA0 exp


i

2

Z Z

C
d4x d4y A0(x)K

�1(x� y)A0(y)� i

Z

C
d4xA0(x)⇢tot(x)

�

where N ⇠ (det [r2])
1
2 is a normalization constant. Using this identity, we can
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Path integral formulation

V(x) = gA0(x)



P(Qf , t f |Qi, ti) =
R
C DQ eiS 0[Q] ei�[Q]

perform the Gaussian integrals over the light fermion fields
Z

D( ̄, ) exp


i

Z

C

dx  ̄(x)(i�µ@µ �m� g�0A0(x)) (x)

�
=

= exp
⇥
Tr ln

⇥
i�µ@µ �m� e�0A0

⇤⇤
(2.13)

and obtain the following, so far exact, expression for the conditional probability
(apart from a multiplicative constant):

P (Qf , tf |Qi, ti) =

Z

C
DQ eiS0[Q]

Z

C
DA0 eiS1[Q,A0] eiS2[A0] , (2.14)

where

S1[Q, A0] = �

Z

C

Z
d4x g⇢(x)A0(x)

S2[A0] = �
1

2

Z

C

dx
�
A0(x)r

2A0(x)
�
� i Tr ln

⇥
i�µ@µ �m� e�0A0(x)

⇤

where we have set

⇢(x) =
NX

j=1

(�(x� qj(t)� �(x� q̄j(t)) , (2.15)

so that S1 can also be written as

S1[Q, A0] = �g
NX

j=1

Z

C
dt (A0(qj(t))� A0(q̄j(t))) . (2.16)
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of the exponential factor that contains the linear interaction g⇢A0 between the heavy
particles and the gauge field. This particular structure is a consequence of the fact
that the heavy quark is linearly coupled to the total field A0.

The path integral representation (2.14) follows directly from the Hamiltonian,
without any further approximation. On the other hand, the action S2 contains a non-
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in powers of A0 gives rise to effective couplings to all orders in the coupling constant
g. In order to be able to compute the influence functional we need to introduce some
approximations. We do so by retaining only the terms up to quadratic order in the
coupling g in such expansion. The quadratic approximation is consistent with the
hard thermal loop (HTL) approximation that we are going to perform later on. In
this limit, the path integral over A0 becomes Gaussian and can be easily carried out
and the phase �[Q] becomes

�[Q] =
g2

2

Z Z

C
d4xd4y ⇢(x)�C(x� y)⇢(y) , (2.18)

where e ⇢ := ⇢
Q
+⇢

Q
(see eq.(2.2)) and �C(x�y) is the Coulomb correlation function

defined on the Keldysh contour, with inverse

���1
C
(x� y) = �C(tx � ty) K

�1(x� y) + ⇧C
00(x� y). (2.19)

There is a potential issue with the self interaction terms
The 1-loop longitudinal photon self-energy ⇧C

00 is defined on the Keldish contour,
as well as the delta function �C(x� y) = �C(tx � ty) �(x� y). By looking at (2.18),
it might seem that the information about the imaginary part of the Keldysh contour
(C3) has disappeared. On the contrary, the information is not lost at all, it is encoded
in the Kubo-Martin-Schwinger (KMS) relations, which enable us to find important
relations satisfied by the Coulomb correlation function.
To this end, it is convenient to distinguish between the degrees of freedom pertaining
to the forward- and backward- propagating sectors of the Keldysh contours, i.e.

Q(tC) ! (Q1(t),Q2(t)) (2.20)
A0(tC ,x) ! (A1

0(t,x), A
2
0(t,x)),

where tC denotes the curvilinear abscissa parametrizing the Keldysh contour, while
t 2 [0, tf ] denotes the physical time. The integration over the physical time is always
from 0 to tf . Using notation (2.20) for the photon correlation function we have

�ab(tx � ty) with tx 2 Ca , ty 2 Cb , a, b = 1, 2 , (2.21)

with the following Green’s functions defined on the real parts of the Keldysh contour:

�(x� y) ⌘ hT [A0,1(x)A0,1(y) ]i �̃(x� y) ⌘ h eT [A0,2(x)A0,2(y) ]i(2.22)
�>(x� y) ⌘ hA0,1(x)A0,2(y) i �<(x� y) ⌘ hA0,2(x)A0,1(y) i (2.23)
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Path integral and influence functional

‘Integrate out’ the plasma particles and keep the quadratic part of the resulting 
action (HTl approximation)

= + · · ·+

�(x � y) ⌘ ihTC
⇥
A0(x)A0(y)

⇤i

Gaussian integration yields



Large time behaviour

Quark antiquark correlator

with the time dependence given by the Heisenberg representation

JQ(t; r1, r2) = eiHt JQ(r1, r2) e−iHt. (3)

Here, H is the full hamiltonian, which can generally be decomposed into three
contributions:

H = HQ + Hmed + Hint, (4)

where HQ is the (non relativistic) hamiltonian describing the heavy fermions
in vacuum, Hmed is the hamiltonian of the medium in which the QQ̄ system
propagates, and Hint represents the interactions between the medium and the
heavy fermions. Various model hamiltonians will be considered in this paper.

In general, the expectation value in Eq. (1) will be a thermal average,

G>(t, r1; t, r2|0, r
′
1; 0, r

′
2) =

1

Z
Tr
{

e−βHJQ(t; r1, r2)J
†
Q(0; r′

1, r
′
2)
}

, (5)

with Z = Tre−βH and β the inverse temperature, β=1/T . If we denote by |n⟩
the eigenstates of H , and by En the corresponding eigenvalues, one can write
for G>(t) the following formal 1 expansion (in order to alleviate the notation,
we omit the spatial coordinates):

G>(t) =
1

Z

∑

n

e−βEn
∑

m

ei(En−Em)t⟨n|JQ|m⟩⟨m|J†
Q|n⟩. (6)

As suggested by Eq. (6), G>(t) is an analytic function of the (complex) time
t in the strip −β < Im t < 0. For t = −iβ, this function takes the value

G>(t = −iβ) =
1

Z
Tr
{

JQ e−βH J†
Q

}

. (7)

We shall return to this expression shortly.

One can introduce, together with G>(t), a collection of related correlators (see
e.g. [28]; the conventions employed in this paper are those in [29]). Thus, one
defines

G<(t, r1; t, r2|0, r
′
1; 0, r

′
2) ≡ ⟨J†

Q(0; r′
1, r

′
2)JQ(t; r1, r2)⟩, (8)

related to G>(t) by the KMS condition:

G<(t) = G>(t − iβ), (9)

and the retarded propagator

GR(t) ≡ i θ(t) [G>(t) − G<(t)] , (10)

1 Formal, because we treat all states here as discrete states.
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coupling between the heavy quarks and the plasma, the fast response of the
plasma to the perturbation caused by the heavy quarks. An additional semi-
classical approximation is performed. This allows us to recover results previously
obtained for the abelian plasma using the influence functional formalism. In the
case of QCD, specific features of the color dynamics make the implementation
of the semi-classical approximation more involved. We explore two approximate
strategies to solve numerically the resulting equations in the case of a quark-
antiquark pair. One involves Langevin equations with additional random color
forces, the other treats the transition between the singlet and octet color config-
urations as collisions in a Boltzmann equation which can be solved with Monte
Carlo techniques.

1. Introduction

Ve↵(r) = V (r) + iW (r)

Heavy quarkonia, bound states of charm or bottom quarks, constitue a
prominent probe of the quark-gluon plasma produced in ultra-relativistic heavy
ion collisions, and are the object of many investigations, both theoretically and
experimentally. Recent data from the LHC provide evidence for a sequential
suppresion, with the most fragile (less bound) states being more strongly sup-
pressed [1], while there are indications that charm quarks are su�ciently nu-
merous to recombine, an e↵ect that is seen to counterbalance the expected
suppression [2]. These findings are in line with general expectations. The disso-
ciation of quarkonium was suggested long ago [3] as resulting from the screening

Preprint submitted to Elsevier May 29, 2018

and large mass limit:

(*first obtained by M. Laine et al hep-ph/ 0611300)



The imaginary part of the effective potential

At large distance the 
imaginary part is twice 
the 'damping rate' of the 
heavy quark

At short distance, 
interference produces 
cancellation: a small 
dipole does not “see” the 
electric field 
fluctuations.
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Non trivial noise 

Low frequency response of the plasma

Approximations: 

Semi-classical expansion
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Isotropic plasma
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Figure 8: Average quarkonia (charmonia and bottomonia) radius as a function of time. The shaded
part indicates the region in which the charmonia radii are smaller than the Debye radius rD .
Statistical errors are too small to be plotted.

not have an initial J/ with �E � 550 MeV. This is due to the fact that the depth
of the q-q̄ potential decreases when the temperature goes up (see Fig.6), therefore in
the next section we will estimate the melting temperature of J/ by using a different
procedure.
In the last graph of Fig.8 we also compare the �c , J/ and ⌥ behaviours at T = 280
MeV. We see that the average bb̄ pair is far more strongly correlated than the cc̄ pair,
and the ⌥ radius remains small ( h r⌥ i  rD ) for a relatively long time (as compared
to ⌧qgp ). Infact, we will see in the next section that the melting temperature of the
⌥ ( 1S) state is T > 600 MeV, as predicted from lattice potential model studies. It is
evident from the curves representing the �c state that initially this charmonium state
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 Hamiltonian for a quark-antiquark pair

or Langevin equations made in the abelian case needs to be reconsidered, which
we do in this paper. We shall see that the complete dynamics, including the
color degrees of freedom, can still be described by Fokker-Plack and Langevin
equations, but only in very specific circumstances.

This paper focusses on conceptual issues. It is organized as follows. In
Sect. 2 we derive the quantum master equation for the reduced density ma-
trix of a system of heavy quarks and antiquarks immersed in a quark-gluon
plasma, in thermal equilibrium. This equation, whose structure is close to that
of a Lindblad equation, is used as a starting point of all later developments.
In Sect. 3 we rederive from it the results that we had previously obtained for
the abelian plasma [24] using a path integral formalism. In particular we re-
cover, after performing a semi-classical approximation, the Fokker-Planck and
Langevin equations that describe the random walks of center of mass and rela-
tive coordinates of a quark-antiquark pair. This section on the abelian plasma
paves the way for the treatment of the non abelian case discussed in Sect. 4.
The equations that we present there, before we do the semi-classical approxi-
mation, are fully quantum equations. But they are di�cult to solve in general.
Thus, in Sect. 5 we look for additional approximations that allow us to obtain
solutions in some particular regimes, in order to start getting insight into the
general solution. In particular, we explore two ways of implementing the semi-
classical approximation. In the first case, we restrict the dynamics to stay close
to a maximum entropy color state, where the colors of the heavy quarks are
random. In this case the dynamics is described by a Langevin equation with a
new random color force. The method used in this case is easily extended to the
case of an arbitrary number of quark-antiquark pairs, and allows us to address
the question of recombination. However, it is based on a perturbative approach
that breaks down for some values of the parameters. Another strategy focuses
on the case of a single quark-antiquark pair. The transition between singlets
and octets are treated as “collisions” in a kinetic equation that we solve using
Monte Carlo techniques. The last section summarizes our main results, and
presents a brief outlook. Several appendices at the end gather various technical
material.

2. Equation for the density matrix of heavy quarks in a quark-gluon

plasma

Our description of the heavy quark dynamics in a quark-gluon plasma is
based on the assumption that the interaction between the heavy quarks and the
quark-gluon plasma is weak, and can be treated in perturbation theory (with
appropriate resummations). The generic hamiltonian for such a system reads

H = HQ +H1 +Hpl, (1)

where HQ describes the dynamics of the heavy quarks in the absence of the
plasma, Hpl is the hamiltonian of the plasma in the absence of the heavy quarks,
andH1 is the interaction between the heavy quarks and the plasma constituents.

3

large compared to the binding energy, or comparable to it. This will lead us to
consider the variation with time of an (o↵-equilibrium) entropy and free energy.
The third part of the paper, Sect. 5, presents some numerical calculations illus-
trating the main features of the general equations in some simplified situations.
Conclusions are summarized at the end.

2. The evolution equation for the density matrix

We consider a single heavy quark-antiquark pair immersed in a plasma of
light quarks and gluons in thermal equilibrium at a temperature T much smaller
than the massM of the heavy quark. The conditionM � T ensures that we can
treat the heavy quark and antiquark as non-relativistic particles. Also, since the
velocity of the heavy particles is small (.

p
T/M), we neglect their magnetic

interactions (among themselves, and with the plasma constituents)1. We assume
then that the whole system can be described by the following Hamiltonian

H = Hpl +HQ +H1 , (1)

where Hpl is the QCD Hamiltonian governing the dynamics of the plasma while
HQ controls the dynamics of the heavy quark-antiquark pair in the absence of
the plasma. The hamiltonian HQ reads

HQ = Hs,o = ��r

M
� �R

4M
+ Vs,o(r) , (2)

where r and R denote respectively the relative and the center of mass coordi-
nates of the heavy particles. The interaction potential Vs,o(r) is a function of
the relative coordinates, and it depends also on the color configuration of the
pair. Thus, as indicated in Eq. (2), we shall often write HQ as either Hs or
Ho, depending on whether the quark-antiquark pair is in a color singlet (Hs)
or a color octet (Ho) configuration. In leading order non-relativistic limit, i.e.,
keeping only the color Coulomb interaction into account, we have

Vs(r) = �CF↵s

r
, V0(r) =

↵s

2Ncr
, (3)

where CF = (N2
c
� 1)/(2Nc), with Nc = 3 the number of colors, and ↵s is the

strong coupling constant, ↵s = g
2
/(4⇡) with g the gauge coupling.

The last term in Eq. (1) is the interaction between the plasma and the heavy
quarks. It is of the form2

H1 = �g

Z

x
a
A

0 (x)n
A(x), (4)

1
This means, in particular, that the processes of gluo-dissociation are left out of the present

discussion. Including those would, however, amount to a straighforward generalisation of the

present formalism (see e.g. the footnote before Eq. (123)).
2
Throughout this paper, we use the shorthand notation

R
x ⌘

R
d
3x for the spatial integrals,

and
R
p ⌘

R d3p
(2⇡)3

for momentum integrals.
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where a
A

0 denotes the (color) Coulomb field created by the plasma particles,
while nA denotes the color charge density of the heavy particles, with A a color
index. For a quark-antiquark pair, the color charge density is given by

n
A(x) = �(x� r̂)TA ⌦ I� I⌦ �(x� r̂) T̃A

, (5)

where r̂ denotes the position operator3, and the two components of the tensor
product refer respectively to the Hilbert space of the heavy quark (for the first
component) and the heavy antiquark (for the second component). In Eq. (5),
T

A is a color matrix in the fundamental representation of SU(3) and describes
the coupling between the heavy quark and the gluon. The coupling of the heavy
antiquark and the gluon is described by �T̃

A, with T̃
A the transpose of TA.

2.1. The reduced density matrix and its color structure

Consider now the density matrix D of the whole system. We assume that
initially, at time t0, this density matrix factorizes

D(t0) = DQ(t0)⌦Dpl(t0), (6)

where the plasma density matrix Dpl(t0) is an equilibrium density matrix at
temperature T = 1/�:

Dpl(t0) =
e��H

Zpl
, Zpl = Tre��Hpl . (7)

The reduced density matrix, DQ, the objet that we are mostly concerned with,
is defined by taking the trace over the plasma degrees of freedom

DQ(t) = Trpl(D(t)). (8)

The state of a heavy quark can be characterized by a position, a color, and
a spin. We ignore here the spin degree of freedom. Then the reduced density
matrix DQ has matrix elements of the form

hr1a, r̄1ā|DQ|r2b, r̄2b̄i, (9)

where a, b and ā, b̄ are color indices in the fundamental representation and its
conjugate, respectively, while ri and r̄i (i = 1, 2) denote respectively the coor-
dinates of the quark and the antiquark. Factorizing the color structure, one can
write DQ as follows (see [13] for more details on the color structure of DQ).

DQ(t) =

 
�aā�bb̄

Nc

Ds(t) +
T

A

aā
T

A

b̄b

TF

Do(t)

!
|a, āihb, b̄|

= Ds(t)|sihs|+Do(t)
X

C

|oCihoC| (10)

3
We occasionally put a hat on operators whenever confusion may arise from not doint so.

4

(singlet) (octet)



The evolution of the density matrix DQ

dDQ

dt
+ i [HQ ,DQ(t)] ⇡ �

i

2

Z

xx0
V (x � x0)[naxn

a
x0 ,DQ ]

+
1
2

Z

xx0
W (x � x0) ({naxn

a
x0 ,DQ}� 2naxDQn

a
x0)

+
i

4T

Z

xx0
W (x � x0)

�
[nax, ˙nax0DQ ] + [nax,DQ ˙nax0 ]

�

Unitary evolution. Includes screening and conserves entropy.
The different transitions present in the exact instantaneous gluon
exchange approximation.
Influence of the kinetic energy inside Us,o , we have used
fluctuation-dissipation theorem to obtain this. 1

In our notation, the potential of the corresponding Schrödinger
equation is V (r) + iW (r).

1
A similar equation can be found in D. de Boni, JHEP 1708 (2017) 064
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Equation of motion for the pair density matrix within 
the same approximations as in QED



5. Numerical studies

The equations for the time evolution of the reduced density matrix that
we have obtained in the previous sections are di�cult to solve in their original
form, that is, for the operator L given in Sect. 4.3, or Appendix F, for a quark-
antiquark pair. We shall not attempt to solve them directly in the present
paper. In the case of QED, we have seen that an additional approximation,
the semi-classical approximation, allows us to transform these equations into
Fokker-Planck, or equivalently, Langevin equations, describing the relative and
center of mass motions of the heavy particles as simple random walks. In QCD,
the presence of transitions between singlet and octet color states complicates
the situation, since such transitions are a priori not amenable to a semi-classical
description. The purpose of this section is to present numerical studies that
illustrate two possible strategies to cope with this problem, namely preserve as
much as possible the simplicity of the semi-classical description of the heavy
particle motions, while taking into account the e↵ects of color transitions. To
simplify the discussion we shall ignore the center of mass motion in most of this
section.

The new feature in QCD, as compared to QED, namely the transitions
between distinct color states, is best seen in the infinite mass limit, where the
relative motion is entirely frozen. Then the only dynamics is that of color: as
a result of the collisions with the plasma constituents the colors of the heavy
quarks and antiquarks can change in time. The corresponding equations of
motion for the density matrix are easily obtained from the formulae listed in
Appendix F. They read, for a quark-antiquark pair,

dDs

dt
= �2CF�(r)(Ds �Do),

dD0

dt
= �

1

Nc

�(r)(Do �Ds), (106)

where r is the (fixed) relative coordinate. These equations exhibit the decay
widths in the singlet (2CF�(r)) and the octet ((1/Nc)�(r)) channels, respec-
tively. These two coupled equations acquire a more transparent physical inter-
pretation in the (D0, D8) basis, where they take a diagonal form

@D0

@t
= 0,

@D8

@t
= �Nc�(r)D8. (107)

The first equation merely reflects the conservation of the trace of the density ma-
trix. Recall also that D0 is associated with the maximum color entropy state,
where all colors are equally probable (see Eq. (182)): this component of the
density matrix represents an equilibrium state that remains una↵ected by the
collisions. The second equation indicates that D8 / Ds �Do decays on a time
scale (Nc�(r))�1. Thus, at large times only D0 survives, that is, the collisions
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Langevin equation with a random color force. Option 1

One option is to diagonalize the system of equations

@D0

@t
= �

✓
P ·rR

4M
+

2p ·rr
M

◆
D0

@D8

@t
= �

✓
P ·rR

4M
+

2p ·rr
M

◆
D8 � Nc�(r)D8

where
D0 =

1
N2
c
(Ds + (N2

c � 1)Do)

D8 =
2
Nc

(Ds � Do)

D0 represents the state of maximum entropy in color while D8 represents
the short lifetime fluctuations around it.
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Quark-antiquark pair in the large mass limit

where a
A

0 denotes the (color) Coulomb field created by the plasma particles,
while nA denotes the color charge density of the heavy particles, with A a color
index. For a quark-antiquark pair, the color charge density is given by

n
A(x) = �(x� r̂)TA ⌦ I� I⌦ �(x� r̂) T̃A

, (5)

where r̂ denotes the position operator3, and the two components of the tensor
product refer respectively to the Hilbert space of the heavy quark (for the first
component) and the heavy antiquark (for the second component). In Eq. (5),
T

A is a color matrix in the fundamental representation of SU(3) and describes
the coupling between the heavy quark and the gluon. The coupling of the heavy
antiquark and the gluon is described by �T̃

A, with T̃
A the transpose of TA.

2.1. The reduced density matrix and its color structure

Consider now the density matrix D of the whole system. We assume that
initially, at time t0, this density matrix factorizes

D(t0) = DQ(t0)⌦Dpl(t0), (6)

where the plasma density matrix Dpl(t0) is an equilibrium density matrix at
temperature T = 1/�:

Dpl(t0) =
e��H

Zpl
, Zpl = Tre��Hpl . (7)

The reduced density matrix, DQ, the objet that we are mostly concerned with,
is defined by taking the trace over the plasma degrees of freedom

DQ(t) = Trpl(D(t)). (8)

The state of a heavy quark can be characterized by a position, a color, and
a spin. We ignore here the spin degree of freedom. Then the reduced density
matrix DQ has matrix elements of the form

hr1a, r̄1ā|DQ|r2b, r̄2b̄i, (9)

where a, b and ā, b̄ are color indices in the fundamental representation and its
conjugate, respectively, while ri and r̄i (i = 1, 2) denote respectively the coor-
dinates of the quark and the antiquark. Factorizing the color structure, one can
write DQ as follows (see [13] for more details on the color structure of DQ).

DQ(t) =

 
�aā�bb̄

Nc

Ds(t) +
T

A

aā
T

A

b̄b

TF

Do(t)

!
|a, āihb, b̄|

DQ(t) = Ds(t)|sihs|+Do(t)
X

C

|oCihoC| (10)

3
We occasionally put a hat on operators whenever confusion may arise from not doint so.

4

Singlet-octet representation

Alternative representation 

('unpolarized' or maximum entropy state)



Langevin equation with a random color force

Now we diagonalize the system but instead of doing it in the strict y = 0
limit we do it at order y2.

@tD
0
0 +

2p ·r

M
D

0
0 �

CF

4
Hij(0)�ij

pD
0
0�

2CFF
i (r)F j(r)

N2
c �(r)

�ij
pD

0
0

�
CF

2MT
Hij(0)ri

p(p
j
D

0
0) = 0

Vlasov equation with zero force.
Stochastic force and drag corresponding to the interaction of a heavy
quark with the medium.
Stochastic force corresponding to the attractive/repulsive force
between heavy quarks that is averaged to zero due to the color state.
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Langevin equation with a random color force

New random color force

close correspondence between L3 and L2. Observe indeed that L3 can be obtained from

L2 by multiplying the latter by the overall factor 1/(4MT ), and performing the following

substitutions: W (0) ! r
2
W (0), W (r � r0) ! rrW (r � r0) · (rr � rr0). We shall see

that analogous correspondences also exist in the more complicated case of the 2 particle

density matrix.

At this point, we make the following change of variables

R =
r + r0

2
, y = r � r0, (3.9)

and set

hr|D(t)|r0i = D(R,y, t). (3.10)

The equation (2.24) becomes then d
dtD(R,y, t) = LD(R,y, t), with L appearing now

explicitly as a di↵erential operator acting on the function D(R,y, t):

L =
i

M
rR ·ry � �(y) +

1

4MT

⇥
r

2
W (0)�r

2
yW (y)� 2ryW (y) ·ry

⇤
. (3.11)

The first term arises from the kinetic energy, i.e., it represents L0. Note that the other

terms, which represent the e↵ect of the collisions, vanish for y = 0, in particular thanks to

the property rW (0) = 0. As already mentioned, this reflects the fact that the collisions

do not change the local density of heavy quarks.

Equation (3.11) above represents the explicit form of the operators Li in Eq. (2.26)

for the density matrix of a single heavy quark (in the abelian case). It has been obtained

without any additional approximation beyond those leading to Eq. (2.26). We may proceed

further and simplify Eq. (3.11) by performing a small y expansion. The variable y measures

by how much the density matrix deviates from a diagonal matrix, a situation which is

reached in the classical limit. Thus, the small y expansion may be viewed as a semi-

classical expansion. We have

W (y) = W (0) +
1

2
y · H(0) · y + · · · (3.12)

where H(0) is the (positive definite) Hessian matrix of W ,

Hij(y) ⌘
@
2
W (y)

@yi@yj
, (3.13)

evaluated at y = 0, and we have used @yW (y)|y=0 = 0. Note that if we stop the expansion

of W (y) at quadratic order, r2
W (0)�r

2
yW (y) = 0. The di↵erential operator (3.11) reads

then

L =
i

M
rR ·ry �

1

2
y · H(0) · y �

1

2MT
y · H(0) ·ry. (3.14)

At this point some comments on the order of magnitude of the various terms are ap-

propriate. It is convenient to measure the time in terms of the inverse temperature, setting

– 14 –



Heavy quarkonium. Histogram of distance after �t = 5fm
for initial 1S

t = 0 t = 5fm

Parameters: Mb = 4881MeV, � = 0.25T 2

2Mb
, T = 350 MeV . ↵s evaluated at

2⇡T inside the Debye mass and at 1
a0

= 1348MeV in the Coulombic part.
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Heavy quarkonium 
Histogram of distances 

M = 4881 MeV T = 350 MeV

[1711.10812]

TOO MUCH SUPPRESSION !



Distance as a function of time for 10 arbitrary trajectories

Problem not found in QED. For small values of r the random force can get
unphysically big.

M. A. Escobedo (JYU) HQs in a QGP Quark Matter 2018 18 / 33

The color random force can produce unphysical kicks 

10 arbitrary trajectories



Simulating many particles

We can simulate 50 pairs and make an histogram of how many of them will
form a bound state at the end of the evolution (recombination).
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Simulating 50 pairs  
(after tuning parameters to avoid unphysical kicks)

A fair fraction of the pairs remain "bound" after t=5fm/c (recombination)



Boltzmann equation. Option 2

The convergence radius of the small y expansion is much smaller than in
QED. The reason could be the diagonalization procedure. Let us go back
to linear order in y but without diagonalizing (Now Po = (N2

c � 1)Do)

@t +

2p ·rr
M

+ CFF(r) ·rp

�
Ps = �2CF�(r)

✓
Ps �

Po

N2
c � 1

◆


@t +

2p ·rr
M

�
1

2Nc
F(r) ·rp

�
Po = �

1
Nc

�(r)(Po � (N2
c � 1)Ps)

This is a Boltzmann equation. �(r) = W (r)�W (0)
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Alternative option

Study of J/ at T = 160 MeV

Better result that the Langevin equation with the random color.
At large times it tends to the maximum color entropy state, but it
does not start from there.
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Treat the right hand side as a collision term in a Boltzmann eq.

J/ 

Debye radius

T = 160 MeV



Something missing….



The evolution of the density matrix
Reminder of the 4 diagrams that connect whatever state at time t with a
singlet at time t + dt.

In this section we use the exact value of Us,o . The quantum master
equation can be written schematically as

dD
dt

+ i [HQ ,DQ(t)] =

�

Z

xx0

Z t�t0

0
d⌧ [nAx ,UQ(⌧)n

A
x0DQ(t � ⌧)U†

Q(⌧)]�
>(⌧ ; x � x0))

�

Z

xx0

Z t�t0

0
d⌧ [UQ(⌧)DQ(t � ⌧)nAx0U

†
Q(⌧), n

A
x ]�

<(⌧ ; x � x0),

where we have set t � t
0 = ⌧ .
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A more precise evolution equation for the density matrix

The evolution of the density matrix
Reminder of the 4 diagrams that connect whatever state at time t with a
singlet at time t + dt.

In this section we use the exact value of Us,o . The quantum master
equation can be written schematically as
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where we have set t � t
0 = ⌧ .
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Before, we assumed 
UQ(⌧) ' 1 � iHQ⌧

(t0 � t = ⌧)

t0 t

[1803.07996]



Combination of rate equation + Langevin equation
There is no gap in octet to octet transitions, therefore this can be
approximated by a Langevin equation (same case as QED).
In the large Nc limit the octet potential is zero.
Singlet to octet transitions can be described as a rate equation. As an
illustration we consider a toy model in which there is only one singlet
eigenvalue (the 1S).
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= g
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CF
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M. A. Escobedo (JYU) HQs in a QGP Quark Matter 2018 30 / 33

Combination of rate equation + Langevin equation
There is no gap in octet to octet transitions, therefore this can be
approximated by a Langevin equation (same case as QED).
In the large Nc limit the octet potential is zero.
Singlet to octet transitions can be described as a rate equation. As an
illustration we consider a toy model in which there is only one singlet
eigenvalue (the 1S).

dps

dt
= g

2
CF

Z

p

✓
p

o
p � p

se�
Eo
p �Es

T

◆Z

q
�>(!o

p � E
s,q)|hs|Sq·r̂ |o,pi|2 ,

and

@po
p

@t
� �r(ppo

p)�
T�M

2
�2

p
o
p =

�
g

2

2Nc

1
⌦

✓
p

o
p � p

se�
Eo
p �Es

T

◆Z

q
�>(!o

p � E
s,q)|hs|Sq·r̂ |o,pi|2 ,

M. A. Escobedo (JYU) HQs in a QGP Quark Matter 2018 30 / 33

Combination of rate equation and Langevin equation

• There is no gap in the octet-octet transitions, so these can be 
treated with a Langevin equation (as in QED)


• Singlet to octet transitions can be treated with a rate equation

Illustration. Toy model with a single (singlet) bound state. 

Toy model. Results

⌦ = 1 fm3 ⌦ = 100 fm3

5 fm/c 100 fm/c eq. 5 fm/c 100 fm/c eq.
T = 200 MeV 0.86 0.136 0.0814 0.85 0.0438 0.00089
T = 400 MeV 0.39 0.0515 0.0175 0.36 0.0002 0.00018

Table: ps as obtained by solving eqs. in previous slide

Remarks
The gap E

o
p � E

s suppresses the singlet decay width, helping to make
the results compatible with experimental observations.
E
s depends on the real part of the potential. Screening reduces the

binding energy and this increases the decay width.
The volume of the medium ⌦ suppresses the decay of octets into
bound singlets.
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•  In QED, semi-classical approximation and low 
frequency response of plasma provide a consistent 
framework

• In QCD, singlet-octet transitions complicate the story 
(color dynamics cannot be treated semi-classically).  

• Still a consistent approach can be obtained, mixing 
Langevin (classical dynamics) and rate equations 
(the imaginary potential is energy dependent).

• Note that screening and collision rates are NOT 
independent. 

Summary




