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Motivation

What happens to matter

when it is heated and/or

compressed?

phase transitions     non-perturbative     Lattice QCD! !



The wonderland phase diagram of QCD from Wikipedia

quark

= 1
3µBaryon

T or µ ! 1:
interaction weak

(asymptotic freedom)

Also:
• crystal phase(s)
• quarkyonic phase
• strangelets
. . .

Caveat: everything in red is a conjecture



May or may not
exist

No gauge-invariant 
order parameter:

no phase transition required



“Small” deformation of 
two-flavor massless case:

OK IF u,d quarks are “light”.
No info on location of critical point

confined

QGP

Tc
x
tri-critical point

2nd-order

1st-order

T

µ

Nf = 2,mu = md = 0

h ̄ i = 0

h ̄ i 6= 0



Finite µ: what is known?
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Monte Carlo: no pain, no gain...

Monte Carlo highly e�cient: importance sampling Prob(conf) / exp[�S(conf)]

• But all low-hanging fruits have been picked by now

• Further progress requires tackling the “sign problem”:

9 conf s.t. “Boltzmann weight” exp[�S(conf)] /2 R�0

No probabilistic interpretation — Monte Carlo impossible??

QCD at non-zero density / chemical potential µ

integrate out the fermions det(D/ + µ�0)2 (Nf = 2)

complex except when µ = 0 (charge-conjugation symmetry)

Real > 0 “Boltzmann weight” is the exception rather than the rule

“Sign problem”  a.k.a.  complex action pb:    exp(�S) /2 R�0

Finite-density QCD:  + Hubbard model, quantum time evolution, ...



Why are we stuck at µ = 0? The “sign problem”

• quarks anti-commute ! integrate analytically: det(D/ (U) +m+µ�
0

)
�
5

(ip/ +m+µ�
0

)�
5

= (�ip/ +m�µ�
0

) = (ip/ +m�µ⇤�
0

)†

detD/ (µ) = det⇤ D/ (�µ⇤)

det real only if µ = 0 (or iµ
i

), otherwise can/will be complex
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• Origin: µ 6= 0 breaks charge conj. symm., ie. usually complex conj.

Complex determinant =) no probabilistic interpretation �! Monte Carlo ??



Computational complexity of the sign pb

• How to study: Z⇢ ⌘ R
dx ⇢(x), ⇢(x) 2 R, with ⇢(x) sometimes negative ?

Reweighting: sample with |⇢(x)|, and “put the sign in the observable”:

hW i ⌘
R
dx W (x)⇢(x)R

dx ⇢(x)
=

R
dx [W (x)sign(⇢(x))] |⇢(x)|R

dx sign(⇢(x)) |⇢(x)| =
hW sign(⇢)i|⇢|
hsign(⇢)i|⇢|

• hsign(⇢)i|⇢| =
R
dx sign(⇢(x))|⇢(x)|R

dx |⇢(x)| = Z⇢

Z|⇢|
= exp(�V

T �f (µ2,T )| {z }
diff. free energy dens.

), exponentially small

Each meas. of sign(⇢) gives value ±1 =) statistical error ⇡ 1p
# meas.

Constant relative accuracy =) need statistics / exp(+2V

T

�f )

Large V , low T inaccessible: signal/noise ratio degrades exponentially

“Figure of merit” �f : measures severity of sign pb.
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“Dual” variables

Partition function becomes gas of loops  (particle worldlines)

Idea: strong-coupling/high-temperature expansion

exp(� �⇤
i�j) =

X

k

�k

k!
(�⇤

i�j)
k

| {z }
integrate out

new Monte Carlo “dual” variable      for each link k (ij)

Loops have positive weights       sign problem gone! (not always)!

Gauge fields: gas of surfaces; non-Abelian      sign problem again...!

QCD: ok for strong-coupling limit                 (no plaquette term)� =
6

g2
= 0



Results � ⇡ 0 w/Unger, Langelage, Philipsen

• Sign pb almost gone: accessible volumes multiplied by 104

• Phase diagram (mq = 0):

� = 0 O(�) corrections
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Methods under construction:

Field complexification



Catalogue of approaches to bypass the QCD sign pb:
going complex

e.g. gauge field: Aµ ! AR
µ + iAI

µ S extended by analytic continuation

• QCD problem I:
S is not analytic: log det(D/ ) has poles and is multi-valued

• QCD problem II:
gauge group SU(3) ! SL(3, C), departure from SU(3) ⇠ AI

µ

SL(3, C) gauge transformations ) flat directions Aµ ! i1
) runaway solutions; large, diverging force; roundo↵ error; etc..

• gauge cooling Seiler, Sexty & Stamatescu
• irrelevant (?) SU(3)-restoring force Attanasio & Jäger

Hope: find probability P(AR
µ ,A

I
µ) 2 R+ in complexified space,

which yields correct vevs for all observables

Going complex:  difficulties with QCDWitten



Catalogue of approaches to bypass the QCD sign pb:
going complex

• Intelligent design: construct “representation” P(AR
µ ,A

I
µ) 2 R+ such that

hW (AR
µ)iexp(�SR�iSI )

= hW (AR
µ + iAI

µ)iP 8W Salcedo, Wosiek
Example: S = (x � i)2 ! P(x , y) = �(y � 1) exp(�x2)

Finding suitable “representation” more di�cult than solving the sign problem?

• Complex Langevin: conjecture by Parisi and by Klauder, 1983
S complex ! complex drift force rS , + complex noise

Outcomes: runaway, convergence to correct or to wrong answers
When does complex Langevin give correct results?

- infinite set of conditions (Seiler et al) – not practical
- no boundary in parameter space separating correct and wrong results

! always wrong? Kogut & Sinclair?
- real noise only
- may give wrong answers in the absence of sign pb (3d XY model,

Aarts & James, 2010)

Going complex I:  doubling the number of d.o.f.
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Going complex I:  doubling the number of d.o.f.



BUT

Criterion for correctness (with proof):

Distribution of drift force falls off exponentially (or faster)

Nishimura et al, 1606.07627v4
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p(
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Modify this distribution (if necessary) by extra drift force

and extrapolate results to zero such force Nishimura et al,  Jaeger et al

QCD with light quarks, low    large   : under way!µT Nishimura et al
Sexty et al,  Kogut Sinclair

log-log scale
power-law falloff: wrong results





Catalogue of approaches to bypass the QCD sign pb:
going complex

• Lefschetz thimble:

Idea: deform integration contour in the complex plane,
such that SI = constant ! ⇡ constant phase

- do NOT explore full complexified space ($ complex Langevin)
- to find the thimble: start at saddle point @zS(z) = 0

keep SI fixed
move to increase SR (steepest ascent)

- IF one thimble, then constant phase e iSI cancels in vevs
residual, mild sign pb from Jacobian along [not straight] thimble
technical di�culty of sampling along thimble can be overcome

Di Renzo et al, Tanizaki et al, Fujii et al, Bedaque et al

Problem: number of thimbles ⇠ exp(Volume) ?

- Keep dominant thimble only (OK as V ! 1 ?) but, eg. phase transitions??

- Keep all thimbles: - relative phase ! sign pb reappears
- ergodic sampling?

Going complex II:  deforming the contour
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Catalogue of approaches to bypass the QCD sign pb:
going complex

• Holomorphic gradient flow: Alexandru, Bedaque et al, 1512.08764,..

Idea: tuning knob (flow time) to interpolate between real manifold and thimble

• t = 0 ! original field �

• t > 0 ! d�
dt = @S

@�

Along flow, SI remains constant, and SR keeps increasing
ie. exp(�SR) keeps decreasing, except for critical points @S/@� = 0

=) approach Lefschetz thimbles as t ! 1

Flow time: 0 �! 1
Di�culty: sign pb ergodicity pb

sweet spot

Note: sign pb requires exp(V ) resources, ergodicity pb ALSO
! don’t expect “sweet spot” to beat exp(V ) complexity – only �f smaller

• Reason for optimism: real-time quantum dynamics 1605.08040

Going complex II:  deforming the contour

Path Optimization Method:  minimize sign pb, using Neural Network
Ohnishi et al



Mature methods with limited scope:

   Taylor expansion in µ/T



Small-   approach:  Taylor expansionµ

Expansion parameter             µ/T . 1

P (T, µ)� P (T, 0) =
X

k=1

c2k(T )
⇣ µ

T

⌘2k

c2k = hTr (degree 2k polynomial in                 )/D�1,
@/D

@µ
iµ=0

Standard          simulation & noise vectors to estimate Traceµ = 0

Combinatorial complexity in                out of reachk ! c8

Progress:      on the latticeµ

Linear:                               ,  UV divergenceU4 ! (1 + aµ)U4

U4 ! exp(aµ)U4Hasenfratz & Karsch:                              , cures UV divergence

Gavai & Sharma:  linear + subtract UV divergence by hand ??

1983

2011

c4 : 2002
c6 : 2005



Taylor expansion: nitty-gritty
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Now estimate all Traces by sandwiching between noise vectors... GPUs
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Now estimate all Traces by sandwiching between noise vectors... GPUs

Only term surviving
    with linear   µ

Fewer traces       less work and more precise estimates!



Small-   approach: imaginary-µµ
Imaginary µ: same, but simpler

• Simulate at several values of µ = iµ
I

: no sign pb.
(|µ

I

| < ⇡T
3

, Roberge-Weiss singularity)

• Fit hOi(µ
I

) =
P

k

d

k

k!

µk

I

! d
k

is estimator of @kO
@µk

I

Analytic continuation trivial: iµ
I

! µ

• For pressure, take eg. O = n
B

= @P
@µ

B

and integrate fitted polynomial

• Error analysis simple: data at di↵erent µ
I

’s uncorrelated

• No free lunch: k th derivative damped by k!

• Data fitted by truncated Taylor series or Pade ! systematic error?
Conformal mapping to unit disk Morita et al., 1008.4549
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SU(3) finite isospin 
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x4 

polynomial order µ
6

Frequent problem (here for T
c

(µ)):
the series in (iµ

I

)2 is alternating
D’Elia et al., 0905.1292

Degree of fitted polynomial, fit range        systematic error?!

New (Wuppertal):  global fit (at each    ) with Bayesian priorT



Figure 2. Results for �B
2 , �B

4 , �B
6 and an estimate for �B

8 as functions of the temperature, obtained
from the single-temperature analysis. We plot �B

8 in green to point out that its determination is
guided by a prior, which is linked to the �B

4 observable by Eq. (3.4). The red curve in each panel
corresponds to the Hadron Resonance Gas (HRG) model result.

and µQ derivatives have to be simulated directly and without the support from the fit that
we used in the µB direction. Our result on �QS

jk improved only due to the increase in the
statistics since [28].

On the other hand, baryon-strange and baryon-charge mixed derivatives do benefit
from the imaginary µB data. We simulate various �B,Q,S

i,j,k with the appropriate values of j
and k and all possible values of i so that i+ j + k  4. For each group of fluctuations with
the same j and k we perform a fit analogous to the procedure described in Section 3.2.

Let’s take the example of j = 1, k = 0. Our ansatz for cross-correlators is analogous to
Eqs. (3.5)-(3.8):

�BS
01 (µ̂B) = �BS

11 µ̂B +

1

3!

�BS
31 µ̂3

B +

1

5!

�BS
51 µ̂5

B +

1

7!

�BS
71 µ̂7

B +

1

9!

�BS
91 µ̂9

B (3.9)

We truncated the expression at tenth order. The priors assume |�BS
71 | . |�BS

31 | and
|�BS

91 | . |�BS
31 |, as it is certainly true at high temperature and within the HRG model. The

– 7 –

1805.04445, Fodor et al.

c8

N⌧ = 12



Taylor expansion and imaginary-    agreeµ

Vovchenko, 
XQCD2018

CEM: Baryon number susceptibility

• CEM-LQCD: ܾଵ(ܶ) and ܾଶ(ܶ) from LQCD simulations at imaginary ߤ
• CEM-HRG: ܾଵ(ܶ) and ܾଶ(ܶ) from excluded-volume HRG

Model inputs used:
Lattice data from 1112.4416 (Wuppertal-Budapest), 1701.04325 (HotQCD) 

߯ଶ

9/19

CEM: Higher-order susceptibilities

Lattice data on higher-order susceptibilities validate CEM

Lattice data from 1805.04445 (Wuppertal-Budapest), 1701.04325 & 1708.04897 (HotQCD)

߯ସ/߯ଶ ߯/߯ଶ

10/19



→ poster by F. Negro C. Bonati et al arXiv:1805.02960

- Nf = 2+1 QCD by stout staggered quarks, µu =

µd = µB/3, µs = 0.

- κ = 0.0142(25) determined from the renormal-

ized chiral condensate

Quantitative agreement of the most recent

determinations confirms the reliability of

analytic continuation and Taylor expan-

sion

Functional methods yield similar results

B. J. Schaefer, J. Wambach, nucl-th/0403039; J. Braun,

B. Klein, B. J. Schaefer, arXiv:1110.0849; J. M. Pawlowski,

F. Rennecke, arXiv:1403.1179; C. S. Fischer, J. Luecker

and C. A. Welzbacher, arXiv:1405.4762 0 0.005 0.01 0.015 0.02 0.025 0.03
κ

Endrodi et al. JHEP (2011)

Kaczmarek et al. PRD (2011)

Cea et al. PRD (2014)

Bonati et al. PRD (2014)

Bonati et al. PRD (2015)

Bellwied et al. PLB (2015)

Cea et al. PRD (2015)

Hegde et al. (Lattice 2015)
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Taylor HISQ, S=0, 
Q/B=0.4

hotQCD @ QM2018
new

new

Taylor expansion and imaginary-    agreeµ

Here, for curvature of pseudo-critical line:

Tc(µB)

Tc(0)
= 1� 2

✓
µB

Tc(0)
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+O(µ4
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{
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{
M. D’Elia, QM2018



Personal view
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Prospects for a relevant QCD critical point are receding

No signal [yet] from RHIC beam energy scan

Large mass neutron stars disfavor quark matter core (EOS too soft)

Curvature of pseudo-critical line is small:

Models (PNJL, strong-coupling LQCD,..) place crit.pt. far to the right
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Finding a crit.pt. at large    requires massive CPU effortµ

or a breakthrough...

arXiv:1711.01261
Vovchenko et al.

~ Taylor coeffs of pressure
to 8th order versus T
compared with Ansatz

At each temperature, Monte Carlo values of           specify the Ansatzb1, b2
 Then Ansatz predicts                 perfectly consistent with Monte Carlob3, b4 !

Analytic Ansatz describes all available Monte Carlo data!

stars & circles on top of each other 



Time evolution of the phase diagram of QCD 

Cabibbo & Parisi, 1975

“little bang”

µ

T
2020

    “no bang at all” ?





Backup
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QCD phase diagram at mu=0
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  How large is the chiral phase transition Tc ? 

?

?

columbia plot:

 How large is the influence of scaling regimes to the physical world ?

 Nf=2+1 theory: at m=0 or ∞ has a first 
    order phase transition

 Intermediate quark mass region an analytic 
    cross over is expected

 At physical quark masses, a cross over is 
    confirmed

 Critical lines of second order transition
    Nf=2:  O(4) universality class
    Nf=3:   Ising universality class

Pisarski, Wilczek PRD ‘84,

Karsch, Laermann, 
Schmidt PLB ’04,...

Ejiri et al., PRD ’09, ...

Alexandrou et al., PRD’99...

Bernard et al., PRD ’05, Cheng et al., PRD ’06, 
Aoki et al., Nature ’06...



How to make the sign problem milder?

• Severity of sign pb. is representation dependent:

generically, Z = Tre��H = Tr

h
e�

�
N H (

P
| ih |) e� �

N H (
P

| ih |) · · ·
i

Any complete set {| i} will do

If {| i} form an eigenbasis of H, then h k |e�
�
N H | li=e�

�
N Ek �kl � 0 ! no sign pb

• Strategy: choose {| i} “close” to physical eigenstates of H

without full-fledged diagonalization of H
Strategy is general – “deep” optimization? tensor networks?

• Worse: are there irreducible sign problems?
YES: when the partition function vanishes!

Example: spin system in complex
magnetic field (Lee-Yang zeros of Z )

Rindlisbacher & PdF



Catalogue of approaches to bypass the QCD sign pb

• Analytic continuation from imaginary µ (no sign pb there): data is cheap
How to control systematic error?? (fitting ansatz)

• Taylor expansion in µ/T about µ = 0:
limited info µ/T . 1
cost of k th coe↵ increases very steeply with k
technical advances Gavai, Sharma, Schmidt,..

• Density of states:
S = SR + iSI ; select one observable eg. SI ! Zx =

R
DUe�SR �(SI � x)

Z =
R
dx Zx e ix , i.e. Fourier transform

old: Gocksch (1988), Fodor Katz & Schmidt, 2007, ..
significant progress: Langfeld, Lucini & Rago, 2012

Solves overlap pb
consensus(?): data alone not accurate enough to beat sign pb:
need “smoothing” or “fitting” ansatz LLR; Gattringer

! bias PdF & Rindlisbacher, XQCD 2016



Catalogue of approaches to bypass the QCD sign pb:
a sobering story (Ph.D. thesis, Slavo Kratochvila, ETH, 2005)

• Toy problem: estimate hW (�)i =
R

+1
�1 dx e�x2+i�x

R
dx e�x2

Exact answer: hW (�)i = he i�xi�=0

= e��2/4 ! exponentially large cancellations

• One approach: deformation of contour in the complex plane

Note saddle points: x = i�/2 (numerator) and x = 0 (denominator)

• Observation: optimum is to go through x = i�/4, ie. neither saddle point!

Why? Moving the contour away from real axis renders denominator oscillatory

Sign problem is shifted between numerator and denominator!
Optimum contour is a compromise (half-way between the two saddle points)

which depends on observable W

Lesson for realistic problems:
an innocent observable may become oscillatory when analytically continued

! danger of simply reshu✏ing the sign pb from Z to W

cf. optimization of contour via cost-function Ohnishi et al, 1705.05605
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Sampling for QCD at finite µ

• QCD: sample with |Re(det(µ)Nf )| optimal, but not equiv. to Gaussian integral
Can choose instead: | det(µ)|Nf , i.e. “phase quenched”

| det(µ)|Nf = det(+µ)
N

f

2 det(�µ)
N

f

2 , ie. isospin chemical potential µ
u

= �µ
d

couples to ud̄ charged pions ) Bose condensation of ⇡+ when |µ| > µ
crit

(T )

”Silverblaze pb”: phase of det changes groundstate
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• QCD: sample with |Re(det(µ)Nf )| optimal, but not equiv. to Gaussian integral
Can choose instead: | det(µ)|Nf , i.e. “phase quenched”

| det(µ)|Nf = det(+µ)
Nf
2 det(�µ)

Nf
2 , ie. isospin chemical potential µu = �µd

couples to ud̄ charged pions ) Bose condensation of ⇡+ when |µ| > µ
crit
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• av. sign = Z
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Z|QCD|(µ)

= e�
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sign problem

0 π

�f (µ2,T ) large in the Bose phase
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Not as hard
µ
T . 1



Alternative at T ⇡ 0: µ = 0 + baryonic sources/sinks

Signal-to-noise ratio of N-baryon correlator / exp(�N(m
B

� 3

2

m⇡)t)

Lepage 1989

C
B

(t) = ⇠ e

�m

B

t

|C
B

(t)|2 = X ⇠ ⇠ e

�3m⇡t

• Mitigated with variational baryon ops. ! m
eff

plateau for 3 or 4 baryons ?
Savage et al., 1004.2935

At least 2 baryons ! nuclear potential Aoki, Hatsuda et al., eg. 1007.3559

• Beautiful results with up to 12!72 pions or kaons Detmold et al., eg. 0803.2728

(cf. isospin-µ: no sign pb.)


