Study of complexification approach in (0+1)d Thirring model at finite μ

H. Fujii (U Tokyo)

collaboration with S. Kamata, Y. Kikukawa JHEP 1511 (2015) 078; 1512 (2015) 125, and [arXiv:1710.08524]

Sign problem at non-zero μ

• QCD Partition function

$$Z = \int DU D \,\overline{\psi} D \psi \, e^{-S} = \int DU \, e^{-S_B} \det D(U)$$

- for non-perturbative evaluation, we use importance sampling with a probability weight $e^{-S_B} \det D > 0$
- At non-zero μ , the measure becomes oscillatory:

 $\left[\det D(\mu)\right]^* = \det D(-\mu^*) \quad \in \mathbb{C}$

- direct application of importance sampling becomes invalid
- Other examples of complex action
 - chiral gauge theory, θ term, Hubbard model, real-time evolution, ... etc.

Field complexification

- To deform the integration path into complex domain
 - take the steepest descent path or "*thimble*"

Cristoforetti-Di-Renzo-Scorzato ('12), HF-Honda-Kato-Kikukawa-Komatsu-Sano ('13) Tanizaki, Kanazawa-Tanizaki,HF-Kamata-Kikukawa,

- utilize freedom in choosing the integration path

Alexandru-Basar-Bedaque ('15), Fukuma-Umeda ('17), Kashiwa-Mori-Ohnishi ('17)

- Rigorous, but how efficient?

- To use ensembles generated by complex Langevin equation
 - simpler, but how justified?

Parisi ('83), Klaudar ('83),,,Okano et al., ..., Aarts-Stamatescu ('08), Aarts-James-Seiler-Stamatescu, Sexty+, Nagata-Nishimura-Shimasaki ('15), ...

Plan

- (0+1)dim. Thirring model as a test-ground
 - Silver Blaze phenomenon from thimble integration
- Complex Langiven simulation
 - determinant zeros and check of the criterion
- Avoiding determinant zeros by re-weighting in CLE

• Summary

0+1d Thirring model as a test-ground

• a Fermion model with $j_{\mu}j_{\mu}$ coupling

$$Z_{L} = \int_{-\pi}^{\pi} \prod \frac{dA_{n}}{2\pi} e^{-\beta \sum (1 - \cos A_{n})} \Big[\cosh \left(L\mu + i \sum_{n} A_{n} \right) + \cosh L \hat{m} \Big]$$

~ $\int dx e^{-S_{b}(x)} \det D(x, \mu)$

phase diagram ($g^2/m = 1/2$)

structure in complex space $(A_n=z, L=4)$

Thimble (Steepest descent path)

• We promote config. space to complex space

$$A_n \in \mathbb{R} \quad \Rightarrow \quad z_n \in \mathbb{C}$$

• Thimble is generalization of steepest descent to multi-dim case

- Integration of e^{-S} on a thimble is monotonic and convergent
- Lefschetz: original integration path can be replaced by a set of thimbles

Evolution of thimble structure with μ

- Im S = const on a thimble
- Two thimbles meet at a point Det=0 (Re S = ∞), with an angle Δ (Im S)

NFQCD2018, YITP, June 7

How Silver-Blaze phen. is realized

Complex Langevin approach

 Complex Langevin eq (CLE) generates a statistical ensemble P(x,y) in *complex z=x+iy* plane

$$\begin{aligned} z(t+\epsilon) &= z(t) + \epsilon K(z) + \sqrt{\epsilon} \eta(t) \\ K(z) &= -\frac{\partial S_b}{\partial z} + \frac{1}{\det D} \frac{\partial \det D}{\partial z} \end{aligned}$$

- "Det D=0" \Rightarrow drift singularities appear

Scatter plots in complex space (1var.model)

drift flow field: arrows thimbles: curves zeroes: points

 $\label{eq:multiplicative} \begin{array}{l} \mu \texttt{=}0.5, \ 0.6 \ \rightarrow \\ 1.5 \ \rightarrow \ 2.0, \ 2.1 \end{array}$

NFQCD2018, YITP, June 7

0.5

1.0

1.5

-1.0 - 0.5 0.0

0.0

-0.5

-1.5

Direct CLE

• fails in cross-over region

 ϵ =10-5 (adaptd), m=1, β =1, L=8, 10⁶ samples

- gives results similar to phase-quench model results
 - because CLE ignores the phases associated to thimbles?

Condition for correctness of CLE

Nagata-Nishimura-Shimasaki, PRD94(2016) no.11, 114515 refinement from Aarts-James-Seiler-Stamatescu

 For discrete CLE to converge to continuum CLE correctly, ensemble dist must exclude exponentially the region where the drift becomes divergent

Histogram of drift magnitude

Power-law tail from deep imaginary region

Figure 6. Example of trajectory components, $z_{1,2,3,4}$, for L = 8, $\beta = 1$ and m = 1 sampled in every 10^2 steps with time step $\epsilon = 10^{-5}$. Other components $z_{5,6,7,8}$ behave similarly.

Avoid zeros by re-weighting

- Silver Blaze needs contribs of multi thimbles connected via "0"
 - a direct CLE simulation cannot avoid hitting "det D=0"

• To simulate the crossover behavior correctly, J. Bloch et al. for ChRM model use reweighting with ensembles of good reference chem.pot. " ν "

$$\langle O \rangle_{\mu} \equiv \frac{\left\langle \frac{\det D(\mu)}{\det D(\nu)} O \right\rangle_{\nu, \text{CLE}}}{\left\langle \frac{\det D(\mu)}{\det D(\nu)} \right\rangle_{\nu, \text{CLE}}}$$

NFQCD2018, YITP, June 7

Re-weighting with CLE

- Result of reference "v" = 0, 3
- CLE ensemble at ref. " ν ", can reproduce correct behavior

=> contains correct physics in crossover region

Severity in re-weighting

Average phase factor

$$\langle e^{i\varphi} \rangle_{\nu,p.q.} = \left\langle \frac{\det D(\mu)}{\det D(\nu)} \right\rangle_{\nu,\text{CLE}} / \left\langle \left| \frac{\det D(\mu)}{\det D(\nu)} \right| \right\rangle_{\nu,\text{RLE}}$$

Severity of re-weighting

Average phase factor (1-var model case)

$$\left\langle e^{\mathbf{i}\varphi}\right\rangle_{\nu,\mathrm{p.q.}} \equiv \int_{\Sigma\mathcal{J}} dz \, e^{-S_b(z)} D(\nu) \left| \frac{D(\mu)}{D(\nu)} \right| e^{\mathbf{i}\varphi(z)} \int_{\Sigma\mathcal{J}} dz \, e^{-S_b(z)} D(\nu) \left| \frac{D(\mu)}{D(\nu)} \right|$$

C.f.) Re-weighted CL for ChRM

 $ref.\mu=1.5$

Bloch et al., JHEP 1803 (2018) 015

No problem, even for $\mu=0$ (except for transition region)

Summary

Taking (0+1)d Thirring model as a test-grond, we showed

- How Silver-Blaze behavior appears from thimble integration
 - "Global sign change" is necessary
- How the direct CLE simulation fails in crossover region
 - Ensemble is localised around thimbles
 - Singular drift problem (See Nishimura-san's talk)
- How the re-weighting in CLE works
 - Correct crossover behavior is reproduced with reference P(x,y)
 - ⁻ but, still $\langle e^{i\phi} \rangle^{\sim} \exp($ #L) on the opposite side of the crossover
- Outlook
 - More efficient algorithms in complexified space; POM, Exchange MC, ...
 - Can one treat the global sign of thimbles precisely in MC?