COLOR and NOISE

New Frontiers in QCD 2018 YITP, Kyoto

May 30, 2018

Jean-Paul Blaizot, IPhT, University Paris-Saclay

Dynamics of heavy quarks and their bound states in a quark-gluon plasma

WORK IN PROGRESS!

Results presented are based on

A. Berando, JPB, C. Rattí, NPA 806 (2008) 312 [arXív: 0712.4394] A. Berando, JPB, P. Faccíolí and G. Garberoglío, Nucl.Phys. A846 (2010) 104-142 [arXív: 1005.1245] JPB, D. de Boní, P. Faccíolí and G. Garberoglío, Nucl.Phys. A946 (2016) 49-88 [arXív: 15003.03857]

JPB, M. Escobedo-Espínosa, arXív:1711.10812, 1803.07996

Símílar effort by Y. Akamatsu and collaborators (cf. Akamatsu's talk next week)

Outline

Basic concepts

influence functional, density matrix, complex potential, etc, (QED)

Extension to QCD

why it is not "trivial"

Basic hamiltonian

(Ignore color here)

$$H = H_Q + H_1 + H_{\rm pl}$$

For a heavy quark-antiquark pair

$$H_Q = \frac{p_1^2}{2M} + \frac{p_2^2}{2M} + V(r_1 - r_2)$$

Línear coupling to plasma gauge field

$$H_1 = g \int_{\boldsymbol{r}} n(\boldsymbol{r}) A_0(\boldsymbol{r})$$

Simple setting

Initial density matrix

$$\mathcal{D}(t_0) = \mathcal{D}_Q(t_0) \otimes \mathcal{D}_{pl}(t_0)$$
$$\mathcal{D}_{pl}(t_0) = \frac{1}{Z_{pl}} \sum_m e^{-\beta E_m}$$

Reduced density matrix

$$\mathcal{D}_Q = \mathrm{Tr}_{\mathrm{pl}}\mathcal{D}$$

Basic question

 $P(\boldsymbol{X}_{f}, t_{f} | \boldsymbol{X}_{i}, t_{i}) = \left| \langle \boldsymbol{X}_{f}, t_{f} | \boldsymbol{X}_{i}, t_{i} \rangle \right|^{2} = \langle \boldsymbol{X}_{f} | \mathcal{D}_{Q}(t_{f}) | \boldsymbol{X}_{f} \rangle$

Path integral formulation

$$(Q_f, t_f | Q_i t_i) = \int_{x(t_i)=Q_i}^{x(t_f)=Q_f} [\mathcal{D}x(t)] \exp\left[i \int_{t_i}^{t_f} dt \left(\frac{1}{2}M\dot{x}^2 - V(x)\right)\right]$$

$$P(Q_f, t_f | Q_i t_i) = \int_C [\mathcal{D}x(t)] \exp\left[i \int_C dt_C \left(\frac{1}{2}M\dot{x}^2 - V(x)\right)\right]$$

 $V(x) = gA_0(x)$

Path integral and influence functional

$$P(Q_f, t_f | Q_i, t_i) = \int_{\mathcal{C}} DQ \, \mathrm{e}^{iS_0[Q]} \, \mathrm{e}^{i\Phi[Q]}$$
$$\mathrm{e}^{\mathrm{i}\Phi[Q]} = \int DA_0 \, \mathrm{e}^{-\mathrm{i}\int_{\mathcal{C}} \mathrm{d}^4 x \, g\rho(x) A_0(x)} \mathrm{e}^{\mathrm{i}S_2[A_0]}$$

'Integrate out' the plasma particles and keep the quadratic part of the resulting action (HTI approximation)

Gaussian integration yields

$$\Phi[\mathbf{Q}] = \frac{g^2}{2} \iint_{\mathcal{C}} d^4 x d^4 y \ \rho(x) \Delta_{\mathcal{C}}(x-y) \rho(y)$$
$$\Delta(x-y) \equiv i \langle T_{\mathcal{C}} [A_0(x)A_0(y)] \rangle$$

Quark antiquark correlator

$$G^{>}(t, \boldsymbol{r}_{1}; t, \boldsymbol{r}_{2} | 0, \boldsymbol{r}_{1}'; 0, \boldsymbol{r}_{2}') = \frac{1}{Z} \operatorname{Tr} \left\{ e^{-\beta H} J_{Q}(t; \boldsymbol{r}_{1}, \boldsymbol{r}_{2}) J_{Q}^{\dagger}(0; \boldsymbol{r}_{1}', \boldsymbol{r}_{2}') \right\}$$

Large time behaviour $(t m_D \gg 1)$ and large mass limit:

$$\overline{G}(t, r_1 - r_2) \sim \exp[-iV_{\text{eff}}(r_1 - r_2)t]$$
$$V_{\text{eff}}(r) = V(r) + iW(r)$$

$$\begin{split} V_{\text{eff}}(r_1 - r_2) &\equiv g^2 \int \frac{dq}{(2\pi)^3} \left(1 - e^{iq \cdot (r_1 - r_2)} \right) D_{00}(\omega = 0, q) \\ &= g^2 \int \frac{dq}{(2\pi)^3} \left(1 - e^{iq \cdot (r_1 - r_2)} \right) \left[\frac{1}{q^2 + m_D^2} - i \frac{\pi m_D^2 T}{|q|(q^2 + m_D^2)^2} \right] \\ &= -\frac{g^2}{4\pi} \left[m_D + \frac{e^{-m_D r}}{r} \right] - i \frac{g^2 T}{4\pi} \phi(m_D r) \end{split}$$

(*first obtained by M. Laine et al hep-ph/0611300)

The imaginary part of the effective potential

$$\Gamma(\boldsymbol{r}) = W(\boldsymbol{r}) - W(0) = 2\phi(m_D r)$$

At large distance the imaginary part is twice the 'damping rate' of the heavy quark

For one heavy quark $\partial_t \langle m{r} | \mathcal{D}_Q | m{r}'
angle = \cdots - \Gamma(m{r} - m{r}') \langle m{r} | \mathcal{D}_Q | m{r}'
angle$

At short dístance, ínterference produces cancellatíon: a small dípole does not "see" the electric field fluctuations.

Approximations:

Low frequency response of the plasma Semí-classical expansion

Langevin equation

$$\frac{M}{2}\ddot{\boldsymbol{r}}^{i} = -\gamma_{ij}\boldsymbol{v}^{j} - \boldsymbol{\nabla}^{i}V(\boldsymbol{r}) + \xi^{i}(\boldsymbol{r},t)$$
$$\gamma_{ij}(\boldsymbol{r}) = \frac{1}{2T}\eta_{ij}(\boldsymbol{r}) \qquad \langle \xi^{i}(\boldsymbol{r},t)\xi^{i}(\boldsymbol{r},t')\rangle = \eta_{ij}(\boldsymbol{r})\delta(t-t')$$
Non trivial noise

Isotropic plasma

$$\eta_{ij}(\boldsymbol{r}) = \delta_{ij}\eta(\boldsymbol{r}) \qquad \eta(\boldsymbol{r}) = \frac{1}{6} \left(\nabla^2 W(0) + \nabla^2 W(\boldsymbol{r})\right)$$

Sequential suppression

Extension to QCD

Hamíltonían for a quark-antiquark paír

$$H = H_Q + H_1 + H_{\rm pl}$$

$$H_Q = H_{\rm s,o} = -\frac{\Delta_{\boldsymbol{r}}}{M} - \frac{\Delta_{\boldsymbol{R}}}{4M} + V_{\rm s,o}(\boldsymbol{r})$$

$$H_1 = -g \int_{\boldsymbol{x}} a_0^A(\boldsymbol{x}) n^A(\boldsymbol{x})$$
$$n^A(\boldsymbol{x}) = \delta(\boldsymbol{x} - \hat{\boldsymbol{r}}) T^A \otimes \mathbb{I} - \mathbb{I} \otimes \delta(\boldsymbol{x} - \hat{\boldsymbol{r}}) \tilde{T}^A$$

Equation of motion for the pair density matrix within the same approximations as in QED

$$\begin{aligned} \frac{\mathrm{d}\mathcal{D}_Q}{\mathrm{d}t} + i[H_Q, \mathcal{D}_Q(t)] &\approx -\frac{i}{2} \int_{\mathbf{x}\mathbf{x}'} V(\mathbf{x} - \mathbf{x}') [n_{\mathbf{x}}^a n_{\mathbf{x}'}^a, \mathcal{D}_Q] \\ &+ \frac{1}{2} \int_{\mathbf{x}\mathbf{x}'} W(\mathbf{x} - \mathbf{x}') \left(\{ n_{\mathbf{x}}^a n_{\mathbf{x}'}^a, \mathcal{D}_Q \} - 2n_{\mathbf{x}}^a \mathcal{D}_Q n_{\mathbf{x}'}^a \right) \\ &+ \frac{i}{4T} \int_{\mathbf{x}\mathbf{x}'} W(\mathbf{x} - \mathbf{x}') \left([n_{\mathbf{x}}^a, \dot{n_{\mathbf{x}'}}^a \mathcal{D}_Q] + [n_{\mathbf{x}}^a, \mathcal{D}_Q \dot{n_{\mathbf{x}'}}] \right) \end{aligned}$$

Quark-antiquark pair in the large mass limit

Singlet-octet representation

$$\mathcal{D}_Q(t) = D_s(t)|s\rangle\langle s| + D_o(t)\sum_{C}|o^C\rangle\langle o^C|$$
$$\frac{dD_s}{dt} = -2C_F\Gamma(\mathbf{r})(D_s - D_o)$$
$$\frac{dD_o}{dt} = -\frac{1}{N_c}\Gamma(\mathbf{r})(D_o - D_s)$$

Alternative representation

$$D_0 = \frac{1}{N_c^2} (D_s + (N_c^2 - 1)D_o) \qquad D_8 = \frac{2}{N_c} (D_s - D_o)$$

$$\frac{\partial D_0}{\partial t} = 0$$

('unpolarized' or maximum entropy state)

$$\frac{\partial D_8}{\partial t} = -N_c \Gamma(\boldsymbol{r}) D_8$$

Langevin equation with a random color force

$$\partial_t D'_0 + \frac{2\mathbf{p} \cdot \nabla}{M} D'_0 - \frac{C_F}{4} \mathcal{H}_{ij}(0) \Delta_p^{ij} D'_0 - \frac{2C_F F^i(\mathbf{r}) F^j(\mathbf{r})}{N_c^2 \Gamma(\mathbf{r})} \Delta_p^{ij} D'_0$$
$$- \frac{C_F}{2MT} \mathcal{H}_{ij}(0) \nabla_p^i(p^j D'_0) = 0$$

New random color force

$$\mathcal{H}_{ij}(\boldsymbol{y}) \equiv rac{\partial^2 W(\boldsymbol{y})}{\partial y_i \partial y_j}$$

Heavy quarkoníum Hístogram of dístances [1711.10812]

M = 4881 MeV T = 350 MeV

TOO MUCH SUPPRESSION !

The color random force can produce unphysical kicks

Simulating 50 pairs

(after tuning parameters to avoid unphysical kicks)

A fair fraction of the pairs remain "bound" after t=5fm/c (recombination)

Alternative option

$$\begin{bmatrix} \partial_t + \frac{2\mathbf{p} \cdot \nabla_{\mathbf{r}}}{M} + C_F \mathbf{F}(\mathbf{r}) \cdot \nabla_{\mathbf{p}} \end{bmatrix} P_s = -2C_F \Gamma(\mathbf{r}) \left(P_s - \frac{P_o}{N_c^2 - 1} \right) \qquad P_o = (N_c^2 - 1)D_o$$
$$\begin{bmatrix} \partial_t + \frac{2\mathbf{p} \cdot \nabla_{\mathbf{r}}}{M} - \frac{1}{2N_c} \mathbf{F}(\mathbf{r}) \cdot \nabla_{\mathbf{p}} \end{bmatrix} P_o = -\frac{1}{N_c} \Gamma(\mathbf{r}) (P_o - (N_c^2 - 1)P_s)$$

Treat the right hand side as a collision term in a Boltzmann eq.

Something missing....

A more precise evolution equation for the density matrix [1803.07996]

$$\begin{aligned} \frac{\mathrm{d}\mathcal{D}}{\mathrm{d}t} + i[H_Q, \mathcal{D}_Q(t)] &= \\ &- \int_{\mathbf{x}\mathbf{x}'} \int_0^{t-t_0} \mathrm{d}\tau \left[n_{\mathbf{x}}^A, U_Q(\tau) n_{\mathbf{x}'}^A \mathcal{D}_Q(t-\tau) U_Q^{\dagger}(\tau) \right] \Delta^{>}(\tau; \mathbf{x} - \mathbf{x}')) \\ &- \int_{\mathbf{x}\mathbf{x}'} \int_0^{t-t_0} \mathrm{d}\tau \left[U_Q(\tau) \mathcal{D}_Q(t-\tau) n_{\mathbf{x}'}^A U_Q^{\dagger}(\tau), n_{\mathbf{x}}^A \right] \Delta^{<}(\tau; \mathbf{x} - \mathbf{x}'), \end{aligned}$$

Before, we assumed

$$U_Q(\tau) \simeq 1 - iH_Q\tau$$

Combination of rate equation and Langevin equation

- There is no gap in the octet-octet transitions, so these can be treated with a Langevin equation (as in QED)
- Singlet to octet transitions can be treated with a rate equation

Illustration. Toy model with a single (singlet) bound state.

$$\frac{\mathrm{d}\boldsymbol{p}^{\mathrm{s}}}{\mathrm{d}t} = \boldsymbol{g}^{2} \boldsymbol{C}_{\boldsymbol{F}} \int_{\boldsymbol{p}} \left(\boldsymbol{p}_{\boldsymbol{p}}^{\mathrm{o}} - \boldsymbol{p}^{\mathrm{s}} \mathrm{e}^{-\frac{\boldsymbol{E}_{\boldsymbol{p}}^{\mathrm{o}} - \boldsymbol{E}^{\mathrm{s}}}{T}} \right) \int_{\boldsymbol{q}} \Delta^{>} (\boldsymbol{\omega}_{\boldsymbol{p}}^{\mathrm{o}} - \boldsymbol{E}^{\mathrm{s}}, \boldsymbol{q}) |\langle \mathrm{s} | \boldsymbol{\mathcal{S}}_{\boldsymbol{q}} \cdot \hat{\boldsymbol{r}} | \mathrm{o}, \boldsymbol{p} \rangle|^{2}$$

$$\frac{\partial p_{\mathbf{p}}^{\mathrm{o}}}{\partial t} - \gamma \nabla (\mathbf{p} p_{\mathbf{p}}^{\mathrm{o}}) - \frac{T \gamma M}{2} \Delta^{2} p_{\mathbf{p}}^{\mathrm{o}} = - \frac{g^{2}}{2N_{c}} \frac{1}{\Omega} \left(p_{\mathbf{p}}^{\mathrm{o}} - p^{\mathrm{s}} \mathrm{e}^{-\frac{E_{\mathbf{p}}^{\mathrm{o}} - E^{\mathrm{s}}}{T}} \right) \int_{\mathbf{q}} \Delta^{>} (\omega_{\mathbf{p}}^{\mathrm{o}} - E^{\mathrm{s}}, \mathbf{q}) |\langle \mathrm{s} | \mathcal{S}_{\mathbf{q} \cdot \hat{\mathbf{r}}} | \mathrm{o}, \mathbf{p} \rangle|^{2}$$

	$\Omega = 1{ m fm}^3$			$\Omega = 100{ m fm}^3$		
	$5\mathrm{fm/c}$	$100\mathrm{fm/c}$	eq.	$5\mathrm{fm/c}$	$100\mathrm{fm/c}$	eq.
$T = 200 \mathrm{MeV}$	0.86	0.136	0.0814	0.85	0.0438	0.00089
$T = 400 \mathrm{MeV}$	0.39	0.0515	0.0175	0.36	0.0002	0.00018

Summary

- In QED, semi-classical approximation and low frequency response of plasma provide a consistent framework
- In QCD, singlet-octet transitions complicate the story (color dynamics cannot be treated semi-classically).
- Still a consistent approach can be obtained, mixing Langevin (classical dynamics) and rate equations (the imaginary potential is energy dependent).
- Note that screening and collision rates are NOT independent.