Fluctuations and multiparticle correlations in heavy-ion collisions

Adam Bzdak
 AGH University of Science and Technology, Kraków

Outline

- correlation, interaction
- cumulants and STAR data
- clusters
- two event classes
- long-range correlations
- rapidity repulsion
- summary

Poisson distribution

$$
\begin{aligned}
N & =10^{10} \\
p & =10^{-9} \\
\langle n\rangle & =N p=10
\end{aligned}
$$

event \# 1

event \#2 o o o o o o o o o o
$P(n)=$ Poisson if $N \rightarrow \infty, p \rightarrow 0, \quad N p=\langle n\rangle$

Such source (multiplicity distribution) is characterized by All factorial cumulants $\boldsymbol{C}_{\boldsymbol{n}}=\mathbf{0}, n=2,3, \ldots$ ("no correlations")

In what sense "no correlations"?

$P\left(n_{1}, n_{2}\right) \stackrel{?}{=} P\left(n_{1}\right) P\left(n_{2}\right)$
It is true for $P(n)=$ Poisson only
fixed N
finite N
resonances
volume fluctuation

$$
\begin{aligned}
P\left(n_{1}, n_{2}\right) & =P(n) \frac{n!}{n_{1}!n_{2}!}\left(\frac{1}{2}\right)^{n_{1}}\left(\frac{1}{2}\right)^{n_{2}} \\
n & =n_{1}+n_{2}
\end{aligned}
$$

Multiparticle correlations

m particle cluster
Poisson
$\boldsymbol{C}_{2} \neq 0$
$\boldsymbol{C}_{\boldsymbol{k}}=0, k>2$
$C_{2,3, \ldots, m} \neq 0$
$\boldsymbol{C}_{\boldsymbol{k}}=0, k>m$
factorial
cumulants

$$
\boldsymbol{C}_{\boldsymbol{k}}=\left.\frac{d^{k}}{d z^{k}} \ln \left(\sum_{n} P(n) z^{n}\right)\right|_{z=1}
$$

Two-particle correlation function

$$
\rho_{2}\left(y_{1}, y_{2}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right)+C_{2}\left(y_{1}, y_{2}\right)
$$

Integrating both sides over some bin in rapidity

$$
\langle n(n-1)\rangle=\langle n\rangle^{2}+\boldsymbol{C}_{\mathbf{2}}
$$

$$
\begin{aligned}
\langle n(n-1)\rangle & =\int \rho_{2}\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \\
\langle n\rangle & =\int \rho(y) d y
\end{aligned}
$$

factorial cumulant
(integrated correlation function)

$$
\boldsymbol{C}_{2}=\int \boldsymbol{C}_{2}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}
$$

Genuine three-particle correlation

$$
\rho_{3}\left(y_{1}, y_{2}, y_{3}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right) \rho\left(y_{3}\right)+\rho\left(y_{1}\right) C_{2}\left(y_{2}, y_{3}\right)+\cdots
$$

three possibilities

$$
+C_{3}\left(y_{1}, y_{2}, y_{3}\right)
$$

Integrating both sides

$$
\langle n(n-1)(n-2)\rangle=\langle n\rangle^{3}+3\langle n\rangle \boldsymbol{C}_{2}+\boldsymbol{C}_{\mathbf{3}}
$$

factorial cumulant
(integrated correlation function)

$$
\boldsymbol{C}_{\mathbf{3}}=\int \boldsymbol{C}_{\mathbf{3}}\left(y_{1}, y_{2}, y_{3}\right) d y_{1} d y_{2} d y_{3}
$$

and analogously for higher-order correlation functions

Interaction

$$
\begin{aligned}
& \rho_{2}\left(y_{1}, y_{2}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right)+C_{2}\left(y_{1}, y_{2}\right) \\
& \boldsymbol{C}_{2}=\int \boldsymbol{C}_{2}\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \quad \begin{array}{l}
\text { (integrated correlation } \\
\text { function) }
\end{array}
\end{aligned}
$$

For Poisson $\boldsymbol{C}_{2}=0$ but $\boldsymbol{C}_{\mathbf{2}}\left(y_{1}, y_{2}\right)$ can have a non-trivial shape due to, e.g., interactions

For example (elliptic flow):

$$
\boldsymbol{C}_{2}\left(\phi_{1}, \phi_{2}\right) \sim \cos (2 \Delta \phi), \quad \Delta \phi=\phi_{1}-\phi_{2}
$$

What we know about the QCD phase diagram

The rest is everybody's guess.

Usual expectation based on various effective models

On the experimental side all we can do is to measure various fluctuation observables and hope to see some nontrivial energy or/and system-size dependence

```
```

see, e.g.,

```
```

see, e.g.,
Stephanov, Rajagopal, Shuryak, PRL (1998)
Stephanov, Rajagopal, Shuryak, PRL (1998)
Stephanov, PRL (2009)
Stephanov, PRL (2009)
Skokov, Friman, Redlich, PRC (2011)

```
```

Skokov, Friman, Redlich, PRC (2011)

```
```

There are some intriguing results:

STAR, HADES

Higher order cumulants

Proton v_{1} (STAR)

HBT radii (STAR)

NA 49
Intermittency in the transverse momentum phase space

Strongly intensive variables

Preliminary STAR data

my notation
K_{4} / K_{2}
cumulants $\quad K_{i}=\left.\frac{d^{i}}{d t^{i}} \ln \left(\sum_{n} P(n) e^{t n}\right)\right|_{t=0}$

Factorial cumulants vs cumulants
factorial
cumulant

$$
\boldsymbol{C}_{\boldsymbol{i}}=\left.\frac{d^{i}}{d z^{i}} \ln \left(\sum_{n} P(n) z^{n}\right)\right|_{z=1}
$$

cumulant

$$
K_{i}=\left.\frac{d^{i}}{d t^{i}} \ln \left(\sum_{n} P(n) e^{t n}\right)\right|_{t=0}
$$

cumulants naturally appear in statistical physics

Poisson:
$C_{i}=0$
$K_{i}=\langle n\rangle$

$$
Z=\sum_{i} e^{-\beta\left(E_{i}-\mu N_{i}\right)}
$$

Preliminary STAR data

X.Luo, N.Xu, 1701.02105

my notation

K_{4} / K_{2}

Is proton signal at 7.7 GeV large?
Is antiproton signal at 7.7 GeV small?
Can we and how to directly compare different energies?

Preliminary STAR data at 7.7 GeV

$$
-(\Delta y) / 2<y<(\Delta y) / 2
$$

Is this dependence expected?
Is it somehow related to the QCD phase diagram?

General remarks:

"Cumulant ratios do not depend on volume"
It is true if a correlation length is much smaller than the system size
real coordinate space

Here this condition is satisfied

momentum rapidity space

Correlation length is usually larger than one unit of rapidity.

Cumulant ratios are expected to depend on acceptance in rapidity

Cumulants are not optimal

$$
\begin{array}{lr}
K_{2}=\left\langle(\delta N)^{2}\right\rangle \quad \delta N=N-\langle N\rangle & N-\text { number of protons } \\
K_{3}=\left\langle(\delta N)^{3}\right\rangle & \begin{array}{l}
\text { we neglect anti-protons, } \\
\text { good at low energies }
\end{array} \\
K_{4}=\left\langle(\delta N)^{4}\right\rangle-3\left\langle(\delta N)^{2}\right\rangle^{2} &
\end{array}
$$

$$
K_{i}=\langle N\rangle+p h y \operatorname{sics}[2, \ldots, i]
$$

physics = two-, three-, n-particle factorial cumulants
for Poisson distribution $K_{i}=\langle N\rangle, \quad($ physics $=0)$

We have

$$
\begin{array}{ll}
K_{2}=\langle N\rangle+C_{2} & \begin{array}{l}
\text { cumulants mix integ. } \\
\text { correlation functions } \\
\text { of different orders }
\end{array} \\
K_{3}=\langle N\rangle+3 C_{2}+C_{3} & \\
K_{4}=\langle N\rangle+7 C_{2}+6 C_{3}+C_{4}
\end{array}
$$

$$
\begin{aligned}
& K_{5}=\langle N\rangle+15 C_{2}+25 C_{3}+10 C_{4}+C_{5} \\
& K_{6}=\langle N\rangle+31 C_{2}+90 C_{3}+65 C_{4}+15 C_{5}+C_{6}
\end{aligned}
$$

$\rho_{2}\left(y_{1}, y_{2}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right)+\boldsymbol{C}_{2}\left(y_{1}, y_{2}\right)$

$$
\boldsymbol{C}_{2}=\int \boldsymbol{C}_{2}\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \quad \text { factorial cumulant }
$$

See, e.g.,
B. Ling, M. Stephanov, PRC 93 (2016) 034915

AB, V. Koch, N. Strodthoff , PRC 95 (2017) 054906
AB, V.Koch, D.Oliinychenko, J.Steinheimer, 1804.04463 (K_{5} and K_{6})

Suppose we have a system with two-particle clusters only

In this case all information is contained in $\langle n\rangle$ and K_{2}. No point to measure $K_{3,4, \ldots}$

$$
\boldsymbol{C}_{\mathbf{2}}=2\left\langle n_{C}\right\rangle \quad \boldsymbol{C}_{\mathbf{3}, \mathbf{4}, \ldots}=0
$$

$$
K_{i}=2^{i}\left\langle n_{C}\right\rangle \quad \text { and for example: } \frac{K_{4}}{K_{2}}=4
$$

looks nontrivial but no new information

Using preliminary STAR data we obtain \boldsymbol{C}_{n}

central signal at 7.7 GeV is driven by large 4-particle correlations

$C_{4}(7.7) \sim 170$
central signal at 19.6 GeV is driven by 2-particle correlations

\boldsymbol{C}_{4} and $\mathbf{6} \boldsymbol{C}_{3}$ cancelation in most central coll.

and here \boldsymbol{C}_{2}

Baryon conservation + volume fluctuation (minimal model)

- independent baryon stopping (baryon conservation by construction)
- $N_{\text {part }}$ fluctuations (volume fluctuation - VF)

> STAR
> $C_{4} \sim 170$
> $6 C_{3} \sim-60$
> $7 C_{2} \sim-15$
we follow the STAR way (centrality etc.) as closely as possible

AB, V. Koch, V. Skokov, EPJC 77 (2017) 288
See also, P. Braun-Munzinger, A. Rustamov, J. Stachel, NPA 960 (2017) 114

Volume fluctuation + baryon conservation seems to be important for C_{2} but irrelevant for C_{3} and $C_{4}(7.7 \mathrm{GeV})$.
C_{4} observed by STAR is larger by almost three orders of magnitude than the minimal model.

To explain C_{4} we need a strong source of multi-proton correlations.

Proton clusters?

Suppose that we have clusters (distributed according to Poisson) decaying always to 4 protons

$$
\boldsymbol{C}_{\boldsymbol{k}}=\left\langle N_{\mathrm{cl}}\right\rangle \cdot 4!/(4-k)!
$$

mean number
of clusters
for 5-proton clusters:
$C_{k}=\left\langle N_{\mathrm{cl}}\right\rangle \cdot 5!/(5-k)!$
$\boldsymbol{C}_{4}=\left\langle N_{\mathrm{cl}}\right\rangle \cdot 120$
and $\left\langle N_{\text {cl }}\right\rangle \sim 1$

$$
\boldsymbol{C}_{\mathbf{4}}=\left\langle N_{\mathrm{cl}}\right\rangle \cdot 24
$$

To obtain $\boldsymbol{C}_{4} \approx 170$ we need $\left\langle N_{\mathrm{cl}}\right\rangle \sim 7$, it means 28 protons. STAR sees on average 40 protons in central collisions.

In this model $C_{2}>0$ and $C_{3}>0$ contrary to the STAR data

Toy model:

AB, V. Koch, V. Skokov, EPJC 77 (2017) 288

- 16 protons stop in quartets with probability p_{4}
- remaining protons stop independently with some small probability $p_{1} \sim 0.1$

qualitatively consistent with STAR

STAR
$C_{4} \sim 170$
$6 C_{3} \sim-60$
$7 C_{2} \sim-15$

We obviously need more serious cluster model.
See, e.g., E.Shuryak, J.M. Torres-Rincon, 1805.04444

Can we describe the STAR data at 7.7 GeV with ordinary multiplicity distributions?

Model with two event classes

$$
P(N)=(1-\alpha) P_{(a)}(N)+\alpha P_{(b)}(N)
$$

That is, with probability $1-\alpha$ we have $P_{(a)}(N)$ and with probability α we have $P_{(b)}(N)$

AB, V. Koch, D. Oliinychenko, J. Steinheimer, 1804.04463

A finite volume van der Walls model

AB, V. Koch, D. Oliinychenko, J. Steinheimer, 1804.04463

$$
C_{2}=\alpha(1-\alpha) \bar{N}^{2} \approx \alpha \bar{N}^{2}
$$

$$
C_{3}=-\alpha(1-\alpha)(1-2 \alpha) \bar{N}^{3} \approx-\alpha \bar{N}^{3}
$$

$$
C_{4}=\alpha(1-\alpha)\left(1-6 \alpha+6 \alpha^{2}\right) \bar{N}^{4} \approx \alpha \bar{N}^{4}
$$

$$
\bar{N}=\left\langle N_{(a)}\right\rangle-\left\langle N_{(b)}\right\rangle
$$

$$
\frac{C_{6}}{C_{5}} \approx \frac{C_{5}}{C_{4}} \approx \frac{C_{4}}{C_{3}}=-17 \pm 6
$$

parameter-free prediction at 7.7 GeV $(\alpha \ll 1)$

```
K
K
```

$$
\text { assuming } C_{4}=170
$$

We can describe the data with $\alpha \approx 0.0033$

$$
\left\langle N_{(a)}\right\rangle \approx 40,\left\langle N_{(b)}\right\rangle \approx 25
$$

Now we can plot $P(N)$

Rapidity dependence consistent with long-range correlations

$$
c_{n}\left(y_{1}, \ldots, y_{n}\right)=\frac{C_{n}\left(y_{1}, \ldots, y_{n}\right)}{\rho\left(y_{1}\right) \cdots \rho\left(y_{n}\right)} \quad \begin{array}{ll}
\text { if } c_{n}\left(y_{1}, \ldots, y_{n}\right)=\text { const } \\
C_{n} \sim\langle N\rangle^{n} \sim(\Delta y)^{n}
\end{array}
$$

AB, V. Koch, N. Strodthoff , PRC 95 (2017) 054906

Constant correlation

$$
c_{n}\left(y_{1}, p_{t 1}, \ldots, y_{n}, p_{t n}\right)=\mathrm{const}
$$

physics independent on rapidity and transverse momentum

Acceptance: missing link between models and data

Cumulant ratios strongly depend on acceptance in rapidity (as actually expected) and in transverse momentum.

Comparison with models which do not have experimental acceptance is questionable (should be done with extra caution).

For small enough $\langle N\rangle$ things look like Poisson but this is actually misleading.

Repulsive vs attractive rapidity correlations

$$
\begin{aligned}
& c_{2}\left(y_{1}, y_{2}\right)=c_{2}^{0}+\gamma_{2}\left(y_{1}-y_{2}\right)^{2} \\
& c_{3}\left(y_{1}, y_{2}, y_{3}\right)=c_{3}^{0}+\gamma_{3} \frac{1}{3}\left[\left(y_{1}-y_{2}\right)^{2}+\left(y_{1}-y_{3}\right)^{2}+\left(y_{2}-y_{3}\right)^{2}\right] \\
& c_{4}\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=c_{4}^{0}+\gamma_{4} \frac{1}{6} {\left[\left(y_{1}-y_{2}\right)^{2}+\left(y_{1}-y_{3}\right)^{2}+\left(y_{1}-y_{4}\right)^{2}\right.} \\
&\left.+\left(y_{2}-y_{3}\right)^{2}+\left(y_{2}-y_{4}\right)^{2}+\left(y_{3}-y_{4}\right)^{2}\right]
\end{aligned}
$$

$\gamma_{n}>0$ - rapidity "repulsion"
$\gamma_{n}<0$ - rapidity "attraction"

It seems that rapidity repulsion $\left(\gamma_{3,4}>0\right)$ is favored

$\gamma_{3,4}<0$ (attraction) seems to be excluded

Presence of proton clusters would naively result in $\gamma_{2,3,4}<0 \ldots$

Better control of finite multiplicity effects from convolution LS proton anticorrelation for $\Delta y \sim 0$. Weak beam energy dependence.

Conclusions:

Four-proton factorial cumulant (int. correlation function) at 7.7 GeV is surprisingly large. Three orders of magnitude larger than the minimal model.

Volume fluctuation and baryon conservation seem to be irrelevant for C_{3} and C_{4}. C_{2} (and K_{2}) is likely contaminated by background.

Proton clusters?

Two event classes? Bumpy structure of $P(N)$.
Parameter-free predictions.
Evidence of long-range proton correlation in rapidity and transverse momentum. Perhaps the first evidence of multiproton repulsion in rapidity.

Backup

Critical point: everybody's guess

Figure 4: Comparison of predictions for the location of the QCD critical point on the phase diagram. Black points are model predictions: NJLa89, NJLb89 - [12], CO94 - [13, 14], INJL98 - [15], RM98 - [16], LSM01, NJL01 - [17], HB02 - [18], CJT02 - [19], 3NJL05 - [20], PNJL06 - [21]. Green points are lattice predictions: LR01, LR04 - [22], LTE03 - [23], LTE04 - [24]. The two dashed lines are parabolas with slopes corresponding to lattice predictions of the slope $d T / d \mu_{B}^{2}$ of the transition line at $\mu_{B}=0[23,25]$. The red circles are locations of the freezeout points for heavy ion collisions at corresponding center of mass energies per nucleon (indicated by labels in GeV) - Section 5 .

So are factorial cumulants "easy"?
Factorial cumulants measure deviations from Poisson
Consider a source giving always one particle

$$
P(n) \quad \begin{aligned}
P(n) & =1 \text { for } n=1 \\
& =0 \text { for } n>1
\end{aligned}
$$

$$
\boldsymbol{C}_{\boldsymbol{k}}=\left.\frac{d^{k}}{d z^{k}} \ln (z)\right|_{z=1}
$$

$\boldsymbol{C}_{\mathbf{2}}=-1, \boldsymbol{C}_{\mathbf{3}}=2, \boldsymbol{C}_{\mathbf{4}}=-6, \ldots, \boldsymbol{C}_{\boldsymbol{9}}=40320$
$\boldsymbol{C}_{\boldsymbol{k}}=(-1)^{k-1}(k-1)!$

Comparison of 7.7, 11.5 and 19.6 GeV

Efficiency
AB, V.Koch, PRC 86 (2012) 044904
multiplicity distr. narrower than Poisson

K_{4} / K_{2}
multiplicity distr. broader than Poisson

K_{4} / K_{2}
$\frac{K_{4}}{K_{2}}=5,1,0,-1,-5$

Multiplicity dependent efficiency

Large corrections for small ϵ^{\prime}
$\epsilon(N)=\epsilon_{0}+\epsilon^{\prime}(N-\langle N\rangle)$

Mixed integrated correlation functions

$$
\begin{array}{ll}
C_{2}^{(2,0)}=-F_{1,0}^{2}+F_{2,0} \\
C_{2}^{(1,1)}=-F_{0,1} F_{1,0}+F_{1,1} \\
C_{3}^{(3,0)}=2 F_{1,0}^{3}-3 F_{1,0} F_{2,0}+F_{3,0} \\
C_{3}^{(2,1)}=2 F_{0,1} F_{1,0}^{2}-2 F_{1,0} F_{1,1}-F_{0,1} F_{2,0}+F_{2,1}
\end{array}
$$

Cumulants

$$
\begin{aligned}
& K_{2}=\langle N\rangle+\langle\bar{N}\rangle+C_{2}^{(2,0)}+C_{2}^{(0,2)}-2 C_{2}^{(1,1)} \\
& K_{3}=\langle N\rangle-\langle\bar{N}\rangle+3 C_{2}^{(2,0)}-3 C_{2}^{(0,2)}+C_{3}^{(3,0)}-C_{3}^{(0,3)}-3 C_{3}^{(2,1)}+3 C_{3}^{(1,2)}
\end{aligned}
$$

For $C_{4}^{(i, k)}$ and K_{4} see the appendix of
AB, V. Koch, N. Strodthoff, PRC 95 (2017) 054906
First model (AMPT) calculations by
Yufu Lin, Lizhu Chen, Zhiming Li, PRC 96 (2017) 044906

Mixed correlation functions and cumulants

$$
\begin{aligned}
& C_{2}^{(2,0)}=-F_{1,0}^{2}+F_{2,0} \\
& C_{2}^{(1,1)}==F_{0,1} F_{1,0}+F_{1,1} \\
& C_{3}^{(3,0)}= 2 F_{1,0}^{3}-3 F_{1,0} F_{2,0}+F_{3,0} \\
& C_{3}^{(2,1)}==2 F_{0,1} F_{1,0}^{2}-2 F_{1,0} F_{1,1}-F_{0,1} F_{2,0}+F_{2,1} \\
& C_{4}^{(4,0)}=-6 F_{1,0}^{4}+12 F_{1,0}^{2} F_{2,0}-3 F_{2,0}^{2}-4 F_{1,0} F_{3,0}+F_{4,0} \\
& C_{4}^{(3,1)}=-6 F_{0,1} F_{1,0}^{3}+6 F_{1,0}^{2} F_{1,1}+6 F_{0,1} F_{1,0} F_{2,0}-3 F_{1,1} F_{2,0}-3 F_{1,0} F_{2,1}-F_{0,1} F_{3,0}+F_{3,1} \\
& C_{4}^{(2,2)}=\left(-6 F_{0,1}^{2}+2 F_{0,2}\right) F_{1,0}^{2}+8 F_{0,1} F_{1,0} F_{1,1}-2 F_{1,1}^{2}-2 F_{1,0} F_{1,2}+\left(2 F_{0,1}^{2}-F_{0,2}\right) F_{2,0}-2 F_{0,1} F_{2,1}+F_{2,2} \\
& K_{2}=\langle N\rangle+\langle\bar{N}\rangle+C_{2}^{(2,0)}+C_{2}^{(0,2)}-2 C_{2}^{(1,1)} \\
& K_{3}=\langle N\rangle-\langle\bar{N}\rangle+3 C_{2}^{(2,0)}-3 C_{2}^{(0,2)}+C_{3}^{(3,0)}-C_{3}^{(0,3)}-3 C_{3}^{(2,1)}+3 C_{3}^{(1,2)} \\
& K_{4}=\langle N\rangle+\langle\bar{N}\rangle+7 C_{2}^{(2,0)}+7 C_{2}^{(0,2)}-2 C_{2}^{(1,1)}+6 C_{3}^{(3,0)}+6 C_{3}^{(0,3)}-6 C_{3}^{(2,1)}-6 C_{3}^{(1,2)}+ \\
& C_{4}^{(4,0)}+C_{4}^{(0,4)}-4 C_{4}^{(3,1)}-4 C_{4}^{(1,3)}+6 C_{4}^{(2,2)} \\
& \text { AB, V. Koch, N. Strodthoff, PRC 95 (2017) 054906 }
\end{aligned}
$$

$$
\begin{array}{ll}
\rho_{2}\left(y_{1}, y_{2}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right)+C_{2}\left(y_{1}, y_{2}\right) & \begin{array}{l}
\text { correlation } \\
\text { function }
\end{array} \\
\rho_{2}\left(y_{1}, y_{2}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right)\left[1+c_{2}\left(y_{1}, y_{2}\right)\right] & \begin{array}{l}
\text { reduced correlation } \\
\text { function } \\
\text { e.g., does not depend } \\
\text { on binomial efficiency }
\end{array} \\
\text { "coupling" } & c_{2}=\frac{\int \rho\left(y_{1}\right) \rho\left(y_{2}\right) c_{2}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}}{\int \rho\left(y_{1}\right) \rho\left(y_{2}\right) d y_{1} d y_{2}}=\frac{c_{2}}{\langle N\rangle^{2}}
\end{array}
$$

and the second order cumulant

$$
K_{2}=\langle N\rangle+\underbrace{\langle N\rangle^{2} c_{2}}_{\boldsymbol{C}_{2}}
$$

We obtain

$$
c_{2}=\frac{\int \rho\left(y_{1}\right) \rho\left(y_{2}\right) c_{2}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}}{\int \rho\left(y_{1}\right) \rho\left(y_{2}\right) d y_{1} d y_{2}}
$$

$$
\begin{aligned}
& K_{2}=\langle N\rangle+\langle N\rangle^{2} c_{2} \\
& K_{3}=\langle N\rangle+3\langle N\rangle^{2} c_{2}+\langle N\rangle^{3} c_{3} \\
& K_{4}=\langle N\rangle+7\langle N\rangle^{2} c_{2}+6\langle N\rangle^{3} c_{3}+\langle N\rangle^{4} c_{4}
\end{aligned}
$$

For $c_{n}\left(y_{1}, \ldots, y_{n}\right)=$ const, K_{n} strongly depends on rapidity window size since $\langle N\rangle \sim \Delta y$

At 7.7 GeV, $K_{4} / K_{2} \sim\langle N\rangle^{3} \sim(\Delta y)^{3}$
btw, K_{n} is strongly efficiency dependent through $\langle N\rangle$

Couplings' point of view and global baryon conservation

AB, V. Koch, N. Strodthoff, PRC 95 (2017) 054906

C_{4} at 62 GeV !

results for c_{2}

central 7 GeV points are somehow special

AB, V. Koch, N. Strodthoff , PRC 95 (2017) 054906

Using preliminary STAR data we obtain c_{3}

$A B, V$. Koch, N. Strodthoff, PRC 95 (2017) 054906

At 7.7 GeV we see $1 / N^{2}$ for small $N_{\text {part }}$ then c_{3} changes sign and stays roughly constant...

Similar story for c_{4}

γ_{2} is well visible in $K_{2} /\langle N\rangle$

We should study the integrated reduced correlation function

$$
c_{n}(\Delta y)=\frac{C_{n}}{\langle N\rangle^{n}}=c_{n}^{0}+\gamma_{n} \frac{1}{6}(\Delta y)^{2} \quad c_{2}=\frac{\int \rho\left(y_{1}\right) \rho\left(y_{2}\right) c_{2}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}}{\int \rho\left(y_{1}\right) \rho\left(y_{2}\right) d y_{1} d y_{2}}
$$

Full acceptance

$$
\begin{aligned}
& \begin{array}{|c|}
N_{(b)} \\
N_{(a)}
\end{array} \quad N_{(a)}+N_{(b)}=B=\text { cost. } \begin{array}{r}
\text { baryon conservation }
\end{array} \\
& K_{2,(a)}=K_{2,(b)} \quad K_{3,(a)}=-K_{3,(b)} \\
& K_{4,(a)}=K_{4,(b)} \quad K_{5,(a)}=-K_{5,(b)}
\end{aligned}
$$

$\frac{K_{4}}{K_{2}} \rightarrow 1, \frac{K_{3}}{K_{2}} \rightarrow-1 \quad$ for full acceptance

