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Computer simulations of the nonabelian gauge theories In
lattice  regularization is one of the most powerful
nonperturbative methods which does not use uncontrolled
approximations

It allows to obtain numerically precise results for many hadronic
observables.

Apart from this the numerical sumulations are aimed at getting
iInformation which can be helpful for understanding the nature of
the nonperturbative phenomena like confinement and chiral
symmetry breaking



Dual superconductor scenario - one of the most popular ideas
about nature of confinement t' Hooft '75, Mandelstam 76

A dual superconductor is a superconductor in which the roles of
the electric and magnetic fields are exchanged.

Formation of the Abrikosov-Nilsen-Olesen string in a usual
superconductor due to condensation of electric charges is dual to
formation of the flux tube in QCD due to condensation of
color-magnetic monopoles

Superconductor is described by Landau - Ginzburg model (
Abelian Higgs model )

Dual superconductor — by dual Abelian Higgs model

It is yet unsolved task to rigorously prove that infrared QCD is dual
to Abelian Higgs model



=
20
i
]
=0
2
B0
£
oo

|
il

_I‘lux Tui:e Radius

profile of the color-electric field(left) and profile of the
magnetic currents (right) in DLG .
Koma, 2001



Lattice simulations demonstrated that

- In the confinement phase color-magnetic monopoles are
condensed (percolation of magnetic currents)

- monopoles are not condensed in the deconfinement phase and
the temperature of their condensation transition coincides with
confinement-deconfinement phase transition temperature

- Abelian and monopole dominance for the string tension and
other IR relevant quantities

- monopoles are interrelated with instantons/calorons/dyons



At present, there is no analytical proof of the existence of the
condensate of abelian magnetic monopoles in gluodynamics and
In chromodynamics.

However, in all theories allowing for an analytical proof of
confinement, the latter is due to the condensation of monopoles.

These analytical examples are:

compact electrodynamics Polyakov 75
the 3D Georgi—Glashow model Polyakov 77
super-symmetric Yang—Mills theory Seiberg and Witten '94



Dirac monopole
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Lattice definitions for compact U(1)

U.(s) = exp(if,(s)), 0u(s) e [-m )

0,(8) = 9uby(S) — 0,0,(5)
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Conservation law:

Z J,K,(S") =0 S™ — site on a dual lattice
[L

Magnetic currents k,, form closed loops,
these loops are combined into clusters



t'Hooft-Polyakov monopole
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topological origin:
non trivial homotopy m»: a non trivial mapping of the sphere S? at
spatial infinity onto SU(2)/U(1)



Global SU(2) is broken down to U(1) which direction is determined by
scalar field direction at infinity.
U(1) gauge invariant Abelian F,,,, can be defined
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Magnetic field
1. _
eH, = X+ O(e~™w")
Then magnetic charge
4w
9m = Y
In the unitary gauge ¢! = ¢* =0
= siné
A3(X) = — E
eA(X) r(1+ cost) ©¢
47

l.e. form of Dirac monopole with charge gm, = 3



Without scalar field solution also exist.

A;(x) plays role of scalar field

In the unitary gauge
Al = A2 =0

= sinf
A3(%) — 3,
gA™(X) r(1 + cost) ¢

Note that in this gauge it also satisfies Maximally Abelian gauge (MAG)
condition:

(aﬂﬁm + Ekngﬁ(x)) AL(x)=0, k=12



t'Hooft's idea: Partial gauge fixing

X(x) = X'(x) = g()X(x)g'(x) . X(x) = Xa(x) T

gauge fixing condition: g(x) : X’(x) Is diagonal

Gauge freedom is fixed up to U(1)Ne=" which is maximal Abelian
subgroup or Cartan subgroup.

Gauge field has Abelian components aj_l(x) = (AL(X))i

- 1
(x) = a,(x) + 56);{_(:}__!‘

i
a,u-

and off-diagonal components
Cu(X) = (Au(X))j .1 # ]

cl(x) — glot=ei) g

(%)



There Is a singularity at locations where two or more
eigenvalues are equal. In the vicinity of such singularity
gauge field has a form of the t'Hooft - Polyakov monopole,
l.e. it has a magnetic charge.
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In=g s

Examples of X(x): F;,(x),L(x)

Thus QCD becomes equivalent to theory with color
magnetic monopoles, 'photons', and charged matter
fields: off-diagonal gluons and quarks.



Maximally Abelian gauge

MA gauge condition
(.frf)ﬁam + FHS,Ai(x)) Al(x)=0, k=12

solutions: extremums over gauge transtormations of the
functional

FIA] = f dtx ((AL? + (A2)?)

Abelian projection:
AT - AEL T3 (in observables)

Lattice formulation - by Kronfeld, Laursen, Schierholz, Wiese,1989



Abelian dominance hypothesis

Ezawa,lwazaki '82
Physical observables, related to the infrared properties of the theory,
can be computed with the help of the Abelian variables i.e.

c0n= ! [y,

and

<O A % / e=50(u,)DU,

give approximately equal values of the infrared physical quantities.

Example: O = W(r.t) ; static potential is derived from the Wilson loop:
V(r)=a/r+or.

Abelian projection gives very good approximation for o but not for o
Suzuki and Yotsuyanagi, 1990



Bonati, D'Elia and Di Giacomo, 2010

It was argued that MAG is a proper Abelian gauge to
find gauge invariant monopoles since monopoles can
be identified In this gauge by the Abelian flux, but this is
not possible in other Abelian gauges.

In other words, the efficiency of the method to detect
monopoles (DeGrand-Toussaint) depends on the
choice of the gauge.

It was demonstrated for a class of gauges which
iInterpolate between the Maximal Abelian gauge and the
Landau gauge, how monopoles gradually escape
detection.



Old results

Trajectories of the Abelian monopoles form three different types of
clusters:

- Large cluster (one per configuration percolating cluster, of infinite size
on the infinite lattice )
magnetic currents from this cluster are called IR monopoles

VB, Mitryushkin and Mueller-Preussker, 1992; Hart and Teper, 1996

- Finite size clusters with distribution of length N(L) = C/L[®
Hart and Teper, 1996
Both observations are in accordance with percolation theory, 1 /L3
dependence was also derived within the polymer approach to the field
theory for free or Coulomb-like interacting scalar particles
Chernodub and Zakharov, 2003

- Small clusters with length L = O(a). These are UV monopoles



The length distribution of finite clusters in SU(2)
gluodynamics. Lattice 32%,a =~ 0.13fm,
VB, Boyko, Polikarpov, Zakharov, '03
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Percolation transition at T.
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Abelian and monopole dominance
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Abelian and nonabelian static potentials. Bali, VB, Mueller-Preussker,
Schilling, 1996



One can decompose the Abelian vector potential into
monopole and photon parts

AT (x) =21y " D(x — y)d,m, (x)
Y.
APt (x) = Au(x) — AT"(x)
U (x) = exp(iA; " (x))
uP(x) = exp(iAR"(x))

U (x) = Un(x)u®™(x)

- nonabelian gauge field with monopoles removed
(modified)

mod
Uli
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Results in SU(2):

o /o = 0.92(4)
oM |58 — 0.95(2)
g2 |58 — 2 23(5)

(itis 8/3in SU(2)

73 /o was computed in the limit of infinite cutoff

73 /o was computed for improved lattice action and universality of the
Abelian dominance had been demonstrated
VB, llgenfritz, Mueller-Preussker, 2005




Dominance of the diagonal gluon propagator in IR had
been found Amemiya and Suganuma, 1999 (in

coordinate space)
VB, Chernodub, Gubarev, Morozov and Polikarpov, 2003

(in momentum space)
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Ratio of diagonal to offdiagonal transverse propagators




Properties of superconductors are often described in terms of a
penetration depth A and a correlation length ¢ , which are equal to the
Inverse vector and Higgs masses.

They were computed on the lattice from the Abelian flux tube
properties.

V. Singh, D. A. Browne, R. W. Haymaker, 1993

C. Schlichter, G. S. Bali, K. Schilling, 1998

F. V. Gubarev, M. ligenfritz, M. I. Polikarpov, T. Suzuki, 1999

The classical equations of motion for the Abelian Higgs model were
numerically solved

1 1 . .
Laum = 4—92’:5:;(5) +51(0 = B )b + A(|®|* — 7).
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The lattice data for distribution of the electric flux and magnetic currents were
nicely fitted by the classical equations of motion of the dual Abelian Higgs
model. It was found that the mass of the vector boson is equal to the mass ot
the monopole (Higgs particle) within numerical errors. The effective dual
Abelian Higgs Model appears to lie on the border between type-| and type-II
superconductivity. The classical string tension (energy per unit length of the
Abrikosov vortex) is 94% of the full non-Abelian string tension.



Ichie, VB, Streuer, Schierholz, 2003, 3Q system

Abelian action density in three-quark system (static baryon) in lattice QCD



(b)

three-quark potential [GeV]

Suganuma, Sakumichi, 2015
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ymon 4 ymod gnnroximates the nonabelian static
potential with high accuracy at all distances.
SU(2) gluodanamics, 24* a = 0.08fm

VB, Polikarpov, Schierholz, Suzuki, Syritsyn
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avspat{r}
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Known problem:
In the adjoint representation

W(C)aq -1+ Waw.g + Wabel.—z =1+ 2COS(O(C))

The abelian projected string tension gy a6 = 0.

This is correct result, since asymptotic string tension 44 = 0
But this does not agree with the Casimir scaling at intermediate
distances

Two conclusions:
off-diagonal gluons become relevant
abelian projection procedure should be modified
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adjoint static potential in QC,D
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Vinon(HIT

Screening of the g=2 monopole potential

Vion(NVT for g=2, T/T.=0.91 in SU(2) gluodynamics
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Conclusions |

- DS scenario of confinement Is supported
by numerical evidence obtained In lattice
simulations.

There Is no theoretical understanding of
this ‘phenomenology’. Hope for future

- Decomposition of the static potential

V(r) = V™mon(y) + V™04 () is one of such
observations

- Solution to adjoint potential problem
- First observation of the screening of q=2
monopole potential



Deconfinement transition in QC,D at
T=0 and nonzero quark chemical potential

This part of my talk is based on

JHEP 03 (2018) 161

Braguta V., VB, llgenfritz M., Kotov A.,
Molochkov A., Nikolaev A.

| also use slides from the talk given by
Nikolaev A. at XQCD 2018



for SU(2) gauge group

(Tzf"fa)_l M(ﬁ-ﬂq)(ﬁf’}fﬁ)l —~

At real jiq in QC,D
det{M( )] s real, der{ Ty )M(ﬂ.q)] >0at mg#0.



@ Phase transitions: confinement/deconfinement, chiral symmetry

restoration

@ Some observables (normalized) are nearly equal in both theories:

Topological susceptibility [B. Lucini et al, Nucl. Phys. B715 (2005) 461]
Y4 /o = 0.3928(40) (SU(2)), xY/*/\/o = 0.4001(35) (SU(3))

Critical temperature [B. Lucini et. al., Phys. Lett. B712 (2012) 279]:

Tc/v/o =0.7092(36) (SU(2)), T./v/o=0.6462(30) (SU(3))

Shear viscosity:
/s = 0.134(57) (SU(2)) [N.Yu. Astrakhantsev et. al., JHEP 1500 (2015) 082]
n/s = 0.102(56) (SU(3)) [H.B. Meyer, PRD 76 (2007) 101701]

@ Mass spectrum (r. peGrand, Y. Liu, PRD 04, 034506 (2016))

@ Thermodynamical properties (m. caselie et. al. JHEP 1205 (2012) 135)




Temperature

| <qg>X0
<gp=0

Hadronic Matter

Quark—Gluon Plasma
<qq>=0
<qg>=0

Chemical Potential




SU(2) with u, > 0 was first studied by A. Nakamura,
Phys. Lett. B149, 391 (1984).

Later work:

J.B. Kogut et. al,, Nucl. Phys. B582 (2000) 477-513

J.B. Kogut, D. Toublan, D.K. Sinclair, Nucl. Phys. B642 (2002) 181-209
S. Cotter, P. Giudice, S. Hands, J.-I. Skullerud, PRD 87, 034507 (2013)
T. Boz, S. Cotter, L. Fister, D. Mehta ,J.-I. Skullerud, EPJ A49 (2013)
V.V. Braguta et. al., PRD 94, 114510 (2016) (our previous study)




We study N = 2 of rooted staggered fermions:

-I=--I|—l

7 = f DU dEI[MT(ILLq)M(,{.{ )+,\2] eS¢ U1

where Sgnpr [U] is the tree-level improved gauge action and

1
1 1 :
My (1tq) = Mqadyy + EZ u(X) lUx;M’erﬁ,yeﬁqa%’d -
pu=1

f ' .U*qaé,u.d
-U, _ iy (I 41,



Simulations settings:

Lattice: 32* (T=0)

§ =18, a=0.044(1) fm (Sommer parameter), s ~ 1.4 fm
ma = 0.0075, My = 740(40) MeV; M, L ~ 5, My /M, ~ 0.5
Fixed A = 0.00075, \? << (ma)?
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Static quarks potential
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Spatial static potential
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Diquark condensate

Hqa
0.2 0.3 0.4 0.5 0.6
8 ] I L] I L]
7
6
~
éL 5
N
s 4
Y
3
2
1. [ [ ] [ ] [ ]
500 1000 1500 2000 2500
Hgo MeV

BCS phase for ;g = 1000 MeV
Diquark condensate rises for pg > 1800 MeV




nB/n()

1.6

15 F

1.4 F

1.3 F

1.2 F

1.1 F

1

Number density

1@
0.2 0.3 0.4 0.5 0.6
0]
o )
®
do o o
I [ [ [ [
500 1000 1500 2000 2500

g MeV



0.0016

i, MeV
1000

1500 2000

{l.[][]14—+ *

0.0012 1

0.5



Conclusions Il

Clear observation of transition to deconfinement
atT =0

at u,., determined by o, between 850 and

1000 MeV
os Starts to decrease at p, ~ 1000 MeV and

becomes zero at about 2000 MeV

Thus deconfinement at large density is different
from deconfinement at large temperature

There Is no nonperturbative magnetic sector



New proposal for confinement
mechanism

T. Suzuki arXiv:1402.1294

Suzuki, Ishiguro, VB, Phys.Rev. D97 (2018)
no.3, 034501

Suzuki, Phys.Rev. D97 (2018) no.3, 034509



confinement Is due to violation of the non-
Abelian Bianchi identities (VNABI)

VNABI J,(x) are equal to Abelian-like
monopole currents k, defined by the violation
of the Abelian-like Bianchi identities.

VNABI satisfies covariant conservation law
D,J,=0 and Abelian-like conservation law

0, =0

There are N? — 1 conserved magnetic charges
In SU(N) QCD.

The charge of each component of VNABI s

assumed to satisfy the Dirac quantization
condition.



Each color component of the non-Abelian
electric field E¢ Is squeezed by the
corresponding color component of the
solenoidal current J ;.

No Abelian gauge fixing, no breaking global
SuU(n).



Numerical results in SU(2) gluodynamics
were obtained supporting the gauge
invariance of < kj >

Thus giving support to the proposal.



