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Phase structure of QCD at high temperature & density 

• Phase transition lines

• Critical point

• First order transition at 
high density

Lattice QCD Simulations

• Direct simulation: 

Impossible at m0.
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Quark Mass dependence of QCD phase transition

• The determination of the boundary of 1st order region: important. 

• On the line of physical mass, the crossover at low density

1st order transition at high density.
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Contents of this talk

• First order phase transition in the SU(3) gauge theory 
(Quenched QCD) and heavy quark region of QCD

• Domain wall between two phases at 1st order transition

• Latent heat and pressure gap
• Derivative method

• Gradient flow method

• Endpoint of the 1st order phase transition at finite quark 
mass and chemical potential.
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Distribution function & the effective potential

1st order phase transition

Critical point m,,eff TXV

Crossover W(X): Gaussian function 
V(X): Quadratic function

W(X): Flat
V(X): Curvature: Zero

W(X): Two phases coexist
V(X): Double well potential
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X: order parameters, total quark number, average plaquette, etc. 
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Histogram method (Reweighting method) 

 Monte-Carlo method                 (Sg: gauge action, M: qaurk matrix)

 Generate configurations with the probability of the Boltzmann weight. 

 Distribution function (Histogram)
X: order parameters, total quark number, average plaquette etc.

 Expectation values
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Reweighting method for the plaquette distribution function

plaquette P (1x1 Wilson loop for the standard action)
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Distribution function in quenched simulations
Plaquette histogram at K=1/mq=0.        Derivative of Veff at =5.69 

dVeff/dP =0 at the peak position of Veff (P).

In this case, the curvature of Veff is independent of .
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Distribution function in a quenched simulation
Derivative of the plaquette effective potential

multi-point reweighting method

• Adopting , average with the weight of Nconf

• Ferrenberg-Swendsen, Phys.Rev.Lett. 63, 1195 
(1989); S.E., Phys. Rev. D78, 074507 (2008); 
WHOT-QCD, Phys.Rev.D89, 034507(2014)

Plaquette distribution function 



Histogram and Time history

• Polyakov loop: order parameter of the confinement

• Two peaks in the histogram.

• Flip-flops between two phases.

• Mixed configurations are rare. 

Polyakov loop

Hot phase
Cold phase

Histogram Time history of the Polyakov loop



Two phases coexists at the 1st order PT

• Order parameter: Polyakov loop W (spatial average)

Cold phase Hot phase

WCold WHot

VCold VHot

Ω = 
𝑉ColdΩCold+𝑉HotΩHot

𝑉

Phase boundary If no energy loss at 
the phase boundary,

Veff must be flat. 

V: Volume

WCold WHot
W

Veff (W)



Two phases coexists at the 1st order PT

• Order parameter: Polyakov loop W (spatial average)

Cold phase Hot phase

WCold WHot

VCold VHot

Ω = 
𝑉ColdΩCold+𝑉HotΩHot

𝑉

Phase boundary The energy loss DV at 
the phase boundary is 
in proportion to V2/3

DVeff

WCold WHot
W

Veff (W)

Δ𝐹(Ω)= 
Δ𝑉eff(Ω)

𝑉
~ ൗ1 𝑉1/3



Energy loss at the domain wall

• Δ𝐹(Ω) is in proportion to 1/V1/3.

• It suggests a domain wall between two phases 
exsists at the 1st order phase transition.

Δ𝐹(Ω)

Δ𝐹(Ω)

𝐹(Ω)

lattice 8323 
lattice 8483 
lattice 8643 

Ω

1/V1/3



Latent heat and pressure gap
Whot-QCD, Phys. Rev. D94, 014506 (2016) + a

• The latent heat (energy gap) the most basic quantity.

• The gap of pressure must vanish.
Reliability of the calculation can be confirmed.

• We study the equation of state at the first order phase transition 
of SU(3) gauge theory.

• Gaps of energy density and pressure are measured using the 
derivative method.
• Continuum extrapolation is performed.

• We tested the gradient flow method for the calculation of EoS.

Pressure at 
low T phase

Pressure at 
high T phase

balanced

[H. Suzuki, 2013]



Thermodynamic quantities by the derivative method 

These 4 coefficients must be determined.

𝑃 0: The expectation value at 𝑇 = 0

𝑍 = ∫ 𝐷𝑈 e−𝑆 𝑆 = −3𝑁site(𝛽𝑠𝑃𝑠 + 𝛽𝑡𝑃𝑡)

𝜖 = −
3𝑁𝑡

4𝑇4

𝜉3
𝑎𝑡
𝜕𝛽𝑠
𝜕𝑎𝑡

− 𝜉
𝜕𝛽𝑠
𝜕𝜉

〈 𝑃𝑠 − 𝑃 0) − 𝑎𝑡
𝜕𝛽𝑡
𝜕𝑎𝑡

− 𝜉
𝜕𝛽𝑡
𝜕𝜉

𝑃𝑡 − 𝑃 0

𝑎𝑡 ,

𝑎𝑡
𝜕𝛽𝑠
𝜕𝑎𝑡

, 𝑎𝑡
𝜕𝛽𝑡
𝜕𝑎𝑡

,
𝜕𝛽𝑠
𝜕𝜉

,
𝜕𝛽𝑡
𝜕𝜉

𝜖 = −
1

𝑉

𝜕𝑙𝑛𝑍

𝜕𝑇−1
ቚ
𝑉

𝑝 = 𝑇
𝜕𝑙𝑛𝑍

𝜕𝑉
ቚ
𝑇

Δ𝜖

𝑇4
= −3𝑁𝑡

4 𝑎𝑡
𝜕𝛽𝑠
𝜕𝑎𝑡

−
𝜕𝛽𝑠
𝜕𝜉

〈 𝑃𝑠 hot − 𝑃𝑠 cold) + 𝑎𝑡
𝜕𝛽𝑡
𝜕𝑎𝑡

−
𝜕𝛽𝑡
𝜕𝜉

( 𝑃𝑡 hot − 𝑃𝑡 cold)

For 𝜉 = 1, the gap of the energy density

1

𝑇
= 𝑁𝑡𝑎𝑡 𝑉 = 𝑁𝑠𝑎𝑠
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For the SU(3) gauge theory, 

𝑝 =
𝑁𝑡
4𝑇4

𝜉3
𝜕𝛽𝑠
𝜕𝜉

𝑃𝑠 − 𝑃 0 +
𝜕𝛽𝑡
𝜕𝜉

𝑃𝑡 − 𝑃 0

space

tim
e

𝑎𝑠

𝑎𝑡𝑁
𝑡
𝑎
𝑡

𝑁𝑠𝑎𝑠

energy density                      pressure 

temperature volume 

Independent variables: 𝜉 =
𝑎𝑠
𝑎𝑡

anisotropic lattice 

𝑃𝑡

(𝑃𝑠(𝑡) space-like (time-like) plaquette) 

[F. Karsch, Nucl. Phys. B205 (1982) 285]



[F. Karsch, Nucl. Phys. B205 (1982) 285]

Isotropic lattice 𝛽 = 𝛽𝑠 = 𝛽𝑡 :

Determination of the anisotropy coefficients at x= Τ𝑎𝑠 𝑎𝑡 = 1

String tension is independent of  𝜉 =
𝑎𝑠

𝑎𝑡

𝑎𝑡
𝜕𝛽𝑠
𝜕a𝑡 𝜉=1

= 𝑎𝑡
𝜕𝛽𝑡
𝜕a𝑡 𝜉=1

= 𝑎
𝑑𝛽

𝑑𝑎

𝜕𝛽𝑠
𝜕𝜉

+
𝜕𝛽𝑡
𝜕𝜉

𝑎𝑡:𝐟𝐢𝐱𝐞𝐝,𝜉=1

=
3

2
𝑎
𝑑𝛽

𝑑𝑎

𝛽𝑐

𝑁𝑡
Data: Francis, kaczmarek, Laine, Neuhaus, Ohno, Phys. Rev. D 91, 096002 (2015)  and our data for 𝑁𝑡 = 4~22

𝑎
𝑑𝛽

𝑑𝑎

𝛽

𝑎
𝑑𝛽

𝑑𝑎
is determined by the data of the critical b 𝛽𝑐(𝑁𝑡 )

𝑎
𝑑𝛽

𝑑𝑎
=−𝑁𝑡

𝑑𝛽

𝑑𝑁𝑡

1

𝑇𝑐
= 𝑁𝑡𝑎𝑡



Along the phase transition line, 𝑎𝑡 is constant

because  
1

𝑇𝑐
= 𝑁𝑡𝑎𝑡.

Ratio of the anisotropy coefficients
The slope of the phase transition line in the (𝛽𝑠, 𝛽𝑡) plane: 𝑟𝑡

the transition line

[Ejiri, Iwasaki, Kanaya, Phys.Rev.D 58,094505 (1998)]

d𝑎𝑡 =
𝜕𝑎𝑡
𝜕𝛽𝑡

𝑑𝛽𝑠 +
𝜕𝑎𝑡
𝜕𝛽𝑡

𝑑𝛽𝑡 = 0

𝑟𝑡 =
𝑑𝛽𝑠
𝑑𝛽𝑡

= −

𝜕𝑎𝑡
𝜕𝛽𝑡 𝜉=1

𝜕𝑎𝑡
𝜕𝛽𝑠 𝜉=1

=

𝜕𝛽𝑠
𝜕𝜉 𝜉=1

𝜕𝛽𝑡
𝜕𝜉 𝜉=1

𝛽𝑠

𝛽𝑡

𝜕𝛽𝑠

𝜕𝑎𝑡

𝜕𝛽𝑡

𝜕𝑎𝑡
𝜕𝛽𝑠

𝜕𝜉

𝜕𝛽𝑡

𝜕𝜉

=
1

𝜕𝜉

𝜕𝛽𝑡

𝜕𝑎𝑡
𝜕𝛽𝑠

−
𝜕𝜉

𝜕𝛽𝑠

𝜕𝑎𝑠
𝜕𝛽𝑡

𝜕𝜉

𝜕𝛽𝑡
−

𝜕𝜉

𝜕𝛽𝑠

−
𝜕𝑎𝑡

𝜕𝛽𝑡

𝜕𝑎𝑡

𝜕𝛽𝑠

The slope of the transition line

Using the reweighting method,
𝛽𝑠, 𝛽𝑡 -dependence of

the Polyakov loop susceptibility is measured.

When one changes
𝛽𝑠 , 𝛽𝑡  𝛽𝑠 + 𝑑𝛽𝑠 , 𝛽𝑡 + 𝑑𝛽𝑡 ,



Anisotropy coefficients

𝜕𝛽𝑠
𝜕𝜉

+
𝜕𝛽𝑡
𝜕𝜉

𝑎𝑡:𝐟𝐢𝐱𝐞𝐝,𝜉=1

=
3

2
𝑎
𝑑𝛽

𝑑𝑎
𝑟𝑡 =

𝜕𝛽𝑠
𝜕𝜉 𝜉=1

𝜕𝛽𝑡
𝜕𝜉 𝜉=1

𝜕𝛽𝑠
𝜕𝜉

𝜉=1

=
3𝑟𝑡

2 1 + 𝑟𝑡
𝑎
𝑑𝛽

𝑑𝑎

𝜕𝛽𝑡
𝜕𝜉

𝜉=1

=
3

2 1 + 𝑟𝑡
𝑎
𝑑𝛽

𝑑𝑎

Δ 𝜖 + 𝑝

𝑇4
= 3𝑁𝑡

4𝑎
𝑑𝛽

𝑑𝑎

𝑟𝑡 − 1

𝑟𝑡 + 1
( 𝑃𝑠 hot− 𝑃𝑠 cold) − ( 𝑃𝑡 hot − 𝑃𝑡 cold)

Δ 𝜖 − 3𝑝

𝑇4
= 3𝑁𝑡

4𝑎
𝑑𝛽

𝑑𝑎
( 𝑃𝑠 hot− 𝑃𝑠 cold) − ( 𝑃𝑡 hot − 𝑃𝑡 cold)

Conventional combinations of the energy density and pressure



Measurement of the slope of the transition line 𝑟𝑡

We used the reweighting method.
The slope 𝑟𝑡 can be determined
with sufficient accuracy.

Order parameter: Polyakov loop Ω 𝑥, 𝑡

Transition point:
Peak position of Polyakov loop susceptibility 

𝜒Ω 𝛽𝑠, 𝛽𝑡 = 𝑁𝑠
3( Ω2

(𝛽𝑠,𝛽𝑡) − Ω 𝛽𝑠,𝛽𝑡
2 )

𝑟𝑡 =
𝑑𝛽𝑠
𝑑𝛽𝑡

=

𝜕𝛽𝑠
𝜕𝜉 𝜉=1

𝜕𝛽𝑡
𝜕𝜉 𝜉=1

𝛽𝑡

𝛽𝑠



Separation of the hot and cold phases

• We identify the phase by the Polyakov loop.

• Two peaks in the histogram.

• Flip-flops between two phases.

• Mixed configurations are rare. (We omit mixed configurations.)

O
m
i
t

Polyakov loop

Hot phase
Cold phase

Histogram Time history of the Polyakov loop



lattice 𝒓𝒕
𝑷𝒕 𝒉𝒐𝒕 − 𝑷𝒕 𝒄𝒐𝒍𝒅

𝑷𝒔 𝒉𝒐𝒕 − 𝑷𝒔 𝒄𝒐𝒍𝒅

483 × 6 -1.2020(39) 1.216(50)

643 × 6 -1.2022(52) 1.2053(38)

483 × 8 -1.209(33) 1.204(14)

643 × 8 -1.255(37) 1.2344(66)

643 × 12 -1.16(61) 1.324(84)

963 × 12 -1.204(53) 1.283(53)

Vanishing pressure gap Δ𝑝 = 0

Δ𝑝

𝑇4
= 𝑁𝑡

4 𝜕𝛽𝑠

𝜕𝜉
〈 𝑃𝑠 hot − 𝑃𝑠 cold) +

𝜕𝛽𝑡

𝜕𝜉
𝑃𝑡 hot − 𝑃𝑡 cold =0

The pressure gap is zero on each finite lattice.

𝜕𝛽𝑠
𝜕𝜉
𝜕𝛽𝑡
𝜕𝜉

= 𝑟𝑡 = −
𝑃𝑡 hot − 𝑃𝑡 cold

〈𝑃𝑠〉hot− 𝑃𝑠 cold

Condition for Δ𝑝 = 0



Continuum extrapolation of the latent heat

Δ𝜖

𝑇4
= 0.75 ± 0.17

Δ𝜖 − 3∆𝑝

𝑇4
= 0.623 ± 0.056

Τ1 𝑁𝑡
2= 𝑎2𝑇𝑐

2

𝑁𝑡 = 6𝑁𝑡 = 8𝑁𝑡 = 12

𝑁𝑡 = 4

continuum limit

Fit the data at 𝑁𝑡 = 6, 8, 12 with a linear function of Τ1 𝑁𝑡
2

assuming 𝑂 𝑎2 error.

Whot-QCD, Phys. Rev. D94, 014506 (2016) 



EoS by the Gradient Flow (H. Suzuki, 2013)

• Gradient flow:   smearing by a kind of diffusion equation

• Smeared field strength: 

• Dim. 4 operators:

• Energy momentum tensor

𝑇m
𝑅 = lim

𝑡→0

1

𝛼𝑈 𝑡
𝑈m 𝑡, 𝑥 +

𝛿m

4𝛼𝐸(𝑡)
𝐸 𝑡, 𝑥 − 𝐸(𝑡, 𝑥) 0

GmFm
Gradient Flow 

𝑈𝜇𝜈 𝑡, 𝑥 = 𝐺𝜇𝜌 𝑡, 𝑥 𝐺𝜈𝜌 𝑡, 𝑥 −
1

4
𝛿𝜇𝜈𝐺𝜌𝜎(𝑡, 𝑥)𝐺𝜌𝜎(𝑡, 𝑥)

𝐸 𝑡, 𝑥 =
1

4
𝛿𝜇𝜈𝐺𝜌𝜎(𝑡, 𝑥)𝐺𝜌𝜎(𝑡, 𝑥)

𝛼𝑈 𝑡 = 𝑔2 1 + 2𝑏0𝑠1𝑔
2 +⋯ 𝛼𝐸 𝑡 =

1

2𝑏0
1 + 2𝑏0𝑠2𝑔

2 +⋯

g: running coupling constant with MS scheme based on the 4-loop beta function.

[H. Suzuki, Prog. Theor. Exp. Phys. 2014, 083B03 (2013); FlowQCD, Phys. Rev. D90, 011501(2014)]



EoS by the Gradient Flow (H. Suzuki, 2013)

• Energy density and Pressure

• Take the continuum limit for fixed flow time and volume

• Take the t=0 limit to remove unwanted higher 
dimension operators. 

• Take the volume infinity limit

[H. Suzuki, Prog. Theor. Exp. Phys. 2014, 083B03 (2013); FlowQCD, Phys. Rev. D90, 011501(2014)]

𝜖 = 𝑇00 𝑝 =
1

3


𝑖
𝑇𝑖𝑖



T-dependence of Δ 𝜖 + 𝑝 /𝑇4

• Lattice discretization error is reduced as t increases.
• Statistical error is also reduced. 
• Continuum extrapolation form the data on the  same volume 

Δ 𝜖 + 𝑝 /𝑇4

(𝑁𝑠/𝑁𝑡 = 𝑉
1

3𝑇𝑐)



Continuum extrapolation

・Continuum extrapolation for 𝑁𝑠/𝑁𝑡 = 𝑉
1

3𝑇𝑐 = 8.          tTc
2=0.013

・Horizontal axis is 1/𝑁𝑡
2 ∝ 𝑎𝑡

2 .

Δ 𝜖 − 3𝑝 /𝑇4 Δ 𝜖 + 𝑝 /𝑇4



T-dependence, Continuum limit

Δ 𝜖 − 3𝑝 /𝑇4
Δ 𝜖 + 𝑝 /𝑇4

・The same spatial volume (𝑁𝑠/𝑁𝑡 = 𝑉
1

3𝑇𝑐)
・We take the t=0 limit with t>0.008.
・magenta: continuum limit



Δ𝑝 = 0. in the continuum limit

・ These two results are consistent within the errors.
・ This results suggests Δ𝑝 → 0.

Δ 𝜖 + 𝑝 /𝑇4

Δ 𝜖 − 3𝑝 /𝑇4

Continuum limit:
𝑁𝑠

𝑁𝑡
= 8

𝑁𝑠/𝑁𝑡 = 𝑉
1

3𝑇𝑐 = 8



Δ𝑝 = 0. in the continuum limit

Δ 𝜖 + 𝑝 /𝑇4

Δ 𝜖 − 3𝑝 /𝑇4

Continuum limit:
𝑁𝑠

𝑁𝑡
= 6

・ These two results are consistent within the errors.
・ This results suggests Δ𝑝 → 0.

𝑁𝑠/𝑁𝑡 = 𝑉
1

3𝑇𝑐 = 6



Continuum limit and t=0 limit

• t=0 limit with keeping finite lattice spacing. Dp=0 for Nt=12 and 16. 
• Continuum limit after t=0 limit and t=0 after continuum limit are consistent.

Δ 𝜖 + 𝑝 /𝑇4

Δ 𝜖 − 3𝑝 /𝑇4



Volume dependence of latent heat

• The volume dependence is visible. 
• The results by the gradient flow method 

approaches that by the derivative method 
as the volume increases.

Δ 𝜖 − 3𝑝 /𝑇4 Δ 𝜖 + 𝑝 /𝑇4

Results by the derivative method

𝑁𝑠/𝑁𝑡 = 𝑉
1
3𝑇𝑐



Endpoint of the first order Phase Transition
(WHOT-QCD Collab., Phys.Rev.D84, 054502(2011); Phys.Rev.D89, 034507(2014))

• We study the properties of W(X) in the 
heavy quark region.

• Performing quenched simulations + 
Reweighting.

• We find the critical surface.

• Standard Wilson quark action + plaquette
gauge action,
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Order of the phase transition
Polyakov loop distribution (2-flavor)

54 100.2 :point  Critical 

Effective potential of |W| 

on the pseudo-critical line at m=0

W

• The pseudo-critical line is 
determined by W peak.

• Double-well at small 

• First order transition

• Single-well at large 

• Crossover

κ～１/(quark mass)
Phys.Rev.D89, 034507(2014)



Polyakov loop distribution in the complex plane

• at pc measured by the Polyakov loop susceptibility.

0.04 
64 100.5  54 100.1 

54 105.1  54 100.2  54 105.2 

critical point

2-flavor, m=0)

Z(3) symmetric



Determination of Critical K

• Effective potential on 323x4 lattice

• The result on 243x4 lattice is Kct=0.658(3)( ) 

• No spatial volume dependence.
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Determination of Critical K
• Effective potential on 483x6 lattice



Meson mass at the critical point (2-flavor)

Nt Kcp mPSa mPS/Tc

Reweighting   4    0.0641(18)    3.9332(24) 15.73(25)

6    0.1021(11)    2.5048(23) 15.02(23)

full QCD          4    0.0641(18)    3.9354(22) 15.74(25)

6    0.1021(11)    2.5059(15) 15.03(23)

Two method
1.Reweighting using the detM by the hopping parameter expansion.
2. Full QCD simulations (T=0) at the critical point.

• The results by the two methods are consistent.
• Nt (lattice spacing) dependence in mPS/Tc is small.

mPS : Pseudo scalar meson mass (T=0)



Critical surface in the heavy quark region of 
(2+1)-flavor QCD

Critical surface at finite density

 lattice 4243 

at  cp for 2-flavor.15
c

PS

T

m

crossover

First order

0m

[Phys.Rev.D84, 054502(2011); Phys.Rev.D89, 034507(2014)]



Summary
• We studied the first order phase transition in the 

SU(3) gauge theory (Quenched QCD) and heavy quark 
region of QCD

• The simulation results suggest that two phases are 
separated by a domain wall at 1st order transition.

• We measured the latent heat and pressure gap by the 
derivative method and gradient flow method.

• The pressure gap vanishes at the transition point. 

• The endpoint of the 1st order phase transition at finite 
quark mass and chemical potential are measured.

• The spatial volume dependence and lattice spacing 
dependence in the location of the endpoint seems to 
be small.


